
Intel® Itanium® Architecture
Software Developer’s Manual
Specification Update
August 2004
Document Number: 248699-009

Notice: Intel® Itanium® architecture processors may contain design defects or errors known as
errata which may cause the product to deviate from published specifications. Current
characterized errata are documented in processor specification updates.

2 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://developer.intel.com/design/litcentr.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Copyright © 2002-2004, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Contents
Revision History ...5

Preface...6

Summary Table of Changes ...7

Specification Changes..9

Specification Clarifications..38

Documentation Changes..53
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 3

4 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Revision History

Version
Number Description Date

-009 Added Specification Changes 5-9; added Specification Clarifications 16-22;
added Documentation Changes 8-13.

August 2004

-008 Added Specification Changes 2-4; added Specification Clarifications 5-15;
added Documentation Changes 1-7.

October 2003

-007 Added Specification Change 1; added Specification Clarification 1-4. December 2002

-001-
-006

Changes from previous Software Developer’s Manual Specification Updates
were incorporated into version 2.1 of the Intel® Itanium® Architecture
Software Developer’s Manual October 2002.

June 2002
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 5

Preface
Preface

This document is an update to the specifications contained in the Affected Documents/Related
Documents table below. This document is a compilation of device and documentation errata,
specification clarifications, and changes. It is intended for hardware system manufacturers and
software developers of applications, operating systems, or tools.

Information types defined in Nomenclature are consolidated into the specification update and are
no longer published in other documents.

This document may also contain information that was not previously published.

Affected Documents/Related Documents

Nomenclature

Specification Changes are modifications to the current published specifications for Intel®
Itanium® architecture processors. These changes will be incorporated in the next release of the
specifications.

Specification Clarifications describe a specification in greater detail or further explain a
specification’s interpretation. These clarifications will be incorporated in the next release of the
specification.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These changes will be incorporated in the next release of the Intel® Itanium®

Architecture Software Developer’s Manual.

Title Document #

IIntel® Itanium® Architecture Software Developer’s Manual, Volume 1: Application
Architecture

245317-004

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System Architecture 245318-004

Intel® Itanium® Architecture Software Developer’s Manual, Volume 3: Instruction Set
Reference

245319-004
6 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Summary Table of Changes
Summary Table of Changes

The following tables indicate the specification changes, specification clarifications, or
documentation changes that apply to the Intel® Itanium® Architecture Software Developer’s
Manual.

.

Specification Changes
No. Page SPECIFICATION CHANGES

1 8 Volume 1: ao bit added to CPUID Register 4

2 8 MCA architecture extensions for supporting data-poisoning events

3 11 LID enhancements

4 11 Extend PALE_CHECK exit options

5 13 Addition of tf instruction

6 17 Removal of requirement for externally connected pins

7 20 Architecture extensions for processor Power/Performance states

8 34 Allow Undefined Behavior for All Must-be-last Instructions

9 35 Addition of PAL_BRAND_INFO

Specification Clarifications
No. Page SPECIFICATION CLARIFICATIONS

1 36 Volume 2: PSR.dt serialization clarification

2 36 Volume 2: Unaligned debug fault clarification

3 36 Volume 3: Clarification on PSR requirements for br.ia/rfi instructions during PSR.is
transition

4 37 Volume 3: Added Illegal Operation fault to fnma I-page

5 37 Clarify INTA/XTP definition

6 38 Clarify VHPT insert rules

7 38 Adding FP-readers to support table

8 39 cmpxchg clarifications

9 39 Add Illegal Operation fault

10 40 Non-speculative reference for WBL attribute clarification

11 42 Dirty-bit fault ISR.code clarification

12 43 FC data dependency ordering clarification

13 43 PAL_MC_DRAIN clarification

14 44 Add hint instructions to support table

15 44 Clarify speculative operation fault handler requirements

16 47 Clarify role of PMC.ev bit as implementation-specific

17 47 Relax IA-32 Application Registers Reserved/Ignored checking

18 49 Relax ordering constraints for VHPT walks

19 49 Clarify illegal operation fault behavior for predicated off reserved ops

20 50 Clarify opcode hint fields in encodings

21 51 Clarify speculative operation fault handler requirements

22 52 PAL_CACHE_FLUSH clarification
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 7

Summary Table of Changes
Documentation Changes
No. Page DOCUMENTATION CHANGES

1 51 Update IA-32 CPUID I-Page

2 57 PAL_BUS_GET/SET_FEATURES fix

3 57 PAL_COPY_PAL update

4 58 Fixing X-Unit text correction

5 58 PAL_CACHE_SHARED_INFO text correction

6 58 PAL_CACHE_FLUSH clarification and minor code sequence fix

7 58 PAL_GET_PROC_FEATURES table fix

8 60 Correct the role of X-resources during MCA

9 61 Clarification on the short format VHPT

10 61 Floating-point correction

11 61 Clarify effect of sending IPI to non-existent processor

12 61 Add a new instruction class

13 61 Updated RAW Dependence Table
8 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
Specification Changes

1. Volume 1: ao bit added to CPUID Register 4

1. New Figure 3-12 (page 1:30) - added a new bit for ao:

2. Table 3-8 (page 1:30) has a new entry for ao:

2. MCA architecture extensions for supporting data-poisoning events

1. Volume 2: Added the following row to Table 11-54 (page 2:360) of
PAL_PROC_GET_FEATURES:

2. Volume 2: dp bit added to PAL_MC_ERROR_INFO Cache_Check and Bus_Check:

a. Figure 11-37 (page 2:345) – added new bit for dp:

63 3 2 1 0

rv ao sd lb
61 1 1 1

Field Bits Description

lb 0 Processor implements the long branch (brl) instructions.

sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of
Speculative Load Faults” on page 2:88).

ao 2 Processor implements 16-byte atomic operations (see “ld — Load”, “st — Store” and
“cmpxchg — Compare and Exchange” instructions in Volume 3).

rv 63:3 Reserved.

Table 11-54. Processor Features

Bit Class Control Description

53 Opt. Req. Enable MCA signaling on data-poisoning event detection. When 0, a CMCI will be
signaled on error detection. When 1, an MCA will be signaled on error detection. If
this feature is not supported, then the corresponding argument is ignored when
calling PAL_PROC_SET_FEATURES. Note that the functionality of this bit is
independent of the setting in bit 60 (Enable CMCI promotion), and that the bit 60
setting does not affect CMCI signaling for data-poisoning related events.

Figure 11-37. cache_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsvd dp rv wiv way mv mesi ic dc tl dl rsvd level op

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is rsvd index
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 9

Specification Changes
b. Table 11-47 (page 2:345) – added new entry for dp:

Table 11-47. cache_check Fields

Field Bits Description

op 3:0 Type of cache operation that caused the machine check:

0 – unknown or internal error

1 – load

2 – store

3 – instruction fetch or instruction prefetch

4 – data prefetch (both hardware and software)

5 – snoop (coherency check)

6 – cast out (explicit or implicit write-back of a cache line)

7 – move in (cache line fill)

All other values are reserved.

level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.

rsvd 7:6 Reserved

dl 8 Failure located in the data part of the cache line.

tl 9 Failure located in the tag part of the cache line.

dc 10 Failure located in the data cache

ic 11 Failure located in the instruction cache

mesi 14:12 0 – cache line is invalid.

1 – cache line is held shared.

2 – cache line is held exclusive.

3 – cache line is modified.

All other values are reserved.

mv 15 The mesi field in the cache_check parameter is valid.

way 20:16 Failure located in the way of the cache indicated by this value.

wiv 21 The way and index field in the cache_check parameter is valid.

rsvd 22 Reserved

dp 23 A multiple-bit error was detected, and data was poisoned for the corresponding cache line
during castout.

rsvd 31:24 Reserved

index 51:32 Index of the cache line where the error occurred.

rsvd 53:52 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.
10 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
c. Figure 11-39 (page 2:347) – added new bit for dp:

d. Table 11-49 (page 2:347) – added new entry at bit 23 for dp:

Figure 11-39. bus_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bsi dp hier sev type cc eb ib size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-49. bus_check Fields

Field Bits Description

size 4:0 Size in bytes of the transaction that caused the machine check abort.

ib 5 Internal bus error

eb 6 External bus error

cc 7 Error occurred during a cache to cache transfer.

type 15:8 Type of transaction that caused the machine check abort.

0 – unknown

1 – partial read

2 – partial write

3 – full line read

4 – full line write

5 – implicit or explicit write-back operation

6 – snoop probe

7 – incoming or outgoing ptc.g

8 – write coalescing transactions

9 – I/O space read

10 – I/O space write

11 – inter-processor interrupt message (IPI)

12 – interrupt acknowledge or external task priority cycle

All other values are reserved

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.

dp 23 A multiple-bit error was detected, and data was poisoned for the incoming cache line.

bsi 31:24 Bus error status information. It describes the type of bus error. This field is processor bus
specific.

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel Itanium instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 11

Specification Changes
3. LID enhancements

1. Volume 2, Part I, Section 5.8.3.1, page 2:104, first paragraph should now read:

“The LID register contains the processor's local interrupt identifier. Two fields (id and eid)
serve as the processor's physical name for all interrupt messages (external interrupts, INITs,
and PMIs). LID is loaded by firmware during platform initialization based on the processor's
physical location within the system. Processors receiving an interrupt message on the system
interconnect may or may not compare their id/eid fields with the target address for the
interrupt message, depending on the type of system interconnect. If this comparison is
performed, then a match would indicate that the interrupt received was intended for this
processor. In case of no comparison, processors use other system topology mechanisms to
determine the correct target of the interrupt message.”

2. Volume 2, Part I, Section 5.8.3.1, page 2:104, second paragraph, change from:

“LID is a read-write register.”

to:

“The LID register fields are read-only or read-write. Details of the programmability of
these fields is communicated by PAL at PALE_RESET handoff (see Section 11.2.2:
'PALE_RESET Exit State' for details). Read-only LID bits always return a value of 0.
Writes to read-only bits are ignored.”

3. Volume 2, Part I, Section 11.2.2, page 2:259, change the GR33 bullet from:

“GR33 contains the geographically significant unique processor ID. The value is the same
as that returned by PAL_FIXED_ADDR”

to:

“GR33 contains information about the geographically significant unique processor ID,
and a mask that indicates which bits in the LID register (CR64) are read-only. Firmware
should write the processor's local interrupt identifier in the programmable portion of the
LID register. Writes to the read-only bits are ignored.

[63:48] Reserved

[47:40] Mask indicating which bits in eid are programmable

0 = programmable, 1 = read-only

[39:32] Mask indicating which bits in id are programmable

0 = programmable, 1 = read-only

[31:16] Reserved

[15:0] Geographically significant processor ID

The value returned in bits [15:0] is the same as that returned by PAL_FIXED_ADDR.”

4. Extend PALE_CHECK exit options

1. Volume 2, Part I, Section 11.3.1:

a. On page 2:265, first paragraph, change the following sentence from:

“PALE_CHECK terminates by branching to SALE_ENTRY, passing the state of the
processor at the time of the error.”

to:

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Table 11-49. bus_check Fields (Continued)

Field Bits Description
12 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
“PALE_CHECK terminates either by returning to the interrupted context or by
branching to SALE_ENTRY, passing the state of the processor at the time of the error.”

b. In the fifth paragraph change the following from:

“PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. PSR.mc will
remain set for the duration of PALE_CHECK, and PALE_CHECK will exit with psr.mc
set.”

to:

“PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. When
PALE_CHECK branches to SALE_ENTRY, PSR.mc remains set (PSR.mc is restored to
its original value if PALE_CHECK terminates by returning to the interrupted context).”

And delete: “PALE_CHECK must attempt to branch to SALE_ENTRY unless code
execution is not possible.”

2. Volume 2, Part II, Section 13.3.1, page 2:493:

a. The second paragraph should read:

When the processor detects an error, control is transferred to the PAL_MCA entrypoint.
PAL_MCA will perform error analysis and processor error correction where possible.
Subsequently, PAL either returns to the interrupted context or hands off control to the
SAL_MCA component. The level of recovery provided by PAL_MCA is implementation
dependent and is beyond the scope of this specification. SAL_MCA will perform error
logging and platform error correction where possible. Errors that are corrected by PAL
and SAL firmware are logged and control is transferred back to the interrupted
process/context. For corrected errors, no OS intervention is required for error handling,
but the OS is notified of the event for logging purposes through a low priority
asynchronous corrected machine check interrupt (CMCI). See Section 5.8.3.8, “Corrected
Machine Check Vector (CMCV – CR74)” for more information on the CMCI. If the error
was not corrected by firmware, SAL hands off control to the OS_MCA handler.

b. Added correctable machine check flow:

5. Addition of tf instruction

1. Volume 3: Added tf I-page.

Figure 13-3. Correctable Machine Check Code Flow

PAL_MC_RESUME

PAL_MCA SAL_MCA OS_MCA
Log Error

CMC
Interrupt

MCA
1 2

4

Return to
Execution
Context

3

5 6
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 13

Specification Changes
tf — Test Feature

Format: (qp) tf.trel.ctype p1, p2 = imm5 I30

Description: The imm5 value (in the range of 32-63) selects the feature bit defined in Table 2-56
to be tested from the features vector in CPUID[4]. See Section 3.1.11, “Processor
Identification Registers” on page 33 for details on CPUID registers. The selected
bit forms a single-bit result either complemented or not depending on the trel
completer. This result is written to the two predicate register destinations p1 and p2.
The way the result is written to the destinations is determined by the compare type
specified by ctype. See the Compare instruction and Table 2-15 on page 3:38.

The trel completer values .nz and .z indicate non-zero and zero sense of the test.
For normal and unc types, only the .z value is directly implemented in hardware;
the .nz value is actually a pseudo-op. For it, the assembler simply switches the
predicate target specifiers and uses the implemented relation. For the parallel types,
both relations are implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same
predicate register), the instruction will take an Illegal Operation fault, if the
qualifying predicate is set or the compare type is unc.

Table 2-54. Test Feature Relations for Normal and unc tf

trel Test Relation Pseudo-op of

nz selected feature available z p1 ↔ p2

z selected feature unavailable

Table 2-55. Test Feature Relations for Parallel tf

trel Test Relation

nz selected feature available

z selected feature unavailable

Table 2-56. Test Feature Features Assignment

imm5 Feature Symbol Feature

32 - 63 none Not currently defined
14 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_rel = cpuid[4]{imm5};

if (trel == ‘z’) // ‘z’ - test for 0, not 1
tmp_rel = !tmp_rel;

switch (ctype) {
case ‘and’: // and-type compare

if (!tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;
break;

}
} else {

if (ctype == ‘unc’) {
if (p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

Interruptions: Illegal Operation fault

2. Update Table 4-4 on page 3:258 with the new format:

3. Updated Section 4.3.3 of Volume 3 on page 3:279:

4.3.3 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode
extension field in bits 35:34 (x2) plus five 1-bit opcode extension fields in bits 33
(ta), 36 (tb), 12 (c), 13 (y) and 19 (x). Table 4-23 summarizes these assignments.

