
Intel® Itanium® Architecture
Software Developer’s Manual
Volume 2: System Architecture

Revision 2.1

October 2002

Document Number: 245318-004

ii Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel’s website at http://www.intel.com.

Intel, Intel486, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2000-2002, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Contents

Part I: System Architecture Guide

1 About this Manual .. 2:1

1.1 Overview of Volume 1: Application Architecture.. 2:1
1.1.1 Part 1: Application Architecture Guide ... 2:1
1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture 2:2

1.2 Overview of Volume 2: System Architecture ... 2:2
1.2.1 Part 1: System Architecture Guide ... 2:2
1.2.2 Part 2: System Programmer’s Guide.. 2:3
1.2.3 Appendices... 2:4

1.3 Overview of Volume 3: Instruction Set Reference... 2:4
1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptions 2:4
1.3.2 Part 2: IA-32 Instruction Set Descriptions... 2:4

1.4 Terminology... 2:5
1.5 Related Documents ... 2:5
1.6 Revision History .. 2:6

2 Intel® Itanium® System Environment ... 2:9

2.1 Processor Boot Sequence... 2:9
2.2 Intel® Itanium® System Environment Overview .. 2:10

3 System State and Programming Model.. 2:13

3.1 Privilege Levels ... 2:13
3.2 Serialization ... 2:13

3.2.1 Instruction Serialization .. 2:14
3.2.2 Data Serialization ... 2:14
3.2.3 Definition of In-flight Resources ... 2:15

3.3 System State ... 2:15
3.3.1 System State Overview .. 2:16
3.3.2 Processor Status Register (PSR) ... 2:18
3.3.3 Control Registers.. 2:24
3.3.4 Global Control Registers .. 2:25
3.3.5 Interruption Control Registers .. 2:29
3.3.6 External Interrupt Control Registers ... 2:34
3.3.7 Banked General Registers ... 2:35

4 Addressing and Protection ... 2:37

4.1 Virtual Addressing ... 2:37
4.1.1 Translation Lookaside Buffer (TLB).. 2:39
4.1.2 Region Registers (RR) ... 2:48
4.1.3 Protection Keys .. 2:48
4.1.4 Translation Instructions .. 2:50
4.1.5 Virtual Hash Page Table (VHPT).. 2:51
4.1.6 VHPT Hashing.. 2:54
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual iii

4.1.7 VHPT Environment..2:56
4.1.8 Translation Searching ...2:57
4.1.9 32-bit Virtual Addressing ...2:60
4.1.10 Virtual Aliasing...2:61

4.2 Physical Addressing ...2:61
4.3 Unimplemented Address Bits ...2:61

4.3.1 Unimplemented Physical Address Bits..2:62
4.3.2 Unimplemented Virtual Address Bits...2:62
4.3.3 Instruction Behavior with Unimplemented Addresses...................................2:63

4.4 Memory Attributes ..2:63
4.4.1 Virtual Addressing Memory Attributes ...2:63
4.4.2 Physical Addressing Memory Attributes..2:64
4.4.3 Cacheability and Coherency Attribute ...2:65
4.4.4 Cache Write Policy Attribute..2:66
4.4.5 Coalescing Attribute ..2:66
4.4.6 Speculation Attributes ...2:67
4.4.7 Sequentiality Attribute and Ordering ...2:69
4.4.8 Not a Thing Attribute (NaTPage)...2:72
4.4.9 Effects of Memory Attributes on Memory Reference Instructions2:73
4.4.10 Effects of Memory Attributes on Advanced/Check Loads2:73
4.4.11 Memory Attribute Transition ..2:74

4.5 Memory Datum Alignment and Atomicity ...2:77

5 Interruptions ... 2:79

5.1 Interruption Definitions ...2:79
5.2 Interruption Programming Model..2:81
5.3 Interruption Handling during Instruction Execution...2:82
5.4 PAL-based Interruption Handling ...2:84
5.5 IVA-based Interruption Handling ..2:85