Test NaT I17 5 tb x2 ta p2 r3 x y c p1 qp
Test Feature I30 5 tb x2 ta p2 0 x imm5b y c p1 qp
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 15

Specification Changes
4.3.3.1 Test Bit

I16

4.3.3.2 Test NaT

I1

Table 4-23. Test Bit Opcode Extensions

Opcode
Bits 40:37

x2
Bits

35:34

ta
Bit 33

tb
Bit 36

c
Bit 12

y
Bit 13

x
Bit 19

0 1

5 0

0

0

0
0 tbit.z I16

1 tnat.z I1 tf.z I30

1
0 tbit.z.unc I16

1 tnat.z.unc I1 tf.z.unc I30

1

0
0 tbit.z.and I16

1 tnat.z.and I1 tf.z.and I30

1
0 tbit.nz.and I16

1 tnat.nz.and I1 tf.nz.and I30

1

0

0
0 tbit.z.or I16

1 tnat.z.or I1 tf.z.or I30

1
0 tbit.nz.or I16

1 tnat.nz.or I1 tf.nz.or I30

1

0
0 tbit.z.or.andcm I16

1 tnat.z.or.andcm I1 tf.z.or.andcm I30

1
0 tbit.nz.or.andcm I16

1 tnat.nz.or.andcm I1 tf.nz.or.andcm I30

40 373635343332 2726 2019 141312 11 6 5 0

5 tb x2 ta p2 r3 pos6b y c p1 qp
4 1 2 1 6 7 6 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y c

tbit.z

p1, p2 = r3, pos6 5 0

0

0

0

0

tbit.z.unc 1

tbit.z.and
1

0

tbit.nz.and 1

tbit.z.or

1

0
0

tbit.nz.or 1

tbit.z.or.andcm
1

0

tbit.nz.or.andcm 1

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 r3 x y c p1 qp
4 1 2 1 6 7 1 5 1 1 6 6
16 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
4. New Section 4.3.9, “Test Feature.”

4.3.9 Test Feature

I30

5. In Table 5-5, Volume 3, Section 5.4; add tf to “pr-gen-writers-int” and
“pr-readers-nobr-nomovpr” entries.

6. Volume 3, Section 4.8; add new tf entry after I24 entry in Table 4-74, “Immediate
Formation.”

7. Volume 3, Section 4.3.2, on page 3-283, update Tables 4-21 and 4-22 to reflect new tf
instruction.

a. In Table 4-21, change 5:0:0:1 entry from “Test NaT” to “Test Nat/Test Feature.”

b. In Table 4-22, change 5:0:1:- entry from “Test Bit/Test NaT” to “Test Bit/Test Nat/Test
Feature.”

6. Removal of requirement for externally connected pins

1. All references to INIT, PMI, and LINT pins restated to allow for their absence.

a. Volume 2, Part I, Section 5.8 “Interrupts” on page 2:97, first paragraph, change the
following from:

Instruction Operands Opcode
Extension

x2 ta tb y x c

tnat.z

p1, p2 = r3 5 0

0

0

1 0

0

tnat.z.unc 1

tnat.z.and
1

0

tnat.nz.and 1

tnat.z.or

1

0
0

tnat.nz.or 1

tnat.z.or.andcm
1

0

tnat.nz.or.andcm 1

40 373635343332 2726 201918 141312 11 6 5 0

5 tb x2 ta p2 0 x imm5b y c p1 qp
4 1 2 1 6 7 1 5 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y x c

tf.z

p1, p2 = imm5 5 0

0

0

1 1

0

tf.z.unc 1

tf.z.and
1

0

tf.nz.and 1

tf.z.or

1

0
0

tf.nz.or 1

tf.z.or.andcm
1

0

tf.nz.or.andcm 1

I30 imm5 = imm5b + 32
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 17

Specification Changes
“As shown in Figure 5-3, interrupts are managed by the processor and by one or more
intelligent external interrupt controllers or devices in the I/O subsystem.”

to:

“Interrupts are managed by the processor and by one or more intelligent external
interrupt controllers or devices in the I/O subsystem. Figure 5-3 shows just one example
of a high performance interrupt architecture subsystem; other topologies are possible.”

b. Volume 2, Part I, Section 5.8, add reference and footnote to LINT, INIT, PMI pins in the
locally connected devices bullet.

“Locally connected devices - These interrupts originate on the processor's interrupt pins
(LINT, INIT, PMI)1, and are always directed to the local processor. “

In footnote:

“1. Processors are not required to support externally connected interrupt pins.
Software can query the presence of the INIT, PMI, and LINT pins via the
PAL_PROC_GET_FEATURES procedure call.”

c. Volume 2, Part I, Section 5.8.1 “Interrupt Vectors and Priorities”, change the second
sentence in the second paragraph from:

“Assertion of the processor's PMI pin results in PMI vector number 0."

to:

“Assertion of the processor's PMI pin, when present, results in PMI vector number 0."

d. Volume 2, Part I, Section 5.8.3.9, modify references to LINT pins in the first paragraph
from:

“Local Redirection Registers (LRR0-1) steer external signal based interrupts that are
directly connected to the local processor to a specific external interrupt vector. All
processors support two direct external interrupt pins. These External interrupt signals
(pins) are referred to as Local Interrupt 0 (LINT0) and Local Interrupt 1 (LINT1).”

to:

“Local Redirection Registers (LRR0-1) steer external signal based interrupts that are
directly connected to the local processor to a specific external interrupt vector.
Processors may optionally support two direct external interrupt pins. When supported
these external interrupt signals (pins) are referred to as Local Interrupt 0 (LINT0) and
Local Interrupt 1 (LINT1). Software can query the presence of these pins via the
PAL_PROC_GET_FEATURES procedure call.”

e. Volume 2, Part I, Section 5.8.4.2 “Interrupt and IPI Ordering”, change the first paragraph
from:

“Interrupt messages from external device(s), or external interrupts routed to the
processor's LINT pins, may arrive at one or more processors and become pending in any
order. No ordering is enforced by the processor or the platform.”

to:

“Interrupt messages from external device(s), or external interrupts routed to the
processor's LINT pins, when present, may arrive at one or more processors and become
pending in any order. No ordering is enforced by the processor or the platform.”

f. Volume 2, Part I, Section 5.8.5 “Edge- and Level-sensitive Interrupts”, modify the first
sentence from:

“The processor's LINT pins directly support edge and level sensitive interrupts,
however all other interrupt sources are edge sensitive.”

to:

“The processor's LINT pins, when present, directly support edge and level sensitive
interrupts, however all other interrupt sources are edge sensitive.”
18 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
g. Volume 2, Part I, Section 11.5.1 “PMI Overview”, Table 11-10 “PMI Events and
Priorities.” Add a footnote reference to the PMI pin row:

PMI Events Priority

PMI pin (a) (vector 0) Low

a. PMI pin is not required to be present on all systems.

Also modify this sentence in the fourth paragraph from:

“Vector 0 is used to indicate the PMI pin event.”

to:

“A PMI pin event, when the PMI pin (1) is present, is indicated by vector 0."

Add footnote:

“1. PMI pin is not required to be present. Software can query the presence of PMI pin
via the PAL_PROC_GET_FEATURES procedure call.”

h. Volume 2, Part II, Section 10.2 “Configuration of External Interrupt Vectors”, add a
footnote reference to the second bullet:

“From the processor's LINT0 or LINT1 pins(1) (typically connected to an Intel 8259A
compatible interrupt controller), or”

Add footnote:

“1. Processors optionally support two external interrupt pins. Software can query for
the presence of LINT pins via the PAL_PROC_GET_FEATURES procedure call.”

i. Volume 2, Part II, Section 10.5.6 “Local Redirection Example”, add the following note at
the end of the section:

“The Local Redirection Registers (LRR0-1) serves to steer external signal based
interrupts that are directly connected to the processor. LRR0 and LRR1 control the
external interrupt signals (pins) referred to as Local Interrupt 0 (LINT0) and Local
Interrupt 1 (LINT1) respectively. The example below shows how to mask interrupt
delivery on LINT0.

movl r18=(1<<16)

;;

mov cr.lrr0=r18

;;

srlz.d // srlz.d is required after LRR write to ensure
write effect.

Note: LINT0 and LINT1 pins are not required to be supported. Writes to LRR0-1
control registers would have no effect, and reads from LRR0-1 control registers would
return 0."

2. Effects of writes to and reads from control registers LRR 0, 1 defined in the absence of LINT
pins:

a. Volume 2, Part 1, Section 5.8.3.9, change the second paragraph from:

“To ensure that subsequent interrupts from LINT0 and LINT1 reflect the new state of
LRR prior to a given point in program execution, software must perform a data
serialization operation after an LRR write and prior to that point.”

to:

“To ensure that subsequent interrupts from LINT0 and LINT1 reflect the new state of
LRR prior to a given point in program execution, software must perform a data
serialization operation after an LRR write and prior to that point. In the case when
LINT0 and LINT1 pins are absent, writes to LRR would have no effect, and reads from
LRR would return 0. Software can query the presence of the LINT pins via the
PAL_PROC_GET_FEATURES procedure call.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 19

Specification Changes
3. Detection of INIT, PMI, and LINT pins presence via the PAL_PROC_GET_FEATURES
procedure.

a. Volume 2, Part 1, Chapter 11, Table 11-54, insert new row:

b. Update the last row to:

7. Architecture extensions for processor Power/Performance states

1. New Section 11.6.1 in Volume 2, Part I

11.6.1 Power/Performance States (P-states)

This section describes the power/performance states (hence to be referred as
P-states) supported by the Itanium architecture. P-states enable the caller to adjust
the power/performance characteristics of the processor in response to changing
workload requirements. This allows for implementation of a processor-level power
management policy which is driven by system demand and response time
requirements.

The P-states are defined within the context of the active/executing processor state.
At the highest performing P-state (referred to as the P0 state), the processor uses its
maximum performance capability and may consume maximum power. In the next
P-state (P1), the processor performance capability is limited below the maximum
performance, and it consumes less than the maximum power. Successive P-states
continue to have reduced performance capabilities and reduced power consumption
than the corresponding lower state. The Itanium architecture supports a maximum
of 16 P-states, with the highest numbered P-state that is available on an
implementation providing the least possible performance capability and minimal
power consumption while remaining in a non-HALT state.

Bit Class Control Description

37 Opt No INIT, PMI, and LINT pins present. Denotes the absence of INIT,
PMI, LINT0, and LINT1 pins on the processor. When 1, the pins are
absent. When 0, the pins are present. This feature may only be
interrogated by PAL_PROC_GET_FEATURES. It may not be
enabled or disabled by PAL_PROC_SET_FEATURES. The
corresponding argument is ignored.

Bit Class Control Description

36-0 N/A N/A Reserved
20 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
P-states can be utilized by software to implement a demand-based dynamic power
management policy where it would continuously try to adapt the processor
performance to the current workload characteristics. This allows software to
achieve power savings at the system level, while allowing it to quickly respond to
changing workload requirements.

The example in Figure 11-20 assumes four P-states (P0, P1, P2 and P3), and a
software policy that transitions between the states depending on the current system
utilization. During times of high utilization, the software migrates the processor
towards lower-numbered P-states, which increases processor performance and
increases the dissipated power. When system utilization is low, the software policy
migrates the processor towards higher-numbered P-states, thereby reducing the
processor performance and reducing dissipated power. The figure also shows the
HALT state, which the software can transition to at any time from a given P-state.

Figure 11-19. Power and Performance Characteristics for P-states

P0

P1

P2

Pn

Power

Performance
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 21

Specification Changes
The concept of P-states applies to each logical processor, and this gives software
the required granularity to individually control the power/performance
characteristics for each available thread of execution in the system. In the most
simplistic case, the processor package has only one thread of execution, and this
allows software to apply the same P-state policy at the package-level as well as at
the logical processor level. However, with implementations that support
multithreading and multiple cores, a single package can have multiple logical
processors (threads of execution). These may have P-state dependencies among
them, which may not allow for individual P-state control flexibility at the software
level. For example, these logical processors may be sharing the same clock and
power delivery network. In such circumstances, software would need to know
which logical processors have dependencies and what the nature of the
dependencies is, so that appropriate coordination techniques can be applied. To
allow the architecture definition to comprehend for multi-threaded/multi-core
designs, we define the concept of dependency domain and coordination
mechanisms.

A dependency domain is comprised of logical processors that share a common set
of implementation-dependant domain parameters that affect power consumption
and performance for all logical processors in that domain. As an example, a
processor package comprising of two cores controlled by the same clock and power
distribution network are part of the same dependency domain, since changing
either the operating frequency or voltage will affect power consumption and
performance for both cores. Alternatively, if these two cores on the processor
package had independent distribution networks for clocks and power, then a
change in the parameters for one core would not have any effect on the other core,
and in that case, the cores would not belong to the same dependency domain.

Figure 11-20. Example of a P-state Transition Policy

HaltP0

P1

P2

P3

Transitions initiated
by software

High
Utilization

Low
Utilization
22 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
Software can utilize P-states to affect changes in the domain parameters. Each
P-state maps to a set of values for the domain parameters, and hence a P-state
transition results in a change in the underlying power/performance characteristics
for the logical processor.

The Itanium architecture supports different types of dependency domains, which
enables software to have different degrees of control for P-state changes affecting
logical processors in the domain.

A software-coordinated dependency domain relies on the software to coordinate
P-state changes among the processors in that dependency domain. Software will
have knowledge about logical processors belonging to that domain, and will decide
when it is appropriate to request the P-state transition. The software policy has to
be aware that a P-state change on any logical processor will change the P-state for
all logical processors in that domain. As an example, let us assume that the
software-coordinated dependency domain consisted of two cores with the same
clock and power distribution networks and the intent of the software policy was to
lower power/performance only when the workload utilization was low on both
cores. Software could then monitor utilization on both cores, and when both cores
were under-utilized (i.e., were running at a higher performance P-state than
required by the current system demand), it could migrate one of the cores to a
lower performance P-state. This transition would simultaneously reduce
performance and power dissipation for both cores, and would result in both cores
operating at the same P-state.

A hardware-coordinated dependency domain relies on hardware-based
mechanisms to synchronize P-state changes. Software can make independent
P-state change requests on individual processors, recognizing that hardware is
responsible for the required coordination with other processors in the same
hardware-coordinated dependency domain. Hardware-based coordination
mechanisms would be implemented to allow for changes to the logical processor's
power and performance local parameters (which are implementation-dependant), in
addition to the existing domain parameters. Hardware would use a combination of
changes to both of these parameters to satisfy the software-initiated P-state change
request. This type of coordination mechanism is effective when it is desired to have
individual control over all logical processors, and when the hardware has local
parameters for power/performance at the logical processor level. The local
parameters allow for fine-grained control (affecting only the logical processor
power/performance), whereas the domain parameters allow for coarse-grained
control (affecting all logical processors). As an example, let us assume that the
hardware-coordinated dependency domain consisted of two cores with the same
clock and power distribution networks, and that there were also some other
techniques to affect power and performance which were local to each logical
processor. When software initiates a P-state transition on the first core, hardware
would use only the local parameters to carry out the request. When software
requests the same P-state change on the second core, then hardware can undo the
changes to the local parameters for the first core, and then initiate changes to the
domain parameters, which would allow both cores to operate at the same P-state.

A hardware-independent dependency domain is a self-contained domain that
typically means that every logical processor is the only logical processor in that
domain, and its domain parameters are individually controllable. Since there are no
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 23

Specification Changes
dependencies with any other logical processors, there is no P-state coordination
needed for such domains. Software can make P-state change requests
independently on that logical processor.

The PAL procedure PAL_PROC_GET_FEATURES returns whether an
implementation supports P-states. If an implementation supports P-states then the
PAL_PROC_SET_FEATURE procedure will allow the caller to enable or disable
this feature.

The Itanium architecture provides three new PAL procedures to enable P-state
functionality.

PAL_PSTATE_INFO: This procedure returns information about the P-states
implemented on a particular processor. For details on the information returned by
this procedure, please refer to the procedure description on page 2:361. The
Itanium architecture supports a maximum of 16 P-states.

PAL_SET_PSTATE: This procedure allows the caller to request the transition of
the processor to a new P-state. The procedure can either return with transition
success (request was accepted) or transition failure (request was not accepted)
depending on hardware capabilities, implementation-specific event conditions, and
the spacing between successive PAL_SET_PSTATE procedure calls.

If hardware has the ability to either preempt a previous in-progress P-state
transition, or to queue successive P-state requests while the first request is in
transition, then the implementation has a preemptive policy for P-state request
handling. The architecture also allows for a non-preemptive policy for P-state
request handling, whereby a new PAL_SET_PSTATE request is not accepted if a
previous P-state transition is already in progress. The PAL_SET_PSTATE
procedure returns different status values corresponding to the accepted and not
accepted cases for P-state requests. If the transition is not accepted, no P-state
transition is initiated by the PAL_SET_PSTATE procedure, and the caller is
expected to make another PAL_SET_PSTATE request to transition to the desired
P-state. The transition_latency_2 field in the pstate_buffer returned by
PAL_PSTATE_INFO indicates the time interval the caller needs to wait to have a
reasonable chance of success when initiating another PAL_SET_PSTATE call.

If the logical processor belongs to a software-coordinated dependency domain, the
PAL_SET_PSTATE procedure will change the domain parameters, which will
result in all logical processors in that domain to transition to the requested P-state.
If the logical processor belongs to a hardware-coordinated dependency domain, the
PAL_SET_PSTATE procedure will attempt to change the power/performance
characteristics only for that logical processor, which will result in either partial or
complete transition to the requested P-state. In case of partial transition (see
Figure 11-21, “Computation of performance_index” on page 2:310 for an example,
where the logical processor transitions from state P0 to state P3 in partial
increments), the logical processor may attempt to perform changes at a later time to
the local parameters and/or domain parameters to transition to the originally
requested P-state. If the logical processor belongs to a hardware-independent
dependency domain, the PAL_SET_PSTATE procedure will attempt to change the
domain parameters, which will transition the logical processor in that domain to the
requested P-state.
24 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
PAL_GET_PSTATE: This procedure returns the performance index of the logical
processor, relative to the highest available P-state – P0 – which has an index value
of 100. For example, if the value returned by the procedure is 80, it indicates that
the performance of the logical processor over the last time period was 20% lower
than the P0 performance capability of the logical processor. The performance index
is measured over the time interval since the last PAL_GET_PSTATE call. Every
invocation of the PAL_GET_PSTATE procedure resets the internal performance
measurement logic, and initiates a new performance_index count, which is
reported when the next PAL_GET_PSTATE procedure call is made.

If the logical processor belongs to a software-coordinated dependency domain or a
hardware-independent dependency domain, the performance index returned
corresponds to the target P-state requested by the most recent successful
PAL_SET_PSTATE procedure call.

If the logical processor belongs to a hardware-coordinated dependency domain, the
performance index returned will be a weighted-average sum of the perf_index
values corresponding to the different P-states that the logical processor was
operating in before the PAL_GET_PSTATE procedure was called. Note that this
return value may not necessarily correspond to the performance index of the target
P-state requested by the most recent PAL_SET_PSTATE procedure call. For
example, let's assume that the previous PAL_GET_PSTATE procedure was called
at time t0, when the processor was operating in state P0. The previous
PAL_SET_PSTATE procedure requested a transition from P0 to P3. The transition
happened over a period of time, such that the logical processor went through states
P1 at time t1, P2 at time t2 and P3 at time t3, and was in state P3 at time t4 when the
current PAL_GET_PSTATE procedure was called. The performance_index
returned is calculated as:

performance_index =
((time spent in P0 after the previous PAL_GET_PSTATE) * (performance_index
for P0) +
(time spent in P1) * (performance_index for P1) +
(time spent in P2) * (performance_index for P2) +
(time spent in P3 up to the current PAL_GET_PSTATE) * (performance_index for
P3)) /
(time interval between previous and current PAL_GET_PSTATE) =

t1 t0–() pf0 t2 t1–() pf1 t3 t2–() pf2 t4 t3–() pf3×+×+×+×
t4 t0–

Intel® Itanium® Architecture Software Developer’s Manual Specification Update 25

Specification Changes
As seen above, for a hardware-coordinated dependency domain, the
PAL_GET_PSTATE procedure allows the caller to get feedback on the dynamic
performance of the processor over the last time period. The caller can use this
information to get better system utilization over the next time period by changing
the P-state in correlation with the current workload demand.

11.6.1.1 Interaction of P-states with HALT State

It is possible for a logical processor to enter and exit a HALT state between two
consecutive calls to PAL_GET_PSTATE. Since the logical processor is not
executing any instructions while in the HALT state, the performance index
contribution during this period is essentially 0, and will not be accounted for in the
performance_index value returned when the next PAL_GET_PSTATE procedure
call is made.

For example, let us assume that the previous PAL_GET_PSTATE procedure was
called at time t0, when the processor was operating in state P2. The previous
PAL_SET_PSTATE procedure initiated a transition from P2 to P3 at time t1. The
processor entered HALT state at time th1, and exited the HALT state at time th2, and
was in state P3 at time t2 when the current PAL_GET_PSTATE procedure was
called. The performance_index returned is calculated as:

performance_index =
((time in P2 after the previous PAL_GET_PSTATE) * (performance_index for P2)
+
(time in P3 before entering HALT state) * (performance_index for P3) +
(time in P3 after exiting HALT up to current PAL_GET_PSTATE))) *
(performance_index for P3)) /
(time interval between previous and current GET, excluding time spent in HALT) =

Figure 11-21. Computation of performance_index

pf0 (P0)

pf1 (P1)

pf2 (P2)

pf3 (P3)

t0 t1 t2 t3 t4

Performance

Time

(Previous) GET SET(P3) (Current) GET
26 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
As shown above, the value returned for performance_index does not account for
the performance during the time spent by the logical processor in the HALT state.
This provides for better accuracy in the value reported for performance_index,
allowing the caller to make optimal adjustments to the system utilization even in
scenarios where we have interactions between P-states and HALT state.

2. New Section 13.3.4 in Volume 2, Part II

13.3.4 P-state Feedback Mechanism Flow Diagram

The example flowchart shown below illustrates how the caller can utilize the
PAL_SET_PSTATE and the PAL_GET_PSTATE procedures to manage system
utilization and power consumption, for a processor implementation that belongs to
either a hardware-coordinated dependency domain or a hardware-independent
dependency domain. At the beginning of the loop, PAL_GET_PSTATE gives the
performance characteristics of the processor over the last time period. It is assumed
that the caller maintains an internal count for determining the busy ratio of the
logical processor (busy ratio can be defined as the percentage of time the processor
was busy executing instructions and not idle). The caller then seeks to adjust the
P-state for the next time period to match the busy ratio from the previous time
period. For example, if the busy ratio for a given period was 100%, and the
performance_index returned by PAL_GET_PSTATE was 60, then this indicates
that the P-state for the next time period should be P0 (which has performance index
of 100). The caller would then call the PAL_SET_PSTATE procedure to transition
the processor to the P0 state. In essence, if the busy ratio is greater than the
performance_index returned by PAL_GET_PSTATE, the caller responds to the
increased demand requirement of the workload by transitioning the processor to a
higher-performance P-state. Alternatively, if the busy ratio is lower than the

t1 t0–() pf2 th1 t1–() pf3 t2 th2–() pf3×+×+×
t2 t0–() th2 th1–()–

--

Figure 11-22. Interaction of P-states with HALT State

pf0 (P0)

pf1 (P1)

pf2 (P2)

pf3 (P3)

t0 t1 th1 th2 t2

Performance

(Previous) GET SET(P3) (Current) GET

Time

Enter HALT State Exit HALT State
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 27

Specification Changes
performance_index returned by PAL_GET_PSTATE, the caller responds by
transitioning the processor to a lower performance P-state, which consumes less
power and operates at reduced performance.

Such an adaptive policy implemented by the caller to dynamically respond to
system workload characteristics using P-states allows for efficient power utilization
– the processor consumes additional power by operating at a higher performance
level only when the current workload requires it to do so.

3. New PAL Power Management Procedures

Figure 13-6. Flowchart Showing P-state Feedback Policy

(1) getperfindex = PAL_GET_PSTATE
(2) OS computes newpstate index from
busy ratio and getperfindex

newpstate == getperfindex?

PAL_SET_PSTATE(newpstate)

Check
Return Code

Mark newspstate as Invalid

Current P-state =
newpstate

Reset
busy ratio

Yes

No

Status == -2

Status == 0
(Accepted)

Status == 1
(Not Accepted)

(Invalid)

Table 11-16. PAL Power Information and Management Procedures

Procedure Idx Class Conv. Mode Description

PAL_GET_PSTATE 262 Opt. Stacked Both Returns information on the performance
index of the processor.

PAL_PSTATE_INFO 44 Opt. Static Both Returns information about the P-states
supported by the processor.

PAL_SET_PSTATE 263 Opt. Stacked Both Request processor to enter
power/performance state.
28 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
PAL_GET_PSTATE

Return Information on the Performance Index of the Processor

Purpose: Returns the performance index of the processor.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This procedure returns the performance index of the processor over the time period
between the previous and the current invocations of PAL_GET_PSTATE, and is
relative to the highest available P-state. For processors that belong to a
software-coordinated dependency domain or a hardware-independent dependency
domain, the performance_index value returned will correspond to the target P-state
requested by the most recent PAL_SET_PSTATE procedure call.

For processors that belong to a hardware-coordinated dependency domain, the type
argument allows the caller to select the performance_index value that will be
returned. See Table 11-48 below for details.

Argument Description
index Index of PAL_GET_PSTATE within the list of PAL procedures.
type Type of performance_index value to be returned by this procedure.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_GET_PSTATE procedure.
performance_index Unsigned integer denoting the processor performance for the time duration

since the last PAL_GET_PSTATE procedure call was made. The value
returned is between 0 and 100, and is relative to the performance index of
the highest available P-state.

Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but accuracy of performance index has been

impacted by a thermal throttling event, or a hardware-initiated event.
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 29

Specification Changes
For processors that belong to a software-coordinated dependency domain or a
hardware-independent dependency domain, the PAL_GET_PSTATE procedure
should always be called with type argument value of 0.

If there was a thermal-throttling event or any hardware-initiated event, which
affected the processor power/performance for the current time period and the
accuracy of the performance_index value has been impacted by the event, then the
procedure will return with status=1. The performance_index returned in this case
will still have a value between 0 and 100.

The procedure returns with a performance_index value of 100 when invoked for
the first time. For subsequent invocations, the procedure will return the
performance_index value corresponding to the processor performance in the time
duration between the previous and current calls to PAL_GET_PSTATE.

If the processor had transitioned to a HALT state (see Section 11.6.1,
“Power/Performance States (P-states)” on page 2:305) in between successive
invocations to the PAL_GET_PSTATE procedure, the performance index
computation returned will not take into account the performance of the processor
during the time spent in HALT state (see Section 11.6.1.1, “Interaction of P-states
with HALT State” on page 2:310 for details).

Table 11-48. PAL_GET_PSTATE type Argument

type Description

0 The performance_index returned will correspond to the target P-state requested by the most
recent PAL_SET_PSTATE procedure call.

1 The performance_index is a weighted-average value of the different P-states that the
processor was operating in for the time duration between the current PAL_GET_PSTATE
procedure call, and the previous invocation of PAL_GET_PSTATE with type=1. This allows
the caller to establish a new starting point for subsequent computation of the
weighted-average performance_index. See Section 11.6.1, “Power/Performance States
(P-states)” on page 19 for more details on how the weighted average value is derived.

2 The performance_index is a weighted-average value of the different P-states that the
processor was operating in for the time duration between the current PAL_GET_PSTATE
procedure call, and the previous invocation of PAL_GET_PSTATE with type=1. This allows
the caller to sample the current value of the performance_index, without affecting the starting
point used for computing the weighted-average performance_index.

All Other Values Reserved
30 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
PAL_PSTATE_INFO

Get Information for Power/Performance States

Purpose: Returns information about the P-states supported by the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: Information about available P-states is returned in the data buffer referenced by
pstate_buffer. Entries in the buffer are organized in an ascending order. For
example, P0 (the highest performance P-state) state information is index 0 in the
buffer, P1 state is index 1 in the buffer, and so on. The return argument pstate_num
indicates the number of P-states supported on the given implementation. For
example, if pstate_num is 4, it indicates that P-states P0-P3 are available for that
implementation. Information in pstate_buffer is returned only for entries
corresponding to the available P-states. Entries corresponding to unimplemented
P-states must be ignored. Figure 11-49 illustrates the format of the pstate_buffer.

• typical_power_dissipation is a 20-bit field denoting the typical processor
package power dissipation if all logical processors on the package are placed
in this P-state, measured in milliwatts.

• perf_index is a 7-bit field denoting the performance index of this P-state,
relative to the highest available P-state (P0). This field is enumerated on a scale
of 0…100, with the value of 100 corresponding to the P0 state. For example, if

Argument Description
index Index of PAL_PSTATE_INFO within the list of PAL procedures.
pstate_buffer 64-bit pointer to a 256-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PSTATE_INFO procedure.
pstate_num Unsigned integer denoting the number of P-states supported. The maximum

value of this field is 16.
dd_info Dependency domain information
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument, or P-states not supported on this implementation
-3 Call completed with error

Figure 11-49. Layout of pstate_buffer Entry
offset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+0 typical_power_dissipation reserved perf_index

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+4 transition_latency_1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+8 transition_latency_2

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

+12 reserved
64
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 31

Specification Changes
the P1-state has a value of 75, and the next P-state (P2) has a value of 50, it
implies that P1 performance is 25% lower than P0 performance, and P2
performance is 50% lower than P0 performance.

• transition_latency_1 is a 32-bit field indicating the minimum number of
processor cycles required to initiate a transition to this P-state from any other
P-state.

• transition_latency_2 is a 32-bit field indicating the minimum recommended
number of processor cycles that the caller should wait, before initiating a new
P-state transition with a reasonable chance of acceptance. This field is
intended to give the caller an estimation of the frequency with which
PAL_SET_PSTATE procedure calls should be made, without having the
transition request be not accepted.

Dependency domain details for the logical processor are returned in dd_info. See
Figure 11-50 for dd_info layout.

• ddt (Dependency Domain Type) is a 3-bit unsigned integer denoting the type
of dependency domains that exist on the processor package. The possible
values are shown in Table 11-65. See Section 11.6.1, “Power/Performance
States (P-states)” on page 19 for details of the values in this field.

• ddid (Dependency Domain Identifier) is a 6-bit unsigned integer denoting this
logical processor's dependency domain. The ddid values are unique only for a
given processor package. Software can use the ddid field to determine which
logical processors belong to the same dependency domain within the package.

For more information on performance states and power management, refer to
Section 11.6.1, “Power/Performance States (P-states)” on page 19.

Figure 11-50. Layout of dd_info Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ddit rv ddt

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-65. Values for ddt Field

Value Description

0 Hardware independent

1 Hardware coordinated

2 Software coordinated

3-7 Reserved
32 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
PAL_SET_PSTATE

Request Processor to Enter Power/Performance State

Purpose: To request a processor transition to a given P-state.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: PAL_SET_PSTATE is used to request the transition of the processor to the P-state
specified by the p_state input parameter. The PAL_SET_PSTATE procedure does
not wait for the transition to complete before returning back to the caller. The
request may either be accepted (status = 0) or not accepted (status = 1), depending
on hardware capabilities and implementation-specific event conditions. If the
request is not accepted, then no transition is performed, and it is up to the caller to
make another PAL_SET_PSTATE procedure call to transition to the desired
P-state. When the request is accepted, it will attempt to initiate a transition to the
requested performance state. For processors that belong to a software-coordinated
dependency domain or a hardware-independent dependency domain, the procedure
will always succeed in transitioning to the requested performance state. If the
processor belongs to a hardware-coordinated dependency domain, the procedure
will make a best-case attempt at fulfilling the transition request, based on the nature
of the dependencies that exist between the logical processors in the domain. In such
circumstances, the procedure may initiate no transition, partial transition or full
transition to the requested P-state. Since there is the possibility that the procedure
may initiate no processor transition, there are implementation-specific forward
progress requirements.