5.5.1 Efficient Interruption Handling ...2:86
5.5.2 Non-access Instructions and Interruptions..2:87
5.5.3 Single Stepping ...2:87
5.5.4 Single Instruction Fault Suppression...2:88
5.5.5 Deferral of Speculative Load Faults ..2:88

5.6 Interruption Priorities ..2:91
5.6.1 IA-32 Interruption Priorities and Classes...2:94

5.7 IVA-based Interruption Vectors ..2:96
5.8 Interrupts ..2:97

5.8.1 Interrupt Vectors and Priorities..2:101
5.8.2 Interrupt Enabling and Masking...2:102
5.8.3 External Interrupt Control Registers ..2:104
5.8.4 Processor Interrupt Block..2:109
5.8.5 Edge- and Level-sensitive Interrupts...2:113

6 Register Stack Engine ... 2:115

6.1 RSE and Backing Store Overview..2:115
6.2 RSE Internal State..2:117
6.3 Register Stack Partitions..2:117
iv Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

6.4 RSE Operation .. 2:119
6.5 RSE Control .. 2:120

6.5.1 Register Stack Configuration Register ... 2:120
6.5.2 Register Stack NaT Collection Register ... 2:121
6.5.3 Backing Store Pointer Application Registers .. 2:122
6.5.4 RSE Control Instructions .. 2:123
6.5.5 Bad PFS Used by Branch Return... 2:124

6.6 RSE Interruptions .. 2:125
6.7 RSE Behavior on Interruptions.. 2:126
6.8 RSE Behavior with an Incomplete Register Frame ... 2:127
6.9 RSE and ALAT Interaction .. 2:127
6.10 Backing Store Coherence and Memory Ordering ... 2:128
6.11 RSE Backing Store Switches .. 2:128

6.11.1 Switch from Interrupted Context ... 2:129
6.11.2 Return to Interrupted Context ... 2:129
6.11.3 Synchronous Backing Store Switch ... 2:129

6.12 RSE Initialization ... 2:130

7 Debugging and Performance Monitoring... 2:131

7.1 Debugging ... 2:131
7.1.1 Data and Instruction Breakpoint Registers ... 2:132
7.1.2 Debug Address Breakpoint Match Conditions.. 2:134

7.2 Performance Monitoring .. 2:135
7.2.1 Generic Performance Counter Registers ... 2:136
7.2.2 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3]) 2:139
7.2.3 Performance Monitor Events .. 2:140
7.2.4 Implementation-independent Performance Monitor Code Sequences....... 2:141

8 Interruption Vector Descriptions .. 2:145

8.1 Interruption Vector Descriptions .. 2:145
8.2 ISR Settings .. 2:145
8.3 Interruption Vector Definition ... 2:146

9 IA-32 Interruption Vector Descriptions .. 2:187

9.1 IA-32 Trap Code.. 2:187
9.2 IA-32 Interruption Vector Definitions ... 2:187

10 Itanium®-based Operating System Interaction Model with IA-32 Applications............ 2:213

10.1 Instruction Set Transitions... 2:213
10.2 System Register Model ... 2:213
10.3 IA-32 System Segment Registers ... 2:215

10.3.1 IA-32 Current Privilege Level ... 2:216
10.3.2 IA-32 System EFLAG Register... 2:217
10.3.3 IA-32 System Registers.. 2:220

10.4 Register Context Switch Guidelines for IA-32 Code.. 2:224
10.4.1 Entering IA-32 Processes... 2:224
10.4.2 Exiting IA-32 Processes ... 2:225

10.5 IA-32 Instruction Set Behavior Summary .. 2:225
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual v

10.6 System Memory Model...2:231
10.6.1 Virtual Memory References...2:231
10.6.2 IA-32 Virtual Memory References ...2:232
10.6.3 IA-32 TLB Forward Progress Requirements ...2:232
10.6.4 Multiprocessor TLB Coherency ...2:233
10.6.5 IA-32 Physical Memory References..2:233
10.6.6 Supervisor Accesses...2:234
10.6.7 Memory Alignment ..2:234
10.6.8 Atomic Operations...2:235
10.6.9 Multiprocessor Instruction Cache Coherency..2:235
10.6.10 IA-32 Memory Ordering...2:236