The force_pstate argument may be used for a hardware-coordinated dependency
domain when it is necessary to get a deterministic response for the P-state
transition at the expense of compromising the power/performance of other logical
processors in same domain. If the force_pstate argument is non-zero, and if the
request is accepted, the procedure will initiate the P-state transition on the logical
processor regardless of any dependencies that exist in the dependency domain at
the time the procedure is called. The force_pstate argument is ignored for
software-coordinated and hardware-independent dependency domain.

Argument Description
index Index of PAL_SET_PSTATE within the list of PAL procedures.
p_state Unsigned integer denoting the processor P-state being requested.
force_pstate Unsigned integer denoting whether the P-state change should be forced for the

logical processor.
Reserved 0

Return Value Description
status Return status of the PAL_SET_PSTATEprocedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error, but transition request was not accepted
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 33

Specification Changes
4. Add a new row to Processor Features, Table 11-54 on page 2:360:

8. Allow Undefined Behavior for All Must-be-last Instructions

1. Volume 1, Section 4.1.2, 4th paragraph, change from:

A cover instruction must be the last instruction in an instruction group otherwise an
Illegal Operation fault is taken.

to:

A cover instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

2. Volume 2, Section 6.5.4, 2nd paragraph, change from:

The cover instruction must be specified as the last instruction in a bundle group
otherwise an Illegal Operation fault is taken.

to:

A cover instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

3. Volume 3, bsw instruction page:

a. Description, 2nd paragraph, change from:

A bsw instruction must be the last instruction in an instruction group. Otherwise, an
Illegal Operation fault is taken.

to:

A bsw instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

b. Operation. Change from:

if (!followed_by_stop())

illegal_operation_fault();

to:

if (!followed_by_stop())

undefined_behavior();

c. Interruptions. Remove “Illegal Operation fault”.

4. Volume 3, clrrrb instruction page.

a. Description, 2nd paragraph, change from:

This instruction must be the last instruction in an instruction group, or an Illegal
Operation fault is taken.

to:

This instruction must be the last instruction in an instruction group; otherwise, operation
is undefined.

b. Operation. Change from:

if (!followed_by_stop())

illegal_operation_fault();

Table 11-54. Processor Features

Bit Class Control Description

52 Opt. Req. Disable P-states. When 1, the PAL P-state procedures (PAL_PSTATE_INFO,
PAL_SET_PSTATE, PAL_GET_PSTATE) will return with a status of -1
(Unimplemented procedure).
34 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
to:

if (!followed_by_stop())

undefined_behavior();

c. Interruptions. Change “Illegal Operation fault” to “None”.

5. Volume 3, cover instruction page.

a. Description, 2nd paragraph, change from:

A cover instruction must be the last instruction in an instruction group. Otherwise, an
Illegal Operation fault is taken.

to:

A cover instruction must be the last instruction in an instruction group; otherwise,
operation is undefined.

b. Operation. Change from:

if (!followed_by_stop())

illegal_operation_fault();

to:

if (!followed_by_stop())

undefined_behavior();

c. Interruptions. Remove “Illegal Operation fault”.

6. Volume 3, rfi instruction page.

a. Description, 2nd paragraph, change from:

This instruction must be immediately followed by a stop. Otherwise, an Illegal
Operation fault is taken.

to:

This instruction must be immediately followed by a stop; otherwise, operation is
undefined.

b. Operation. Change from:

if (!followed_by_stop())

illegal_operation_fault();

to:

if (!followed_by_stop())

undefined_behavior();

c. Interruptions. Remove “Illegal Operation fault”.

9. Addition of PAL_BRAND_INFO

1. Add a new row to Table 11-14, Volume 2, Part I:

Procedure - PAL_BRAND_INFO

Idx - 274

Class - Opt.

Conv. - Stacked

Mode - Both

Description - Provides processor branding information.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 35

Specification Changes
2. New PAL Procedure:

PAL_BRAND_INFO

Provides Processor Branding Information

Purpose: Provides processor branding information.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: PAL_BRAND_INFO procedure calls are used to ascertain the processor branding
information.

The info_request input argument for PAL_BRAND_INFO describes which
processor branding information is being requested. The info_request values are
split into two categories: architected and implementation-specific. The architected
info_request have values from 0-15. The implementation-specific info_request
have values 16 and above. The architected info_request are described in this
document. The implementation-specific info_request are described in
processor-specific documentation.

This call returns the processor brand information as requested with the info_request
argument. Table 11-25 describes the values.

Argument Description
index Index of PAL_BRAND_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer specifying the information that is being requested.

(See Table 11-25)
address Unsigned 64-bit integer specifying the address of the 128-byte block to which

the processor brand string shall be written.
Reserved 0

Return Value Description
status Return status of the PAL_BRAND_INFO procedure.
brand_info Brand information returned. The format of this value is dependent on the input

values passed.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
-6 Input argument is not implemented

Table 11-25. Processor Brand Information Requested

Value Description

0 The ASCII brand identification string will be copied to the address specified in the
address input argument. The processor brand identification string is defined to be a
maximum of 128 characters long; 127 bytes will contain characters and the 128th byte
is defined to be NULL (0). A processor may return less than the 127 ASCII characters
as long as the string is null terminated. The string length will be placed in the
brand_info return argument.

All Other Values Reserved
36 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Changes
This procedure will return an invalid argument if an unsupported info_request
argument is passed as an input or a -6 if the requested information was not
available on the current processor.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 37

Specification Clarifications
Specification Clarifications

1. Volume 2: PSR.dt serialization clarification
1. Volume 2, Part I, Section 3.3.2, Table 3-2:

— On page 2:20, change the Serialization Required column for PSR.dt from:

“data”

to:

“inst/data”

and add a cross-reference to footnote c.

2. Volume 2: Unaligned debug fault clarification

1. Volume 2, Part I, Section 8.3, Debug vector page:

— On page 2:175, add the following paragraph to the end of the Notes section:

If unaligned accesses are being performed with debug faults enabled, this fault may be
taken even though there is not a match for the address programmed in the breakpoint
register. See Volume 2, Section 7.1.2, “Debug Address Breakpoint Match Conditions.”

3. Volume 3: Clarification on PSR requirements for br.ia/rfi instructions
during PSR.is transition

1. br.ia instruction page (Volume 3, p. 3:18):

a. Under “ia” bullet, add the following paragraph after the 3rd paragraph:

Software must set PSR properly before branching to the IA-32 instruction set; otherwise
processor operation is undefined. See Volume 2, Table 3-2, “Processor Status Register
Fields” on page 2:19 for details.

b. In the “Operation” section on page 3:22 under “case 'ia',” add below “tmp_taken =
1;”:

if (CR[IPSR].ic==0 || CR[IPSR].dt==0 || CR[IPSR].mc==1 ||
CR[IPSR].it==0)

undefined_behavior();

2. rfi instruction page (Volume 3, p. 3:204):

a. In the “Description” section, before the paragraph beginning “Software must issue a mf
instruction...,” add the following paragraph:

If IPSR.is is 1, software must set other IPSR fields properly for IA-32 instruction set
execution; otherwise processor operation is undefined. See Volume 2, Table 3-2,
“Processor Status Register Fields” on page 2:19 for details.

b. In the “Operation” section:

Add the following below, “if (CR[IPSR].is == 1) {”:

if (CR[IPSR].ic==0 || CR[IPSR].dt==0 || CR[IPSR].mc==1 ||
CR[IPSR].it==0)

undefined_behavior();

3. Table 3-1, Volume 3: Pseudo-Code Functions chapter:

a. On page 3:253, replace the bullet list of faults in the Operation column of the
tlb_translate() row of the Pseudo-Code Functions table with this new bullet list:
38 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Key Miss fault

• Data Key Permission fault

• Data Access Rights fault

• Data Dirty Bit fault

• Data Access Bit fault

• Data Debug fault

• Unaligned Data Reference fault

• Unsupported Data Reference fault

b. Replace the bullet list of faults in the Operation column of the tlb_translate_nonaccess()
row of the Pseudo-Code Functions table with this new bullet list:

• Unimplemented Data Address fault

• Data Nested TLB fault

• Alternate Data TLB fault

• VHPT Data fault

• Data TLB fault

• Data Page Not Present fault

• Data NaT Page Consumption fault

• Data Access Rights fault (fc only)

4. Volume 3: Added Illegal Operation fault to fnma I-page

1. Volume 3, fnma instruction page:

On page 3:81, add “Illegal Operation fault” to the list of interruptions in the Interruptions
section.

5. Clarify INTA/XTP definition

1. On page 2:112, Volume 2, Part I, Section 5.8.4.3, “Interrupt Acknowledge (INTA) Cycle”:

— Add the following sentence to the end of the 2nd paragraph:

“Any memory operation to the INTA address other than a single byte load is undefined.”

2. On page 2:112, Volume 2, Part I, Section 5.8.4.4, “External Task Priority (XTP) Cycle”:

— Add the following sentence to the end of the 1st paragraph:

“Any memory operation to the XTP address other than a single byte store is undefined.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 39

Specification Clarifications
6. Clarify VHPT insert rules

1. Volume 2, Part I, Section 4.1.8:

— Replace the 2nd paragraph and insert new table on the bottom of page 2:58 with:

The VHPT walker's inserts into the TC follow purge-before-insert rules similar to those
for software inserts (see Table 4-1, “Purge Behavior of TLB Instructions,” on page 2:49).
VHPT walker inserts into the DTC behave similar to itc.d; VHPT walker inserts into the
ITC behave similar to itc.i. If an instruction reference results in a VHPT walk that
misses in the data TLB, the DTC insert for the translation for the VHPT acts similar to an
itc.d.

As described in Section 4.1, “Virtual Addressing” on page 2:43, processors may
optionally use VRN bits when searching for a matching translation for a memory
reference (references other than inserts and purges). In processors that do use VRN bits
for such searches, VHPT inserts may also use VRN bits in searching for overlapping
entries. Thus, if a VHPT insertion overlaps a translation in the TC, but the VRN of the
address being inserted does not match the VRN of the existing TC translation, the purge
of the existing TC entry is optional. If a VHPT insertion overlaps a translation in a TR, but
the VRN of the address being inserted does not match the VRN of the TR translation, the
VHPT insertion is allowed, and a machine check is optional. In processors which do not
use VRN bits when searching for a matching translation for a memory reference, the
behavior of VHPT inserts is identical to that of software inserts (see Table 4-1, “Purge
Behavior of TLB Instructions,” on page 2:49).

If a VHPT insert overlaps with an existing TR entry and the VRN of the insertion matches
the VRN of the existing TR entry (for example, if the translation being inserted is for a
large page which overlaps with a small page translation in the TR), the VHPT insertion
can be done, but a machine check must be raised. Software must not create overlapping
translations in the VHPT that are larger than a currently existing TR translation.

The behavior of VHPT inserts is summarized in Table 4-9.

7. Adding FP-readers to support table

1. Volume 3, Table 5-5 - “Instruction Classes”, on page 3:352, add:

 “mem-writers-fp”

 to the row:

 “fr-readers”

Table 4-9. Behavior of VHPT Inserts

VHPT Inserts
VRN bits used for TLB searching VRN bits not used for TLB

searchingVRN match No VRN match
VHPT insert overlaps TC
entry

May inserta

Must purgeb
May insert

May purgec
May insert

Must purge

VHPT insert overlaps TR
entry

May insert

Must Machine
Checkd

May insert

May Machine
Checke

Must not insert

Must Machine Check

a. May insert: indicates that the VHPT may perform an insert into the TC
b. Must purge: requires that all partially or fully overlapped translations are removed prior to the insert or purge operation.
c. May purge: indicates that a processor may remove partially or fully overlapped translations prior to the insert or purge operation.

However, software must not rely on the purge.
d. Must Machine Check: indicates that a processor will cause a Machine Check abort.
e. May Machine Check: indicates that a processor may cause a Machine Check abort based on the implementation.
40 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
8. cmpxchg clarifications

1. Volume 2, Section 7.1.2, page 2:134:

— Add a new bullet list item at the bottom of the first bullet list, with this text:

“The cmp8xchg16 operands are treated as 16-byte datums for both read and write
breakpoint matching, even though this instruction only reads 8 bytes.”

2. cmpxchg I-page (Volume 3, page 3:40):

— In first paragraph of the Description section, change this sentence from:

“For cmp8xchg16, if the two are equal, then 8-bytes from GR r2 are stored at the
specified address ignoring bit 3 (GR r3 & ~0x4), and 8 bytes from the Compare and
Store Data application register (AR[CSD]) are stored at that address + 8 ((GR r3 &
~0x4) + 8).”

to:

“For cmp8xchg16, if the two are equal, then 8-bytes from GR r2 are stored at the
specified address ignoring bit 3 (GR r3 & ~0x8), and 8 bytes from the Compare and
Store Data application register (AR[CSD]) are stored at that address + 8 ((GR r3 &
~0x8) + 8).”

9. Add Illegal Operation fault

1. Volume 3, Part I, Chapter 3:

a. On page 3:247, add a new function to Table 3-1:

Function: instruction_implemented (inst)

Operation: Implementation-dependent routine which returns TRUE or FALSE, depending
on whether inst is implemented.

b. Remove the row “long_branch_implemented” from Table 3-1.

2. Volume 3, ld I-page on page 3:131

a. Add the following paragraph to the end of the Description section:

“For the sixteen_byte_form, an Illegal Operation fault is raised on processor models that
do not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See “Processor Identification Registers” on page 1:29 for details.”

b. Operation section, after:

if (size == 16) itype |= UNCACHE_OPT;

add:

if (sixteen_byte_form && !instruction_implemented(LD16))
illegal_operation_fault();

3. Volume 3, st I-page on page 3:219

a. Add the following paragraph to the end of the Description section:

“For the sixteen_byte_form, an Illegal Operation fault is raised on processor models that
do not support the instruction. CPUID register 4 indicates the presence of the feature on
the processor model. See “Processor Identification Registers” on page 1:29 for details.”

b. Operation section, after:

otype = (sttype == 'rel') ? RELEASE : UNORDERED;

add:

if (sixteen_byte_form && !instruction_implemented(ST16))
illegal_operation_fault();
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 41

Specification Clarifications
4. Volume 3, cmpxchg I-page on page 3:41

a. Add the following paragraph to the end of the Description section:

“For cmp8xchg16, an Illegal Operation fault is raised on processor models that do not
support the instruction. CPUID register 4 indicates the presence of the feature on the
processor model. See “Processor Identification Registers” on page 1:29 for details.”

b. Operation section, after:

if(PR[qp]) {

add:

if (sixteen_byte_form &&
!instruction_implemented(CMP8XCHG16))

illegal_operation_fault();

5. Volume 3, brl I-page on 3:26, Operation section:

— Replace the following:

if (!long_branch_implemented())
illegal_operation_fault();

with:

if (!instruction_implemented(BRL))
illegal_operation_fault();

10. Non-speculative reference for WBL attribute clarification

1. Volume 2, Part I, add a new Section 4.4.6.1, at the end of Section 4.4.6:

4.4.6.1 Limited Speculation and the WBL Physical Addressing
Attribute

Processors are allowed to reference limited speculation pages (WBL pages) speculatively, in order
to increase performance, but this speculation is limited to prevent speculative references to 4Kbyte
physical pages for which there is no actual memory (which would cause spurious machine checks).