10.7 I/O Port Space Model ...2:238
10.7.1 Virtual I/O Port Addressing..2:239
10.7.2 Physical I/O Port Addressing...2:241
10.7.3 IA-32 IN/OUT instructions ...2:241
10.7.4 I/O Port Accesses by Loads and Stores..2:242

10.8 Debug Model ..2:243
10.8.1 Data Breakpoint Register Matching...2:244
10.8.2 Instruction Breakpoint Register Matching..2:245

10.9 Interruption Model ..2:245
10.9.1 Interruption Summary..2:246
10.9.2 IA-32 Numeric Exception Model..2:247

10.10 Processor Bus Considerations for IA-32 Application Support2:248
10.10.1 IA-32 Compatible Bus Transactions..2:248

11 Processor Abstraction Layer .. 2:249

11.1 Firmware Model..2:249
11.1.1 Processor Abstraction Layer (PAL) Overview ...2:251
11.1.2 Firmware Entrypoints ..2:252
11.1.3 PAL Entrypoints...2:253
11.1.4 SAL Entrypoints...2:253
11.1.5 OS Entrypoints ..2:253
11.1.6 Firmware Address Space..2:254

11.2 PAL Power On/Reset ...2:259
11.2.1 PALE_RESET ...2:259
11.2.2 PALE_RESET Exit State...2:259
11.2.3 PAL Self-test Control Word ...2:264

11.3 Machine Checks...2:265
11.3.1 PALE_CHECK...2:265
11.3.2 PALE_CHECK Exit State ..2:266
11.3.3 Returning to the Interrupted Process ..2:273

11.4 PAL Initialization Events...2:274
11.4.1 PALE_INIT ..2:274
11.4.2 PALE_INIT Exit State ..2:274

11.5 Platform Management Interrupt (PMI)..2:278
11.5.1 PMI Overview ..2:278
11.5.2 PALE_PMI Exit State ..2:279
11.5.3 Resume from the PMI Handler..2:280
vi Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

11.6 Power Management .. 2:281
11.7 PAL Glossary .. 2:282
11.8 PAL Code Memory Accesses and Restrictions... 2:284
11.9 PAL Procedures .. 2:284

11.9.1 PAL Procedure Summary... 2:285
11.9.2 PAL Calling Conventions.. 2:288
11.9.3 PAL Procedure Specifications.. 2:294

Part II: System Programmer’s Guide

1 About the System Programmer’s Guide .. 2:377

1.1 Overview of the System Programmer’s Guide .. 2:377
1.2 Related Documents ... 2:379

2 MP Coherence and Synchronization .. 2:381

2.1 An Overview of Intel® Itanium® Memory Access Instructions 2:381
2.1.1 Memory Ordering of Cacheable Memory References................................ 2:381
2.1.2 Loads and Stores ... 2:382
2.1.3 Semaphores ... 2:382
2.1.4 Memory Fences.. 2:384

2.2 Memory Ordering in the Intel® Itanium® Architecture.. 2:384
2.2.1 Memory Ordering Executions ... 2:384
2.2.2 Memory Attributes .. 2:396
2.2.3 Understanding Other Ordering Models: Sequential Consistency

and IA-32.. 2:397
2.3 Where the Intel® Itanium® Architecture Requires Explicit Synchronization 2:398
2.4 Synchronization Code Examples .. 2:399

2.4.1 Spin Lock.. 2:399
2.4.2 Simple Barrier Synchronization .. 2:400
2.4.3 Dekker’s Algorithm ... 2:401
2.4.4 Lamport’s Algorithm ... 2:402

2.5 Updating Code Images.. 2:404
2.5.1 Self-modifying Code ... 2:404
2.5.2 Cross-modifying Code.. 2:405
2.5.3 Programmed I/O... 2:406
2.5.4 DMA ... 2:408

2.6 References .. 2:408

3 Interruptions and Serialization.. 2:409

3.1 Terminology... 2:409
3.2 Interruption Vector Table ... 2:410
3.3 Interruption Handlers... 2:411

3.3.1 Execution Environment .. 2:411
3.3.2 Interruption Register State ... 2:412
3.3.3 Resource Serialization of Interrupted State.. 2:413
3.3.4 Resource Serialization upon rfi .. 2:414
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual vii

3.4 Interruption Handling ..2:414
3.4.1 Lightweight Interruptions ...2:414
3.4.2 Heavyweight Interruptions...2:415
3.4.3 Nested Interruptions ..2:417

4 Context Management ... 2:419

4.1 Preserving Register State across Procedure Calls ..2:419
4.1.1 Preserving General Registers ...2:420
4.1.2 Preserving Floating-point Registers ..2:420

4.2 Preserving Register State in the OS ..2:421
4.2.1 Preservation of Stacked Registers in the OS..2:422
4.2.2 Preservation of Floating-point State in the OS..2:423

4.3 Preserving ALAT Coherency..2:424
4.4 System Calls ..2:424

4.4.1 epc/Demoting Branch Return ..2:425
4.4.2 break/rfi ...2:425
4.4.3 NaT Checking for NaTs in System Calls ...2:426

4.5 Context Switching...2:426
4.5.1 User-level Context Switching ..2:426
4.5.2 Context Switching in an Operating System Kernel......................................2:428

5 Memory Management .. 2:429

5.1 Address Space Model ..2:429
5.1.1 Regions ...2:429
5.1.2 Protection Keys ...2:431

5.2 Translation Lookaside Buffers (TLBs) ..2:433
5.2.1 Translation Registers (TRs) ..2:433
5.2.2 Translation Caches (TCs) ...2:435

5.3 Virtual Hash Page Table ..2:438
5.3.1 Short Format ...2:439
5.3.2 Long Format ..2:440
5.3.3 VHPT Updates ..2:440

5.4 TLB Miss Handlers ...2:440
5.4.1 Data/Instruction TLB Miss Vectors ..2:441
5.4.2 VHPT Translation Vector...2:442
5.4.3 Alternate Data/Instruction TLB Miss Vectors...2:443
5.4.4 Data Nested TLB Vector ...2:443
5.4.5 Dirty Bit Vector ..2:444
5.4.6 Data/Instruction Access Bit Vector ..2:444
5.4.7 Page Not Present Vector...2:444
5.4.8 Data/Instruction Access Rights Vector ..2:444

5.5 Subpaging ..2:444

6 Runtime Support for Control and Data Speculation ... 2:447

6.1 Exception Deferral of Control Speculative Loads...2:447
6.1.1 Hardware-only Deferral ...2:448
6.1.2 Combined Hardware/Software Deferral ..2:448
6.1.3 Software-only Deferral...2:448
viii Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

6.2 Speculation Recovery Code Requirements .. 2:448
6.3 Speculation Related Exception Handlers .. 2:449

6.3.1 Unaligned Handler.. 2:449

7 Instruction Emulation and Other Fault Handlers .. 2:451

7.1 Unaligned Reference Handler ... 2:451
7.2 Unsupported Data Reference Handler .. 2:452
7.3 Illegal Dependency Fault ... 2:452
7.4 Long Branch .. 2:453

8 Floating-point System Software ... 2:455

8.1 Floating-point Exceptions in the Intel® Itanium® Architecture 2:455
8.1.1 The Software Assistance Exceptions (Faults and Traps)........................... 2:455
8.1.2 The IEEE Floating-point Exception Filter.. 2:458

8.2 IA-32 Floating-point Exceptions .. 2:460

9 IA-32 Application Support ... 2:461

9.1 Transitioning between Intel® Itanium® and IA-32 Instruction Sets 2:461
9.1.1 IA-32 Code Execution Environments ... 2:462
9.1.2 br.ia .. 2:462
9.1.3 JMPE.. 2:463
9.1.4 Procedure Calls between Intel® Itanium® and IA-32 Instruction Sets 2:463