Processors must not make hardware-generated speculative references to a given WBL 4Kbyte page
until a verified reference has been made. Processors may optionally implement storage to hold the
addresses of WBL 4Kbyte pages for which verified references have been made and may make
subsequent hardware-generated speculative references to these pages. Such pages are termed
verified pages.

A verified reference is an instruction or data reference made to the page by an in-order execution of
the program; that is, a reference which would have been made had the instructions from the
program been fetched and executed one at a time. A hardware-generated speculative reference does
not constitute a verified reference. Hardware-generated speculative references include:

• Instruction fetches when the processor has not yet determined whether prior branches were
predicted correctly.

• Instruction fetches when the processor has not yet determined whether prior instructions will
raise faults or traps.

• Data references by instructions when the processor has not yet determined whether prior
branches were predicted correctly.

• Data references by instructions when the processor has not yet determined whether prior
instructions will raise faults or traps.

• Hardware-generated instruction prefetch references.

• Hardware-generated data prefetch references.
42 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
• Eager RSE data references.

For an instruction fetch to constitute a verified reference, it must only be determined that an
in-order execution of the program requires that the IP point to this address, independent of whether
the instruction at this address will subsequently take a fault or interrupt.

For a data reference to constitute a verified reference, the instruction must meet one of the
following requirements:

• It executes without any fault or interrupt

• It takes an Unaligned Data Reference fault

• It takes a Data Debug fault

• It takes an External interrupt, but if it had not taken an External interrupt, it would have met
one of the above qualifications (execute without fault, take an Unaligned Data Reference fault,
or take a Data Debug fault)

Data-speculative loads are treated the same as normal loads, and if an in-order execution of the
program requires the execution of a data speculative load, it constitutes a verified reference.
Control-speculative loads to limited-speculation pages always defer and thus never constitute
verified references.

It is not necessary for a processor to determine whether a reference will complete without
generating a machine check for it to be a verified reference. If software actually references a
physical address which will cause a machine check, hardware may generate multiple speculative
references to the same page, potentially causing multiple machine checks.

Processors may access verified pages normally, as they would WB pages, including the use of
caching, pipelining, and hardware-generate speculative references to improve performance.

Calling the PAL_PREFETCH_VISIBILITY procedure forces the processor to clear the storage
holding the addresses of verified pages.

2. Remove the two paragraphs from Volume 2, Part I, Section 4.4.6 that talk about limited
speculation (the paragraphs beginning, “Limited speculation is used to improve
performance...”, and “Unless a limited-speculation page is speculatively accessible,...”).

3. In footnote “d” in Table 4-12 on page 2:68, change this text from:

“The processor may only issue hardware-generated speculative references to a 4K-byte
physical page while the page is speculatively accessible.”

to:

“The processor may only issue hardware-generated speculative references to a 4K-byte
physical page if it is a verified page.”

4. On page 2:76, Volume 2, Part I, Section 4.4.11.2, change these two paragraphs from:

“When a non-speculative reference is made to a physical address with the WBL attribute,
the 4K page containing that address becomes speculatively accessible. This allows the
processor that made the non-speculative reference to subsequently make speculative
references to this page. (See the description of limited speculation in Section 4.4.6,
“Speculation Attributes” on page 2:70.)

If the same physical memory is then to be accessed with the U attribute, software must
first make all such addresses speculatively inaccessible and flush any cached copies from
the cache. Otherwise, an uncacheable reference may hit in cache, causing a Machine
Check abort.”

to:

“When a verified reference is made to a physical address with the WBL attribute, the 4K
page containing that address becomes speculatively accessible. This allows the processor
that made the verified reference to subsequently make speculative references to this page.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 43

Specification Clarifications
(See the description of limited speculation in Section 4.4.6.1, “Limited Speculation and
the WBL Physical Addressing Attribute” on page 2:70.)

If the same physical memory is then to be accessed with the UC attribute, software must
first cause all such 4K pages to no longer be verified pages and flush any cached copies
from the cache. Otherwise, an uncacheable reference may hit in cache, causing a Machine
Check abort.”

5. Volume 2, Part I, Section 4.4.11.2, bullet point 1 on page 2:76, change this paragraph from:

“Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one to
indicate that the transition is for physical memory attributes. This PAL call terminates the
processor's rights to make speculative references to any limited speculation pages (i.e., it
makes all WBL pages speculatively inaccessible - see the discussion on limited
speculation in Section 4.4.6.)”

to:

“Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one to
indicate that the transition is for physical memory attributes. This PAL call terminates the
processor's rights to make speculative references to any limited speculation pages (i.e., it
causes all WBL pages to no longer be verified pages - see the discussion on limited
speculation in Section 4.4.6.1.)”

6. Volume 2, Part I, Section 4.4.11.2 on page 2:77, the very last paragraph of this section is not
part of bullet point 5, but rather a summation of the bulleted sequence.

7. In Volume 2, Part I, Section 11.9.3 PAL Procedure Specification,
PAL_PREFETCH_VISIBILITY (Page 2:358) Description, paragraph 4, last sentence should
be changed from:

“For the processor to make any speculative reference to a limited speculation page after
this call, there must be a non-speculative reference made to that page after this call.”

to:

“For the processor to make any speculative reference to a limited speculation page after
this call, there must be a verified reference made to that page after this call. See the
discussion on limited speculation in Section 4.4.6.1."

11. Dirty-bit fault ISR.code clarification

1. Volume 2, Part I, Section 8.3, Dirty-bit vector on page 2:160:

a. Update diagram for ISR field to indicate that bits[3:0] represent ISR.code as shown
below:

b. Change following ISR statement on same page from:

“ISR - The value for the ISR bits depend upon the type of access performed and are
specified below. For mandatory RSE spill references, ISR.ed is always 0. For IA-32
memory references, ISR.ed, ei, ni, and rs are 0."

to:

“ISR - The value for the ISR bits depend upon the type of access performed and are
specified below. For mandatory RSE spill references, ISR.ed is always 0. For IA-32
memory references, ISR.ed, ei, ni, and rs are 0. If the interruption was due to a
non-access operation then the ISR.code bits {3:0} are set to indicate the type of the
non-access instruction; otherwise they are set to 0."

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni 0 rs 0 na r 1 0
44 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
c. Change following statement after the Notes section on the same page from:

“For probe.w.fault and probe.rw.fault the ISR.na bit is set”

to:

“For probe.w.fault and probe.rw.fault the ISR.na bit is set, and the ISR.code field is
written with a value of 5.”

12. FC data dependency ordering clarification

1. Volume 2, Part I, Section 4.4.7 on page 2:72, change the following sentence from:

“The flush cache instruction (fc, fc.i) instruction follows data dependency ordering.
fc and fc.i are ordered with respect to previous and subsequent load, store, or
semaphore instructions to the same line, regardless of the specified memory attribute.”

to:

“The flush cache instruction (fc, fc.i) instruction follows data dependency ordering.
fc and fc.i are ordered only with respect to previous load, store, or semaphore
instructions to the same line, regardless of the specified memory attribute. Subsequent
memory operations to the same line need not wait for prior fc or fc.i completion before
being globally visible.”

2. Volume 3, fc I-page (page 3:55), 5th paragraph, change the following sentence from:

“These instructions follow data dependency rules; they are ordered with respect to
preceding and following memory references to the same line. fc and fc.i have data
dependencies in the sense that any prior stores by this processor will be included in the
flush operation.”

to:

“These instructions follow data dependency ordering rules; they are ordered only with
respect to previous load, store, or semaphore instructions to the same line. fc and fc.i
have data dependencies in the sense that any prior stores by this processor will be
included in the flush operation. Subsequent memory operations to the same line need not
wait for prior fc or fc.i completion before being globally visible.”

13. PAL_MC_DRAIN clarification

1. Volume 2, Part I, PAL_MC_DRAIN on page 2:339, change the first sentence of the
Description section from:

“This call causes all outstanding transactions in the processor to be completed (for
example, loads get their data returned, store updates are completed, and prefetches are
either completed or cancelled).”

to:

“This call causes all outstanding transactions in the processor to be completed. For
example:

i. Flushes (fc) invalidate the cache; lines that have been modified are written back
(issued to the fabric) to memory before invalidation.

ii. Instruction cache coherence flushes (fc.i) invalidate lines and/or write them back
to main memory, if this is required to make the instruction caches coherent with the
data caches.

iii. Loads get their data returned.

iv. Stores either update the cache or issue transactions to the system fabric.

v. Prefetches are either completed or cancelled.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 45

Specification Clarifications
14. Add hint instructions to support table

1. Volume 3, page 3:356, Table 5-5:

— Add the following to 'pr-readers-br' (in the appropriate alphabetical location):

“hint.b”

2. Volume 3, page 3:357, Table 5-5:

— Add the following to 'pr-readers-nobr-nomovpr' (in the appropriate alphabetical location):

“hint.f, hint.i, hint.m, hint.x”

15. Clarify speculative operation fault handler requirements

1. On the Speculation vector (0x5700) page in Section 8.3 of Volume 2, Part I, page 2:174 add a
“Notes” section below the ISR diagram that reads:

“The Speculative Operation fault handler is required to perform the following steps:

1. Read the predicates and the IIM, IIP, IPSR, and ISR control registers into scratch bank-0
general registers.

2. Copy the IIP value to IIPA.

3. Sign-extend the IIM value (from 21 bits to 64), shift it left by 4 bits, and add it to the IIP
value.

4. Set the IPSR.ri field to 0.

5. Check whether either IPSR.tb (Taken Branch trap) or IPSR.ss (Single Step enable) is 1. If
not, emulation is complete, so restore the predicates and rfi. If so, then the check
instruction would have taken one of these traps instead of branching to its target, so this
handler needs to branch directly to the appropriate trap handler instead of performing the
rfi (see steps 6 - 7).

6. If IPSR.tb was 1, then update ISR.code with its “tb” bit set to 1 and its “ss” bit also set to
1 if IPSR.ss was 1 and all other bits 0. Restore the predicates, execute a srlz.d, and branch
to the taken branch vector (IVT offset 0x5f00).

7. If IPSR.ss was 1 (but not IPSR.tb), then update ISR.code with its “ss” bit set to 1, and all
other bits 0. Restore the predicates, execute a srlz.d, and branch to the single step vector
(IVT offset 0x6000).”

2. In Table 5-7 “Interruption Vector Table (IVT)”, change the “Reserved” text in the Vector
Name column of the offset 0x5800 row to “Reserved for software use” and attach a footnote to
this entry. The text of the footnote should read:

“Unlike the other Reserved IVT vectors, which may be defined in future revisions of the
architecture, vector 0x5800 is permanently reserved. Software may use this vector for any
purpose, such as placing in this area portions of other handlers that don't fit into their assigned
vector.”

3. Add the following to the Speculation vector (0x5700) page, just below the list added by (A):

“The Speculative Operation fault handler does not need to check for unimplemented
instruction addresses. They will be checked automatically by processor hardware when the
handler executes its rfi. If an emulated check instruction targets an unimplemented address
and also needs to take a Single Step trap or Taken Branch trap (or both), the Unimplemented
Instruction Address trap will not be raised until after the Single Step and/or Taken Branch trap
has been handled, making it appear that the Unimplemented Instruction Address trap has the
wrong priority. A Speculative Operation fault handler with this behavior is architecturally
compliant.”
46 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
4. In Table 5-6 “Interruption Priorities” on page 2:94, add a footnote to the “Unimplemented
Instruction Address trap” cell, which reads:

“Unimplemented Instruction Address traps on emulated check instructions have a lower
priority than Taken Branch trap and Single Step trap. See Speculation vector (0x5700) on page
2:174.”

16. Clarify role of PMC.ev bit as implementation-specific

1. Volume 2, Part I, Section 7.2.1, Table 7-4, page 2:137, change the ev row from:

“External visibility - When 1, an external notification (such as a pin or transaction) is
provided whenever the monitor overflows. Overflow occurs when a carry out from bit
W-1 is detected.”

to:

“External visibility - When 1, an external notification (such as a pin or transaction) may
be provided, dependent upon implementation, whenever the monitor overflows. Overflow
occurs when a carry out from bit W-1 is detected.”

17. Relax IA-32 Application Registers Reserved/Ignored checking

1. Update Section 3.1.8.6 to:

3.1.8.6 Compare and Store Data register (CSD – AR 25)

The Compare and Store Data register is a 64-bit register that provides data to be stored
by the Itanium st16 and cmp8xchg16 instructions, and receives data loaded by the
Itanium ld16 instruction.

For implementations that do not support the ld16, st16 and cmp8xchg16 instructions,
bits 61:60 may be optionally implemented. This means that on move application register
instructions the implementation can either ignore writes and return zero on reads, or
write the value and return the last value written on reads. For implementations that do
support the ld16, st16 and cmp8xchg16 instructions, all bits of CSD are implemented.

For IA-32 execution, this register is the IA-32 Code Segment Descriptor. See Section
6.2.3, “IA-32 Segment Registers” on page 1:117.

2. Update the av and ig rows of Table 6-2, page 1:108, Volume 1.

3. Update the following three rows of both Table 6-5 of Volume 1 on page 1:113 and Table 10-3
of Volume 2 on page 2:218:

Table 6-2. IA-32 Segment Register Fields

Field Bits Description

av 60 Ignored – This field is ignored by the processor during IA-32 instruction set execution.
This field is available for IA-32 software use and there will be no future use for this field.
For Itanium instructions, implementations which do not support the ld16, st16 and
cmp8xchg16 instructions can either ignore writes and return zero on reads, or write the
value and return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

ig 61 Ignored – This field is ignored by the processor during IA-32 instruction set execution.
This field may have a future use and should be set to zero by IA-32 software. For Itanium
instructions, implementations which do not support the ld16, st16 and cmp8xchg16
instructions can either ignore writes and return zero on reads, or write the value and
return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 47

Specification Clarifications
.

4. Change the last sentence of Volume 1, Section 6.2.4, 1st paragraph, change from:

“When Itanium architecture-based software loads this application register (AR24), a
Reserved Register/Field fault will be raised if a non-zero value is written into bits listed as
reserved. See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:235.”

to:

See Table 6-5 “IA-32 EFLAGS Register Fields” for the behavior on IA-32 and Itanium
instruction reads/writes to this application register. For details on system flags in the
IA-32 EFLAGS register, see Section 10.3.2, “IA-32 System EFLAG Register” on page
2:235.

5. Change the last paragraph of Section 10.3.2, Volume 2, on page 2:217, change from:

“When Itanium architecture-based software loads this application register (AR24), a
Reserved Register/Field fault will be raised if a non-zero value is written into bits listed as
reserved.”

to:

“See Table 10-3 “IA-32 EFLAGS Field Definition” for the behavior on IA-32 and Itanium
instruction reads/writes to this application register.”

6. Change the last paragraph of Section 6.2.5.3, Volume 1, on page 1:117, change from:

“Software must ensure that FCR and FSR are properly loaded for IA-32 numeric
execution before entering the IA-32 instruction set. When Itanium architecture-based
software loads these application registers (AR21 and AR28), a Reserved Register/Field
fault will be raised if a non-zero value is written to bits listed as reserved. No field
encoding values will be verified when these registers are written.”

to:

“Software must ensure that FCR and FSR are properly loaded for IA-32 numeric
execution before entering the IA-32 instruction set. For Itanium instructions accessing
ignored fields, the implementation can either ignore writes and return the specified
constant on reads, or write the value and return the last value written on reads. For Itanium
instructions accessing reserved fields, the implementation can either raise Reserved
Register/Field fault on non-zero writes and return zero on reads, or write the value (no
Reserved Register/Field fault), and return the last value written on reads.”