9.2 IA-32 Architecture Handlers .. 2:464
9.3 Debugging IA-32 and Itanium®-based Code... 2:466

9.3.1 Instruction Breakpoints ... 2:466
9.3.2 Data Breakpoints .. 2:466
9.3.3 Single Step Traps... 2:466
9.3.4 Taken Branch Traps ... 2:466

10 External Interrupt Architecture ... 2:467

10.1 External Interrupt Basics ... 2:467
10.2 Configuration of External Interrupt Vectors ... 2:468
10.3 External Interrupt Masking .. 2:468

10.3.1 PSR.i .. 2:468
10.3.2 IVR Reads and EOI Writes... 2:469
10.3.3 Task Priority Register (TPR)... 2:469
10.3.4 External Task Priority Register (XTPR).. 2:469

10.4 External Interrupt Delivery ... 2:469
10.5 Interrupt Control Register Usage Examples.. 2:471

10.5.1 Notation .. 2:471
10.5.2 TPR and XPTR Usage Example .. 2:471
10.5.3 EOI Usage Example ... 2:472
10.5.4 IRR Usage Example ... 2:473
10.5.5 Interval Timer Usage Example ... 2:473
10.5.6 Local Redirection Example... 2:475
10.5.7 Inter-processor Interrupts Layout and Example ... 2:475
10.5.8 INTA Example .. 2:475
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual ix

11 I/O Architecture .. 2:477

11.1 Memory Acceptance Fence (mf.a) ...2:477
11.2 I/O Port Space..2:478

12 Performance Monitoring Support ... 2:481

12.1 Architected Performance Monitoring Mechanisms...2:481
12.2 Operating System Support ...2:482

13 Firmware Overview .. 2:485

13.1 Processor Boot Flow Overview ..2:485
13.1.1 Firmware Boot Flow ..2:485
13.1.2 Operating System Boot Steps...2:487

13.2 Runtime Procedure Calls ...2:490
13.2.1 PAL Procedure Calls ...2:490
13.2.2 SAL Procedure Calls ...2:492
13.2.3 EFI Procedure Calls ..2:492
13.2.4 Physical and Virtual Addressing Mode Considerations...............................2:492

13.3 Event Handling in Firmware ...2:493
13.3.1 Machine Check Abort (MCA) Flows ..2:493
13.3.2 INIT Flows ...2:496
13.3.3 PMI Flows..2:497

A Code Examples .. 2:499

A.1 OS Boot Flow Sample Code ..2:499

Figures

Part I: System Architecture Guide

2-1 System Environment Boot Flow ..2:10
2-2 Intel® Itanium® System Environment ..2:11
3-1 System Register Model ...2:17
3-2 Processor Status Register (PSR)..2:18
3-3 Default Control Register (DCR – CR0)..2:26
3-4 Interval Time Counter (ITC – AR44)..2:27
3-5 Interval Timer Match Register (ITM – CR1) ..2:27
3-6 Interruption Vector Address (IVA – CR2) ..2:28
3-7 Page Table Address (PTA – CR8) ..2:28
3-8 Interruption Status Register (ISR – CR17) ..2:30
3-9 Interruption Instruction Bundle Pointer (IIP – CR19) ...2:31
3-10 Interruption Faulting Address (IFA – CR20) ..2:32
3-11 Interruption TLB Insertion Register (ITIR) ...2:32
3-12 Interruption Instruction Previous Address (IIPA – CR22) ..2:33
3-13 Interruption Function State (IFS – CR23)..2:34
3-14 Interruption Immediate (IIM – CR24)...2:34
3-15 Interruption Hash Address (IHA – CR25) ..2:34
3-16 Banked General Registers ..2:35
4-1 Virtual Address Spaces...2:38
4-2 Conceptual Virtual Address Translation for References ...2:39
4-3 TLB Organization ..2:39
x Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