7. Change the last paragraph of Section 6.2.5.4, Volume 1, on page 1:118, change from:

“When Itanium architecture-based software loads these application registers (AR29 and
AR30), a Reserved Register/Field fault will be raised if a non-zero value is written to bits

Table 6-5. IA-32 EFLAGS Register Fields

EFLAGa Bits Description

1 Ignored – For IA-32 instructions, writes are ignored, reads return one. For Itanium
instructions, the implementation can either ignore writes and return one on reads; or
write the value, and return the last value written on reads.

3,5,

15

Ignored – For IA-32 instructions, writes are ignored, reads return zero. For Itanium
instructions, the implementation can either ignore writes and return zero on reads, or
write the value and return the last value written on reads.

63:22 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the
implementation can either raise Reserved Register/Field fault on non-zero writes and
return zero on reads, or write the value (no Reserved Register/Field fault), and return the
last value written on reads.

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter
the behavior of Itanium instruction set execution.
48 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
listed as reserved. No field encoding values will be verified when these registers are
written.”

to:

“For Itanium instructions, the implementation can either raise Reserved Register/Field
faults on non-zero writes to the reserved fields, or write the value and return the last value
written on reads.”

8. Update the following two rows of Table 10-4 of Volume 2 on page 2:222

18. Relax ordering constraints for VHPT walks

1. After the second paragraph in Section 4.4.7 of Volume 2, Part I, add the following paragraph:

For VHPT walks, visibility is defined by the memory read(s) which retrieves translation
information, and the associated insertion of the translation into the TLB. VHPT walks are
performed asynchronously with respect to program execution, and each walker VHPT read
(which appears as though it were performed atomically) is made visible at some single point in
the program order. Ordering constraints from table 4-15 do not prevent VHPT walks from
becoming visible.

2. In the second paragraph in Section 4.4.7, delete the footnote that reads:

“1. Although VHPT walks are performed somewhat asynchronously with respect to program
execution, each VHPT read appears as though it were performed atomically, at some
single point in the program order.”

3. Change the first sentence of footnote 1 on page 2:81 from:

“1. This includes all types of loads (ld and ld.acq), and RSE and VHPT memory reads.”

to:

“1. This includes all types of loads (ld and ld.acq), and RSE memory reads.”

4. Delete the following line from Volume 2, Part II, Section 5.3.3, “VHPT updates”:

“The VHPT walker uses unordered load semantics to access the in-memory VHPT.”

19. Clarify illegal operation fault behavior for predicated off reserved ops

On page 2:92 of Volume 2, Part I, Table 5-6:

1. Add a superscript numeral after “Illegal Operation fault” to indicate that there is a footnote
below.

2. Add this footnote at the bottom of the page:

“Illegal Operation faults can be taken for certain predicated off reserved opcodes. For details,
refer to Volume 3, Section 4.1"

Table 10-4. IA-32 Control Register Field Definition

Field
Intel® Itanium®

State
Bits Description

ignored 9:15,
17,
19:28

Ignored – This field is ignored by the processor during IA-32 instruction set
execution. This field may have a future use and should be set to zero by IA-32
software. For Itanium instructions, the implementation can either ignore the writes
and return zero on reads, or write the value and return the last value written on
reads.

reserved 43:63 This field is reserved for IA-32 instructions – reads return zeros and non-zero writes
causes IA_32_Exception (General Protection) faults. For Itanium instructions, the
implementation can either raise Reserved Register/Field fault on non-zero writes
and return zero on reads, or write the value (no Reserved Register/Field fault) and
return the last value written on reads.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 49

Specification Clarifications
20. Clarify opcode hint fields in encodings

All changes listed are with respect to Volume 3, Chapter 4, “Instruction Formats”.

1. Add the following paragraph to the end of Section 4.1, just after the existing “Ignored (white
space) Fields” paragraph:

“Unused opcode hint extension values (white color entries in Hint Completer tables)
should not be used by software. Processors must perform the architected functional
behavior of the instruction independent of the hint extension value (whether defined or
unused), but different processor models may interpret unused opcode hint extension
values in different ways, resulting in undesirable performance effects.”

2. Section 4.4.1, just before Table 4-39 “Load Hint Completer”, change:

“opcode extension field in bits 29:28 (hint) which encodes locality hint information.”

to:

“cache locality opcode hint extension field in bits 29:28 (hint).”

3. Section 4.4.2, just before Table 4-41 “Line Prefetch Hint Completer”, change:

“opcode extension field in bits 29:28 (hint) which encodes locality hint information”

to:

“cache locality opcode hint extension field in bits 29:28 (hint)”

4. Section 4.4.3, add the following to the end of the first (and only) paragraph:

“These instructions have the same cache locality opcode hint extension field in bits 29:28
(hint) as load instructions. See Table 4-39 on p. 3:291.”

5. Section 4.5.1, just before Table 4-51 “Sequential Prefetch Hint Completer”, change:

“All of the branch instructions have a 1-bit opcode extension field, p, in bit 12 which
provides a sequential prefetch hint.”

to:

“All of the branch instructions have a 1-bit sequential prefetch opcode hint extension
field, p, in bit 12.”

6. Section 4.5.1, just before Table 4-52 “Branch Whether Hint Completer”, change:

“The IP-relative and indirect branch instructions all have a 2-bit opcode extension field in
bits 34:33 (wh) which encodes branch prediction “whether” hint information as shown in
Table 4-52. Indirect call instructions have a 3-bit opcode extension field in bits 34:32 (wh)
for “whether” hint information as shown in Table 4-53.”

to:

“The IP-relative and indirect branch instructions all have a 2-bit branch prediction
“whether” opcode hint extension field in bits 34:33 (wh) as shown in Table 4-52. Indirect
call instructions have a 3-bit “whether” opcode hint extension field in bits 34:32 (wh) as
shown in Table 4-53.”

7. Section 4.5.1, just before Table 4-54 “Branch Cache Deallocation Completer”, change:

“opcode extension field in bit 35 (d) which encodes a branch cache deallocation hint”

to:

“branch cache deallocation opcode hint extension field in bit 35 (d)”

8. Section 4.5.2, just before Table 4-56 “Branch Importance Hint Completer”, change:

“opcode extension field in bit 35 (ih) which encodes a branch importance hint.”

to:

“branch importance opcode hint extension field in bit 35 (ih).”
50 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Specification Clarifications
9. Section 4.5.2, just before Table 4-57 “IP-Relative Predict Whether Hint Completer”, change:

“opcode extension field in bits 4:3 (wh) which encodes branch prediction “whether” hint
information”

to:

“branch prediction “whether” opcode hint extension field in bits 4:3 (wh)”

10. Section 4.5.2, just before Table 4-58 “Indirect Predict Whether Hint Completer”, change:

“opcode extension field in bits 4:3 (wh) which encodes branch prediction “whether” hint
information”

to:

“branch prediction “whether” opcode hint extension field in bits 4:3 (wh)”

21. Clarify speculative operation fault handler requirements

All changes listed are with respect to Volume 2, Part I.

1. On the Speculation vector (0x5700) page in Section 8.3, add a “Notes” section below the ISR
picture, which reads:

NOTES:
1. The Speculative Operation fault handler is required to perform the following steps:

a. Read the predicates and the IIM, IIP, IPSR, and ISR control registers, into scratch bank-0
general registers.

b. Copy the IIP value to IIPA.
c. Sign-extend the IIM value (from 21 bits to 64), shift it left by 4 bits, add it to the IIP value, and

write this value back into IIP.
d. Set the IPSR.ri field to 0.
e. Check whether either IPSR.tb (Taken Branch trap) or IPSR.ss (Single Step enable) is 1. If not,

emulation is complete, so restore the predicates and rfi. If so, then the check instruction would
have taken one of these traps instead of branching to its target, so this handler needs to
branch directly to the appropriate trap handler instead of performing the rfi (see steps 6 - 7).

f. If IPSR.tb was 1, then update ISR.code with its “tb” bit set to 1 and its “ss” bit also set to 1 if
IPSR.ss was 1, and all other bits 0. Restore the predicates, execute a srlz.d, and branch to the
taken branch vector (IVT offset 0x5f00).

g. If IPSR.ss was 1 (but not IPSR.tb), then update ISR.code with its “ss” bit set to 1, and all other
bits 0. Restore the predicates, execute a srlz.d, and branch to the single step vector (IVT offset
0x6000).

2. Add the following to the Speculation vector (0x5700) page, just below the “Notes”:

“The Speculative Operation fault handler does not need to check for unimplemented
instruction addresses. They will be checked automatically by processor hardware when
the handler executes its rfi. If an emulated check instruction targets an unimplemented
address and also needs to take a Single Step trap or Taken Branch trap (or both), the
Unimplemented Instruction Address trap will not be raised until after the Single Step
and/or Taken Branch trap has been handled, making it appear that the Unimplemented
Instruction Address trap has the wrong priority. A Speculative Operation fault handler
with this behavior is architecturally compliant.”

3. In Table 5-7 on page 2:96 “Interruption Vector Table (IVT)”, change the “Reserved” text in the
Vector Name column of the offset 0x5800 row to “Reserved for software use” and attach a
footnote to this entry. The text of the footnote should read:

“Unlike the other Reserved IVT vectors, which may defined in future revisions of the
architecture, vector 0x5800 is permanently reserved.

Software may use this vector for any purpose, such as placing in this area portions of other
handlers that don't fit into their assigned vector.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 51

Specification Clarifications
4. In Table 5-6 “Interruption Priorities”, add a footnote to the “Unimplemented Instruction
Address trap” cell, which reads:

“Unimplemented Instruction Address traps on emulated check instructions have a lower
priority than Taken Branch trap and Single Step trap. See Speculation vector (0x5700) on
p. 2:174.”

22. PAL_CACHE_FLUSH clarification

1. Change the third paragraph of the description on page 2:298 from:

“When the caller specifies to make local instruction caches coherent with the data caches,
this procedure will ensure that the local instruction caches will see the effects of stores of
instruction code done on the processor. Refer to Section 4.4.3, “Cacheability and
Coherency Attribute” on page 2:65 for more information on stores and their coherency
requirements with local instruction caches.”

to:

“When the caller specifies to make local instruction caches coherent with the data caches,
this procedure will ensure that the instruction caches on the processor that this procedure
call was made, will see the effects of stores to instruction code performed by this
processor. This procedure is not required to ensure coherency of instruction caches on
other processors in the system when this input argument is used. Refer to Section 4.4.3,
“Cacheability and Coherency Attribute” on page 2:65 for more information on stores and
their coherency requirements with local instruction caches.”
52 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
Documentation Changes

1. Update IA-32 CPUID I-Page

Volume 3: Updated IA-32 CPUID Instruction

CPUID—CPU Identification

Description

Returns processor identification and feature information in the EAX, EBX, ECX, and EDX
registers. The information returned is selected by entering a value in the EAX register before the
instruction is executed. Table 2-4 shows the information returned, depending on the initial value
loaded into the EAX register.

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a
software procedure can set and clear this flag, the processor executing the procedure supports the
CPUID instruction.

The information returned with the CPUID instruction is divided into two groups: basic information
and extended function information. Basic information is returned by entering an input value
starting at 0 in the EAX register; extended function information is returned by entering an input
value starting at 80000000H. When the input value in the EAX register is 0, the processor returns
the highest value the CPUID instruction recognizes in the EAX register for returning basic
information. Always use an EAX parameter value that is equal to or greater than zero and less than
or equal to this highest EAX return value for basic information. When the input value in the EAX
register is 80000000H, the processor returns the highest value the CPUID instruction recognizes in
the EAX register for returning extended function information. Always use an EAX parameter value
that is equal to or greater than zero and less than or equal to this highest EAX return value for
extended function information.

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Serializing instruction execution guarantees that any modifications to flags, registers, and memory
for previous instructions are completed before the next instruction is fetched and executed.

Opcode Instruction Description
0F A2 CPUID Returns processor identification and feature information in the

EAX, EBX, ECX, and EDX registers, according to the input
value entered initially in the EAX register.

Table 2-4. Information Returned by CPUID Instruction

Initial EAX Value Information Provided about the Processor

Basic CPUID Information

0 EAX

EBX

ECX

EDX

Maximum CPUID Input Value

756E6547H “Genu” (G in BL)

6C65746EH “ntel” (n in CL)

49656E69H “ineI” (i in DL)
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 53

Documentation Changes
When the input value is 1, the processor returns version information in the EAX register (see
Figure 2-3). The version information consists of an Intel architecture family identifier, a model
identifier, a stepping ID, and a processor type.

If the values in the family and/or model fields reach or exceed FH, the CPUID instruction will
generate two additional fields in the EAX register: the extended family field and the extended
model field. Here, a value of FH in either the model field or the family field indicates that the
extended model or family field, respectively, is valid. Family and model numbers beyond FH range
from 0FH to FFH, with the least significant hexadecimal digit always FH.

1H EAX

EBX

ECX

EDX

Version Information (Type, Family, Model, and Stepping ID)

Bits 7-0: Brand Indexa

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)

Bits 23-16: Number of logical processors per physical processor

Bits 31-24: Local APIC IDb

Reserved

Feature Information (see Table 2-5)

2H EAX

EBX

ECX

EDX

Cache and TLB Information

Cache and TLB Information

Cache and TLB Information

Cache and TLB Information

Extended Function CPUID Information

8000000H EAX

EBX

ECX

EDX

Maximum Input Value for Extended Function CPUID Information

Reserved

Reserved

Reserved

8000001H EAX

EBX

ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently
reserved.)

Reserved

Reserved

Reserved

8000002H EAX

EBX

ECX
EDX

Processor Brand String

Processor Brand String Continued

Processor Brand String Continued

Processor Brand String Continued

8000003H EAX

EBX

ECX
EDX

Processor Brand String Continued

Processor Brand String Continued

Processor Brand String Continued

Processor Brand String Continued

a. This field is not supported for processors based on Itanium architecture, zero (unsupported encoding) is returned.
b. This field is invalid for processors based on Itanium architecture, reserved value is returned.

Table 2-4. Information Returned by CPUID Instruction (Continued)

Initial EAX Value Information Provided about the Processor

Figure 2-3. Version Information in Registers EAX

31 1211 8 7 4 3

EAX ModelFamily
Stepping

ID

1519 1627 2028

Extended
Model

Extended Family

1314 0

Processor Type
54 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
See AP-485, Intel® Processor Identification and the CPUID Instruction (Order Number 241618)
for more information on identifying Intel architecture processors.

When the input value in EAX is 1, three unrelated pieces of information are returned to the EBX
register:

• Brand index (low byte of EBX) – this number provides an entry into a brand string table that
contains brand strings for IA-32 processors. Please refer to AP-485, Intel® Processor
Identification and the CPUID Instruction (Order Number 241618) for information on brand
indices.

Note: The Brand index field is not supported for processors based on Itanium architecture,
zero (unsupported encoding) is returned.

• CLFLUSH instruction cache line size (second byte of EBX) – this number indicates the size of
the cache line flushed with CLFLUSH instruction in 8-byte increments. This field is valid only
when the CLFSH feature flag is set.

• Local APIC ID (high byte of EBX) – this number is the 8-bit ID that is assigned to the local
APIC on the processor during power up.

Note: The local APIC ID field is invalid for processors based on the Itanium architecture,
reserved value is returned. Software should check the feature flags to make sure they are
not running on processors based on the Itanium architecture before interpreting the
return value in this field.

When the EAX register contains a value of 1, the CPUID instruction (in addition to loading the
processor signature in the EAX register) loads the EDX register with the feature flags. The feature
flags (when a Flag = 1) indicate what features the processor supports. Table 2-5 lists the currently
defined feature flag values.

A feature flag set to 1 indicates the corresponding feature is supported. Software should identify
Intel as the vendor to properly interpret the feature flags.

Table 2-5. Feature Flags Returned in EDX Register

Bit Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode
enhancements, including CR4.VME for controlling the feature,
CR4.PVI for protected mode virtual interrupts, software interrupt
indirection, expansion of the TSS with the software indirection bitmap,
and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/O breakpoints, including
CR4.DE for controlling the feature, and optional trapping of accesses
to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4Mbyte are supported,
including CR4.PSE for controlling the feature, the defined dirty bit in
PDE (Page Directory Entries), optional reserved bit trapping in CR3,
PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including
CR4.TSD for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The
RDMSR and WRMSR instructions are supported. Some of the MSRs
are implementation dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32
bits are supported: extended page table entry formats, an extra level
in the page translation tables is defined, 2 Mbyte pages are supported
instead of 4 Mbyte pages if PAE bit is 1. The actual number of address
bits beyond 32 is not defined, and is implementation specific.
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 55

Documentation Changes
7 MCE Machine Check Exception. Exception 18 is defined for Machine
Checks, including CR4.MCE for controlling the feature. This feature
does not define the model-specific implementations of machine-check
error logging, reporting, and processor shutdowns. Machine Check
exception handlers may have to depend on processor version to do
model-specific processing of the exception, or test for the presence of
the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64
bits) instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable
Interrupt Controller (APIC), responding to memory mapped
commands in the physical address range FFFE0000H to FFFE0FFFH
(by default – some processors permit the APIC to be relocated).

10 Reserved Reserved.

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and
SYSEXIT and associated MSRs are supported.

12 MTRR Memory Type Range Registers. MTRRs are supported. The
MTRRcap MSR contains feature bits that describe what memory
types are supported, how many variable MTRRs are supported, and
whether fixed MTRRs are supported.

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and
page table entries (PTEs) is supported, indicating TLB entries that are
common to different processes and need not be flushed. The
CR4.PGE bit controls this feature.

14 MCA Machine Check Architecture. The Machine Check Architecture,
which provides a compatible mechanism for error reporting is
supported. The MCG_CAP MSR contains feature bits describing how
many banks of error reporting MSRs are supported.

15 CMOV Conditional Move Instructions. The conditional move instruction
CMOV is supported. In addition, if x87 FPU is present as indicated by
the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions
are supported.

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an
operating system to specify attributes of memory on a 4K granularity
through a linear address.

17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are
capable of addressing physical memory beyond 4 GBytes are
supported. This feature indicates that the upper four bits of the
physical address of the 4-MByte page is encoded by bits 13-16 of the
page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit
processor identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved.

21 DS Debug Store. The processor supports the ability to write debug
information into a memory resident buffer. This feature is used by the
branch trace store (BTS) and precise event-based sampling (PEBS)
facilities.

22 ACPI Thermal Monitor and Software Controlled Clock Facilities. The
processor implements internal MSRs that allow processor
temperature to be monitored and processor performance to be
modulated in predefined duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX
technology.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description
56 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
When the input value is 2, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers is as
follows:

• The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description of
the processor’s caches and TLBs.

• The most significant bit (bit 31) of each register indicates whether the register contains valid
information (set to 0) or is reserved (set to 1).

• If a register contains valid information, the information is contained in 1 byte descriptors.

Please see the processor-specific supplement for further information on how to decode the return
values for the processors internal caches and TLBs.

CPUID performs instruction serialization and a memory fence operation.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR
instructions are supported for fast save and restore of the floating
point context. Presence of this bit also indicates that CR4.OSFXSR is
available for an operating system to indicate that it supports the
FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting
memory types by performing a snoop of its own cache structure for
transactions issued to the bus.

28 HTT Hyper-Threading Technology. The processor implements
Hyper-Threading technology.

29 TM Thermal Monitor. The processor implements the thermal monitor
automatic thermal control circuitry (TCC).

30 Processor based on the Intel
Itanium architecture

The processor is based on the Intel Itanium architecture and is
capable of executing the Intel Itanium instruction set. IA-32 application
level software MUST also check with the running operating system to
see if the system can also support Itanium architecture-based code
before switching to the Intel Itanium instruction set.

31 PBE Pending Break Enable. The processor supports the use of the
FERR#/PBE# pin when the processor is in the stop-clock state
(STPCLK# is asserted) to signal the processor that an interrupt is
pending and that the processor should return to normal operation to
handle the interrupt. Bit 10 (PBE enable) in the IA32_MISC_ENABLE
MSR enables this capability.

Table 2-5. Feature Flags Returned in EDX Register (Continued)

Bit Mnemonic Description
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 57

Documentation Changes
CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX = 0H:

EAX ← Highest input value understood by CPUID;
EBX ← Vendor identification string;
EDX ← Vendor identification string;
ECX ← Vendor identification string;

BREAK;
EAX = 1H:

EAX[3:0] ← Stepping ID;
EAX[7:4] ← Model;
EAX[11:8] ← Family;
EAX[13:12] ← Processor Type;
EAX[15:14] ← Reserved;
EAX[19:16] ← Extended Model;
EAX[27:20] ← Extended Family;
EAX[31:28] ← Reserved;
EBX[7:0] ← Brand Index; (* Always zero for processors based on Itanium

architecture *)
EBX[15:8] ← CLFLUSH Line Size;
EBX[16:23] ← Number of logical processors per physical processor;
EBX[31:24] ← Initial APIC ID; (* Reserved for processors based on Itanium

architecture *)
ECX ← Reserved;
EDX ← Feature flags;

BREAK;
EAX = 2H:

EAX ← Cache and TLB information;
EBX ← Cache and TLB information;
ECX ← Cache and TLB information;
EDX ← Cache and TLB information;

BREAK;
EAX = 80000000H:

EAX ← Highest extended function input value understood by CPUID;
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000001H:

EAX ← Extended Processor Signature and Feature Bits; (* Currently Reserved *)
EBX ← Reserved;
ECX ← Reserved;
EDX ← Reserved;

BREAK;
EAX = 80000002H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000003H:

EAX ← Processor Name;
EBX ← Processor Name;
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
EAX = 80000004H:

EAX ← Processor Name;
EBX ← Processor Name;
58 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
ECX ← Processor Name;
EDX ← Processor Name;

BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)

EAX ← Reserved, Undefined;
EBX ← Reserved, Undefined;
ECX ← Reserved, Undefined;
EDX ← Reserved, Undefined;

BREAK;
ESAC;

memory_fence();
instruction_serialize();

Flags Affected

None.

Additional Itanium System Environment Exceptions

Itanium Reg Faults NaT Register Consumption Abort.

Exceptions (All Operating Modes)

None.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486 processor or in any Intel
architecture processor earlier than the Intel486 processor. The ID flag in the EFLAGS register can
be used to determine if this instruction is supported. If a procedure is able to set or clear this flag,
the CPUID is supported by the processor running the procedure.

2. PAL_BUS_GET/SET_FEATURES fix

1. Volume 2, Part I, Table 11-25.

— On page 2:296, change the following bit 52 description from:

“Enable a bus cache line replacement transaction when a cache line in the shared state is
replaced from the highest level processor cache and is not present in the lower level
processor caches. When 0, no bus cache line replacement transaction will be seen on the
bus. When 1, bus cache line replacement transactions will be seen on the bus when the
above condition is detected.”

to:

“Enable a bus cache line replacement transaction when a cache line in the shared or
exclusive state is replaced from the highest level processor cache and is not present in
the lower level processor caches. When 0, no bus cache line replacement transaction
will be seen on the bus. When 1, bus cache line replacement transactions will be seen on
the bus when the above condition is detected.”

3. PAL_COPY_PAL update

1. Volume 2, Part I, page 2:317:

a. Change the following argument in the Arguments section of the PAL_COPY_PAL
procedure from:

“processor - Unsigned integer denoting whether the call is being made on the boot
processor or an application processor.”
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 59

Documentation Changes
to:

“copy_option - Unsigned integer indicating whether relocatable PAL code and PAL
PMI code should be copied from firmware address space to main memory.”

b. Change the following sentences in the first paragraph of the Description section of
PAL_COPY_PAL from:

“This procedure also updates the PALE_PMI entrypoint in hardware. If the call in made
on a application processor the copy is not performed. The processor argument denotes
whether the call is made on the boot processor (value of 0) or an application processor
(value of 1).”

to:

“A value of 0 for the copy_option indicates that the relocation should be performed; a
value of 1 indicates that the relocation should not be performed. This procedure also
updates the PALE_PMI entrypoint in hardware.”

4. Fixing X-Unit text correction

1. Volume 3, Section 4.7.4 “Nop/Hint (X-Unit)”, Table 4-73 on page 3:332, change:

“nop.m” to “nop.x”

“hint.m” to “hint.x”

5. PAL_CACHE_SHARED_INFO text correction

1. Volume 2, Part I, page 2:311:

For the entire PAL_CACHE_SHARED_INFO pages, change any instance of
“proc_n_log_info” to “proc_n_cache_info”.

6. PAL_CACHE_FLUSH minor code sequence fix

1. Volume 2, Part I, page 2:431, make a change to the assembly code in Section 5.1.1.3 (first line
of assembly code). The code is trying to address region register 2, but indexed it incorrectly.

Change from: mov r2 = 2

to: movl r2 = (2 << 61)

7. PAL_GET_PROC_FEATURES table fix

1. Volume 2, Part I, PAL_GET_PROC_FEATURES table on page 2:361, fix bit 40.

Change from:

 Bit: 40-0

 Class: N/A

 Control: N/A

 Description: reserved

to:

 Bit: 40

 Class: N/A

 Control: N/A

 Description: reserved

8. Correct the role of X-resources during MCA

1. Volume 2, Section 11.3.1.1, change the XIP, XPSR, XFS bullet from:

“XIP, XPSR, XFS: interruption resources implemented to store information about the IP,
PSR and IFS when the machine check occurred. A model-specific version of the rfi
60 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
instruction must also be implemented to restore the machine context from these
resources.”

to:

“XIP, XPSR, XFS: interruption resources implemented to store information about the IIP,
IPSR and IFS when the machine check occurred. A model-specific version of the rfi
instruction must also be implemented to restore the machine context from these
resources.”

9. Clarification on the short format VHPT

1. Volume 2, Part II, Section 5.3, “Virtual Hash Page Table”, change the second sentence in
“Short” bullet from:

“The short format VHPT cannot use protection keys (there are not enough PTE bits for
that).”

to:

“The short format VHPT does not contain protection key information (there are not
enough PTE bits for that).”

10. Floating-point correction

1. Volume 1, Section 5.4.1, at the end of the 2nd paragraph, change:

“For example, dividing an SNaN by zero causes an invalid operation exception (due to the
SNaN) and not a zero-divide exception; the exception disabled result is the QNaN
indefinite, not infinity.”

to:

“For example, dividing an SNaN by zero causes an invalid operation exception (due to the
SNaN) and not a zero-divide exception; the exception disabled result is the quieted
version of the SNaN, not infinity.”

11. Clarify effect of sending IPI to non-existent processor

1. Volume 2, Part I, Section 5.8.4:, add the following paragraph to the end of Section 5.8.4, just
before Section 5.8.4.1:

“Any memory operation targeted at the lower half of the Processor Interrupt Block which
does not correspond to any actual processor is undefined.”

12. Add a new instruction class

1. In Table 5-5, “Instruction Classes”, in Volume 3 on page 3:352 create and add the following
class:

Class: non-access Events/Instructions: fc, lfetch, probe-all, tpa, tak.

13. Updated RAW Dependence Table

1. In Section 5.3.5, add a new rule just after rule 7:

“Rule 8. CR[TPR] has a RAW dependency only between mov-to-CR-TPR and mov to
psr.l or ssm instructions that set PSR.i, PSR,pp or PSR.up.”

2. In Volume 2, Section 5.8.3.3, change this paragraph:

“To ensure that new priority levels are established by a given point in program execution
(e.g., before PSR.i is set to 1), software must perform a data serialization operation after a
TPR write and prior to that point. A data serialization operation must be performed after
TPR is written and before IVR is read to ensure that the reported IVR vector is correctly
masked. The TPR fields are described in Figure 5-8 and Table 5-11.”

to:
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 61

Documentation Changes
“To ensure that new priority levels are established by a given point in program execution,
software must perform a data serialization operation after a TPR write and prior to that
point. For example, if PSR.i is subsequently set to 1, thus enabling interrupts, and the new
priority levels need to be in place before this enabling, a data serialization must be
performed prior to the setting of PSR.i. Similarly, if PSR.pp or PSR.up is set to 1,
potentially enabling performance monitor interrupts, and the new priority levels need to
be in place before this enabling, a data serialization must be performed. (Note that there's
no dependence between writing TPR and then changing the PSR for any other bits in the
PSR than these.) A data serialization operation must be performed after TPR is written
and before IVR is read to ensure that the reported IVR vector is correctly masked. The
TPR fields are described in Figure 5-8 and Table 5-11.”

3. Replace Table 5-2 “RAW Dependencies Organized by Resource” in Volume 3 with the
following (Change bars have been kept to help identify modifications):

Table 5-2. RAW Dependencies Organized by Resource

Resource Name Writers Readers
Semantics of
Dependency

ALAT chk.a.clr,

mem-readers-alat,

mem-writers, invala-all

mem-readers-alat,

mem-writers, chk-a,

invala.e

none

AR[BSP] br.call, brl.call, br.ret, cover,
mov-to-AR-BSPSTORE, rfi

br.call, brl.call, br.ia, br.ret, cover,
flushrs, loadrs,

mov-from-AR-BSP, rfi

impliedF

AR[BSPSTORE] alloc, loadrs, flushrs,

mov-to-AR-BSPSTORE

alloc, br.ia, flushrs,

mov-from-AR-BSPSTORE

impliedF

AR[CCV] mov-to-AR-CCV br.ia, cmpxchg,

mov-from-AR-CCV

impliedF

AR[CFLG] mov-to-AR-CFLG br.ia, mov-from-AR-CFLG impliedF

AR[CSD] ld16, mov-to-AR-CSD br.ia, cmp8xchg16,

mov-from-AR-CSD, st16

impliedF

AR[EC] mod-sched-brs, br.ret,

mov-to-AR-EC

br.call, brl.call, br.ia, mod-sched-brs,

mov-from-AR-EC

impliedF

AR[EFLAG] mov-to-AR-EFLAG br.ia, mov-from-AR-EFLAG impliedF

AR[FCR] mov-to-AR-FCR br.ia, mov-from-AR-FCR impliedF

AR[FDR] mov-to-AR-FDR br.ia, mov-from-AR-FDR impliedF

AR[FIR] mov-to-AR-FIR br.ia, mov-from-AR-FIR impliedF

AR[FPSR].sf0.controls mov-to-AR-FPSR, fsetc.s0 br.ia, fp-arith-s0, fcmp-s0, fpcmp-s0,
fsetc, mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.controls mov-to-AR-FPSR, fsetc.s1 br.ia, fp-arith-s1, fcmp-s1, fpcmp-s1,
mov-from-AR-FPSR

AR[FPSR].sf2.controls mov-to-AR-FPSR, fsetc.s2 br.ia, fp-arith-s2, fcmp-s2, fpcmp-s2,
mov-from-AR-FPSR