4-4 Conceptual Virtual Address Searching for Inserts and Purges .. 2:43
4-5 Translation Insertion Format .. 2:44
4-6 Translation Insertion Format – Not Present ... 2:45
4-7 Region Register Format ... 2:48
4-8 Protection Key Register Format ... 2:49
4-9 Virtual Hash Page Table (VHPT) ... 2:51
4-10 VHPT Short Format.. 2:52
4-11 VHPT Not-present Short Format .. 2:53
4-12 VHPT Long Format .. 2:53
4-13 VHPT Not-present Long Format... 2:54
4-14 Region-based VHPT Short-format Index Function... 2:55
4-15 VHPT Long-format Hash Function ... 2:55
4-16 TLB/VHPT Search.. 2:58
4-17 32-bit Address Generation using addp4... 2:60
4-18 Physical Address Bit Fields .. 2:62
4-19 Virtual Address Bit Fields ... 2:62
4-20 Physical Addressing Memory ... 2:64
4-21 Addressing Memory Attributes ... 2:65
5-1 Interruption Classification ... 2:81
5-2 Interruption Processing .. 2:83
5-3 Interrupt Architecture Overview.. 2:98
5-4 PAL-based Interrupt States .. 2:100
5-5 External Interrupt States... 2:100
5-6 Local ID (LID – CR64) .. 2:104
5-7 External Interrupt Vector Register (IVR – CR65) ... 2:105
5-8 Task Priority Register (TPR – CR66) ... 2:106
5-9 End of External Interrupt Register (EOI – CR67) ... 2:106
5-10 External Interrupt Request Register (IRR0-3 – CR68, 69, 70, 71) 2:107
5-11 Interval Timer Vector (ITV – CR72).. 2:107
5-12 Performance Monitor Vector (PMV – CR73) .. 2:107
5-13 Corrected Machine Check Vector (CMCV – CR74) ... 2:108
5-14 Local Redirection Register (LRR – CR80,81) .. 2:108
5-15 Processor Interrupt Block Memory Layout ... 2:110
5-16 Address Format for Inter-Processor Interrupt Messages ... 2:110
5-17 Data Format for Inter-Processor Interrupt Messages... 2:110
6-1 Relationship Between Physical Registers and Backing Store.. 2:116
6-2 Backing Store Memory Format... 2:116
6-3 Four Partitions of the Register Stack.. 2:118
7-1 Data Breakpoint Registers (DBR) .. 2:132
7-2 Instruction Breakpoint Registers (IBR) ... 2:132
7-3 Performance Monitor Register Set ... 2:136
7-4 Generic Performance Counter Data Registers (PMD[4]..PMD[p]) 2:136
7-5 Generic Performance Counter Configuration Register (PMC[4]..PMC[p]) 2:137
7-6 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3]) 2:139
7-7 Performance Monitor Interrupt Service Routine (Implementation Independent) 2:141
7-8 Performance Monitor Overflow Context Switch Routine .. 2:143
9-1 IA-32 Trap Code... 2:187
9-2 IA-32 Trap Code... 2:187
9-3 IA-32 Intercept Code .. 2:208
10-1 IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS) 2:215
10-2 IA-32 EFLAG Register.. 2:217
10-3 Control Flag Register (CFLG, AR27) ... 2:220
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual xi