AR[FPSR].sf3.controls mov-to-AR-FPSR, fsetc.s3 br.ia, fp-arith-s3, fcmp-s3, fpcmp-s3,
mov-from-AR-FPSR
62 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
AR[FPSR].sf0.flags fp-arith-s0, fclrf.s0, fcmp-s0,
fpcmp-s0, mov-to-AR-FPSR

br.ia, fchkf,

mov-from-AR-FPSR

impliedF

AR[FPSR].sf1.flags fp-arith-s1, fclrf.s1, fcmp-s1,
fpcmp-s1, mov-to-AR-FPSR

br.ia, fchkf.s1,

mov-from-AR-FPSR

AR[FPSR].sf2.flags fp-arith-s2, fclrf.s2, fcmp-s2,
fpcmp-s2, mov-to-AR-FPSR

br.ia, fchkf.s2,

mov-from-AR-FPSR

AR[FPSR].sf3.flags fp-arith-s3, fclrf.s3, fcmp-s3,
fpcmp-s3, mov-to-AR-FPSR

br.ia, fchkf.s3,

mov-from-AR-FPSR

AR[FPSR].traps mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp,
mov-from-AR-FPSR

impliedF

AR[FPSR].rv mov-to-AR-FPSR br.ia, fp-arith, fchkf, fcmp, fpcmp,
mov-from-AR-FPSR

impliedF

AR[FSR] mov-to-AR-FSR br.ia, mov-from-AR-FSR impliedF

AR[ITC] mov-to-AR-ITC br.ia, mov-from-AR-ITC impliedF

AR[K%],

% in 0 - 7

mov-to-AR-K1 br.ia, mov-from-AR-K1 impliedF

AR[LC] mod-sched-brs-counted,
mov-to-AR-LC

br.ia, mod-sched-brs-counted,
mov-from-AR-LC

impliedF

AR[PFS] br.call, brl.call alloc, br.ia, br.ret, epc,

mov-from-AR-PFS

impliedF

mov-to-AR-PFS alloc, br.ia, epc,

mov-from-AR-PFS

impliedF

br.ret none

AR[RNAT] alloc, flushrs, loadrs,

mov-to-AR-RNAT,

mov-to-AR-BSPSTORE

alloc, br.ia, flushrs, loadrs,

mov-from-AR-RNAT

impliedF

AR[RSC] mov-to-AR-RSC alloc, br.ia, flushrs, loadrs,

mov-from-AR-RSC,

mov-from-AR-BSPSTORE,

mov-to-AR-RNAT,

mov-from-AR-RNAT,

mov-to-AR-BSPSTORE

impliedF

AR[SSD] mov-to-AR-SSD br.ia, mov-from-AR-SSD impliedF

AR[UNAT]{%},

% in 0 - 63

mov-to-AR-UNAT, st8.spill br.ia, ld8.fill,

mov-from-AR-UNAT

impliedF

AR%,

% in 8-15, 20, 22-23, 31,
33-35, 37-39, 41-43, 45-47,
67-111

none br.ia, mov-from-AR-rv1 none

AR%,

% in 48-63, 112-127

mov-to-AR-ig1 br.ia, mov-from-AR-ig1 impliedF

BR%,

% in 0 - 7

br.call1, brl.call1 indirect-brs1, indirect-brp1,
mov-from-BR1

impliedF

mov-to-BR1 indirect-brs1 none

indirect-brp1,

mov-from-BR1
impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 63

Documentation Changes
CFM mod-sched-brs mod-sched-brs impliedF

cover, alloc, rfi, loadrs, br.ret, br.call,
brl.call

impliedF

cfm-readers2 impliedF

br.call, brl.call, br.ret, clrrrb, cover,
rfi

cfm-readers impliedF

alloc cfm-readers none

CPUID# none mov-from-IND-CPUID3 specific

CR[CMCV] mov-to-CR-CMCV mov-from-CR-CMCV data

CR[DCR] mov-to-CR-DCR mov-from-CR-DCR,

mem-readers-spec

data

CR[EOI] mov-to-CR-EOI none SC Section
5.8.3.4, “End of
External
Interrupt
Register (EOI –
CR67)” on
page 118

CR[GPTA] mov-to-CR-GPTA mov-from-CR-GPTA, thash data

CR[IFA] mov-to-CR-IFA itc.i, itc.d, itr.i, itr.d implied

mov-from-CR-IFA data

CR[IFS] mov-to-CR-IFS mov-from-CR-IFS data

rfi implied

cover rfi, mov-from-CR-IFS implied

CR[IHA] mov-to-CR-IHA mov-from-CR-IHA data

CR[IIM] mov-to-CR-IIM mov-from-CR-IIM data

CR[IIP] mov-to-CR-IIP mov-from-CR-IIP data

rfi implied

CR[IIPA] mov-to-CR-IIPA mov-from-CR-IIPA data

CR[IPSR] mov-to-CR-IPSR mov-from-CR-IPSR data

rfi implied

CR[IRR%],

% in 0 - 3

mov-from-CR-IVR mov-from-CR-IRR1 data

CR[ISR] mov-to-CR-ISR mov-from-CR-ISR data

CR[ITIR] mov-to-CR-ITIR mov-from-CR-ITIR data

itc.i, itc.d, itr.i, itr.d implied

CR[ITM] mov-to-CR-ITM mov-from-CR-ITM data

CR[ITV] mov-to-CR-ITV mov-from-CR-ITV data

CR[IVA] mov-to-CR-IVA mov-from-CR-IVA instr

CR[IVR] none mov-from-CR-IVR SC Section
5.8.3.2,
“External
Interrupt Vector
Register (IVR –
CR65)” on
page 117

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
64 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
CR[LID] mov-to-CR-LID mov-from-CR-LID SC Section
5.8.3.1, “Local
ID (LID –
CR64)” on
page 116

CR[LRR%],

% in 0 - 1

mov-to-CR-LRR1 mov-from-CR-LRR1 data

CR[PMV] mov-to-CR-PMV mov-from-CR-PMV data

CR[PTA] mov-to-CR-PTA mov-from-CR-PTA, mem-readers,
mem-writers, non-access, thash

data

CR[TPR] mov-to-CR-TPR mov-from-CR-TPR,

mov-from-CR-IVR

data

mov-to-PSR-l8, ssm8 SC Section
5.8.3.3, “Task
Priority Register
(TPR – CR66)”
on page 117

rfi implied

CR%,

% in 3-7, 10-15, 18, 26-63,
75-79, 82-127

none mov-from-CR-rv1 none

DBR# mov-to-IND-DBR3 mov-from-IND-DBR3 impliedF

probe-all, lfetch-all,

mem-readers, mem-writers

data

DTC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d,
itc.i, itc.d, itr.i, itr.d

mem-readers,

mem-writers, fc, probe-all, tak, tpa

data

itc.i, itc.d, itr.i, itr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d, itc.i,
itc.d, itr.i, itr.d

impliedF

ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d none

itc.i, itc.d, itr.i, itr.d impliedF

DTC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

DTR itr.d mem-readers, mem-writers,
non-access

data

ptc.g, ptc.ga, ptc.l, ptr.d, itr.d impliedF

ptr.d mem-readers, mem-writers,
non-access

data

ptc.g, ptc.ga, ptc.l, ptr.d none

itr.d, itc.d impliedF

FR%,

% in 0 - 1

none fr-readers1 none

FR%,

% in 2 - 127

fr-writers1\ldf-c1\ldfp-c1 fr-readers1 impliedF

ldf-c1, ldfp-c1 fr-readers1 none

GR0 none gr-readers1 none

GR%,

% in 1 - 127

ld-c1,14 gr-readers1 none

gr-writers1\ld-c1,14 gr-readers1 impliedF

IBR# mov-to-IND-IBR3 mov-from-IND-IBR3 impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 65

Documentation Changes
InService* mov-to-CR-EOI mov-from-CR-IVR data

mov-from-CR-IVR mov-from-CR-IVR impliedF

mov-to-CR-EOI mov-to-CR-EOI impliedF

IP all all none

ITC ptc.e, ptc.g, ptc.ga, ptc.l, ptr.i, ptr.d epc, vmsw instr

itc.i, itc.d, itr.i, itr.d impliedF

ptr.i, ptr.d, ptc.e, ptc.g, ptc.ga, ptc.l none

itc.i, itc.d, itr.i, itr.d epc, vmsw instr

itc.d, itc.i, itr.d, itr.i, ptr.d, ptr.i, ptc.g,
ptc.ga, ptc.l

impliedF

ITC_LIMIT* ptc.g, ptc.ga ptc.g, ptc.ga impliedF

ITR itr.i itr.i, itc.i, ptc.g, ptc.ga, ptc.l, ptr.i impliedF

epc, vmsw instr

ptr.i itc.i, itr.i impliedF

ptc.g, ptc.ga, ptc.l, ptr.i none

epc, vmsw instr

memory mem-writers mem-readers none

PKR# mov-to-IND-PKR3 mem-readers, mem-writers,

mov-from-IND-PKR4, probe-all

data

mov-to-IND-PKR4 none

mov-from-IND-PKR3 impliedF

mov-to-IND-PKR3 impliedF

PMC# mov-to-IND-PMC3 mov-from-IND-PMC3 impliedF

mov-from-IND-PMD3 SC3 Section
7.1.1, “Data and
Instruction
Breakpoint
Registers” on
page 144

PMD# mov-to-IND-PMD3 mov-from-IND-PMD3 impliedF

PR0 pr-writers1 pr-readers-br1,

pr-readers-nobr-nomovpr1,
mov-from-PR13,

mov-to-PR13

none

PR%,

% in 1 - 15

pr-writers1,

mov-to-PR-allreg7
pr-readers-nobr-nomovpr1,
mov-from-PR,

mov-to-PR13

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1,

mov-to-PR-allreg7
pr-readers-br1 none

PR%,

% in 16 - 62

pr-writers1,

mov-to-PR-allreg7,

mov-to-PR-rotreg

pr-readers-nobr-nomovpr1,
mov-from-PR,

mov-to-PR13

impliedF

pr-writers-fp1 pr-readers-br1 impliedF

pr-writers-int1,

mov-to-PR-allreg7,

mov-to-PR-rotreg

pr-readers-br1 none

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
66 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
PR63 mod-sched-brs,

pr-writers1,

mov-to-PR-allreg7,

mov-to-PR-rotreg

pr-readers-nobr-nomovpr1,
mov-from-PR,

mov-to-PR13

impliedF

pr-writers-fp1,

mod-sched-brs

pr-readers-br1 impliedF

pr-writers-int1,

mov-to-PR-allreg7,

mov-to-PR-rotreg

pr-readers-br1 none

PSR.ac user-mask-writers-partial7,
mov-to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7,
mov-to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR,

mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers,
mov-from-PSR, mov-from-PSR-um

impliedF

PSR.be user-mask-writers-partial7,
mov-to-PSR-um

mem-readers, mem-writers implied

sys-mask-writers-partial7,
mov-to-PSR-l

mem-readers, mem-writers data

user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR,

mov-from-PSR-um

impliedF

rfi mem-readers, mem-writers,
mov-from-PSR, mov-from-PSR-um

impliedF

PSR.bn bsw, rfi gr-readers11, gr-writers11 impliedF

PSR.cpl epc, br.ret priv-ops, br.call, brl.call, epc,

mov-from-AR-ITC,

mov-to-AR-ITC,

mov-to-AR-RSC,

mov-to-AR-K,

mov-from-IND-PMD,

probe-all, mem-readers,

mem-writers, lfetch-all

implied

rfi priv-ops, br.call, brl.call, epc,

mov-from-AR-ITC,

mov-to-AR-ITC,

mov-to-AR-RSC,

mov-to-AR-K,

mov-from-IND-PMD,

probe-all, mem-readers,
mem-writers, lfetch-all

impliedF

PSR.da rfi mem-readers, lfetch-all, mem-writers,
probe-fault

impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 67

Documentation Changes
PSR.db mov-to-PSR-l lfetch-all, mem-readers,

mem-writers, probe-fault

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,

mem-writers,

mov-from-PSR, probe-fault

impliedF

PSR.dd rfi lfetch-all, mem-readers, probe-fault,

mem-writers

impliedF

PSR.dfh sys-mask-writers-partial7,
mov-to-PSR-l

fr-readers9, fr-writers9 data

mov-from-PSR impliedF

rfi fr-readers9, fr-writers9,
mov-from-PSR

impliedF

PSR.dfl sys-mask-writers-partial7,
mov-to-PSR-l

fr-writers9, fr-readers9 data

mov-from-PSR impliedF

rfi fr-writers9, fr-readers9,
mov-from-PSR

impliedF

PSR.di sys-mask-writers-partial7,
mov-to-PSR-l

br.ia data

mov-from-PSR impliedF

rfi br.ia, mov-from-PSR impliedF

PSR.dt sys-mask-writers-partial7,
mov-to-PSR-l

mem-readers, mem-writers,
non-access

data

mov-from-PSR impliedF

rfi mem-readers, mem-writers,
non-access, mov-from-PSR

impliedF

PSR.ed rfi lfetch-all,

mem-readers-spec

impliedF

PSR.i sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ia rfi all none

PSR.ic sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

cover, itc.i, itc.d, itr.i, itr.d,
mov-from-interruption-CR,
mov-to-interruption-CR

data

rfi mov-from-PSR, cover, itc.i, itc.d, itr.i,
itr.d, mov-from-interruption-CR,
mov-to-interruption-CR

impliedF

PSR.id rfi all none

PSR.is br.ia, rfi none none

PSR.it rfi branches, mov-from-PSR, chk, epc,
fchkf, vmsw

impliedF

PSR.lp mov-to-PSR-l mov-from-PSR impliedF

br.ret data

rfi mov-from-PSR, br.ret impliedF

PSR.mc rfi mov-from-PSR impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
68 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

Documentation Changes
PSR.mfh fr-writers10,

user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR-um,

mov-from-PSR

impliedF

PSR.mfl fr-writers10,

user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR-um,

mov-from-PSR

impliedF

PSR.pk sys-mask-writers-partial7,
mov-to-PSR-l

lfetch-all, mem-readers,

mem-writers, probe-all

data

mov-from-PSR impliedF

rfi lfetch-all, mem-readers,
mem-writers, mov-from-PSR,
probe-all

impliedF

PSR.pp sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR impliedF

PSR.ri rfi all none

PSR.rt mov-to-PSR-l mov-from-PSR impliedF

alloc, flushrs, loadrs data

rfi mov-from-PSR, alloc, flushrs, loadrs impliedF

PSR.si sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-AR-ITC data

rfi mov-from-AR-ITC, mov-from-PSR impliedF

PSR.sp sys-mask-writers-partial7,
mov-to-PSR-l

mov-from-PSR impliedF

mov-from-IND-PMD,

mov-to-PSR-um, rum, sum

data

rfi mov-from-IND-PMD, mov-from-PSR,
mov-to-PSR-um, rum, sum

impliedF

PSR.ss rfi all impliedF

PSR.tb mov-to-PSR-l branches, chk, fchkf data

mov-from-PSR impliedF

rfi branches, chk, fchkf, mov-from-PSR impliedF

PSR.up user-mask-writers-partial7,
mov-to-PSR-um,

sys-mask-writers-partial7,
mov-to-PSR-l, rfi

mov-from-PSR-um,

mov-from-PSR

impliedF

RR# mov-to-IND-RR6 mem-readers, mem-writers, itc.i, itc.d,
itr.i, itr.d, non-access, ptc.g, ptc.ga,
ptc.l, ptr.i, ptr.d, thash, ttag

data

mov-from-IND-RR6 impliedF

RSE rse-writers15 rse-readers15 impliedF

Table 5-2. RAW Dependencies Organized by Resource (Continued)

Resource Name Writers Readers
Semantics of
Dependency
Intel® Itanium® Architecture Software Developer’s Manual Specification Update 69

Documentation Changes
70 Intel® Itanium® Architecture Software Developer’s Manual Specification Update

	Revision History
	Preface
	Summary Table of Changes
	Specification Changes
	Specification Clarifications
	Documentation Changes