10-4 Virtual Memory Addressing ...2:231
10-5 Physical Memory Addressing..2:233
10-6 I/O Port Space Model ..2:239
10-7 I/O Port Space Addressing..2:239
11-1 Firmware Model ..2:250
11-2 Firmware Services Model..2:251
11-3 Firmware Entrypoints Logical Model ...2:252
11-4 Firmware Address Space..2:255
11-5 Firmware Address Space with Processor-specific PAL_A Components...............................2:256
11-6 Firmware Interface Table ..2:257
11-7 Firmware Interface Table Entry ...2:258
11-8 SALE_ENTRY State Parameter..2:261
11-9 Self Test State Parameter ...2:262
11-10 Self-test Control Word...2:264
11-11 Processor State Parameter ...2:268
11-12 Processor Min-state Save Area Layout...2:271
11-13 Processor State Saved in Min-state Save Area ..2:272
11-14 SALE_ENTRY State Parameter..2:273
11-15 Processor State Parameter ...2:275
11-16 SALE_ENTRY State Parameter..2:277
11-17 PMI Entrypoints ...2:278
11-18 Power States...2:281
11-19 operation Parameter Layout..2:299
11-20 config_info_1 Return Value...2:302
11-21 config_info_2 Return Value...2:304
11-22 config_info_1 Return Value...2:307
11-23 config_info_2 Return Value...2:307
11-24 config_info_3 Return Value...2:307
11-25 Layout of line_id Return Value ..2:309
11-26 Layout of proc_n_log_info1 Return Value...2:312
11-27 Layout of proc_n_log_info2 Return Value...2:312
11-28 Layout of line_id Return Value ..2:314
11-29 Layout of platform_info Input Parameter ...2:316
11-30 I/O Size and Type Information Layout...2:331
11-31 Layout of power_buffer Return Value ...2:333
11-32 Layout of log_overview Return Value ...2:336
11-33 Layout of proc_n_log_info1 Return Value...2:336
11-34 Layout of proc_n_log_info2 Return Value...2:337
11-35 Pending Return Parameter ...2:338
11-36 level_index Layout ..2:342
11-37 Cache_Check Layout ..2:345
11-38 TLB_Check Layout..2:346
11-39 Bus Check Layout ...2:347
11-40 Reg_File_Check Layout ..2:348
11-41 uarch_check Layout ..2:350
11-42 Layout of attrib Return Value ..2:354
11-43 Layout of PM_info Return Value ...2:355
11-44 Layout of hints Return Value...2:365
11-45 Layout of test_info Argument ..2:367
11-46 Layout of test_param Argument ..2:368
11-47 Layout of min_pal_ver and current_pal_ver Return Values ..2:369
11-48 Layout of tc_info Return Value..2:370
xii Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

11-49 Layout of vm_info_1 Return Value ... 2:372
11-50 Layout of vm_info_2 Return Value ... 2:373
11-51 Layout of TR_valid Return Value ... 2:374

Part II: System Programmer’s Guide

2-1 Intel® Itanium® Ordering Semantics... 2:386
2-2 Interaction of Ordering and Accesses to Sequential Locations.. 2:397
2-3 Why a Fence During Context Switches is Required in the Intel® Itanium® Architecture 2:398
2-4 Spin Lock Code .. 2:399
2-5 Sense-reversing Barrier Synchronization Code ... 2:401
2-6 Dekker’s Algorithm in a 2-way System... 2:402
2-7 Lamport’s Algorithm ... 2:403
2-8 Updating a Code Image on the Local Processor.. 2:404
2-9 Supporting Cross-modifying Code without Explicit Serialization .. 2:405
2-10 Updating a Code Image on a Remote Processor... 2:407
5-1 Self-mapped Page Table.. 2:439
5-2 Subpaging .. 2:445
8-1 Overview of Floating-point Exception Handling in the Intel® Itanium® Architecture............. 2:457
13-1 Firmware Model.. 2:486
13-2 Control Flow of Boot Process in a Multi-processor Configuration .. 2:488
13-3 Correctable Machine Check Code Flow... 2:494
13-4 Uncorrectable Machine Check Code Flow ... 2:494
13-5 INIT Flow .. 2:497

Tables

Part I: System Architecture Guide

3-1 Processor Status Register Instructions ... 2:18
3-2 Processor Status Register Fields .. 2:19
3-3 Control Registers... 2:24
3-4 Control Register Instructions ... 2:25
3-5 Default Control Register Fields.. 2:26
3-6 Page Table Address Fields ... 2:28
3-7 Interruption Status Register Fields .. 2:30
3-8 ITIR Fields ... 2:32
3-9 Interruption Function State Fields.. 2:34
4-1 Purge Behavior of TLB Instructions... 2:43
4-2 Translation Interface Fields ... 2:44
4-3 Page Access Rights .. 2:46
4-4 Architected Page Sizes ... 2:47
4-5 Region Register Fields .. 2:48
4-6 Protection Register Fields ... 2:49
4-7 Translation Instructions ... 2:50
4-8 VHPT Long-format Fields .. 2:53
4-9 TLB and VHPT Search Faults ... 2:59
4-10 Virtual Addressing Memory Attribute Encodings ... 2:64
4-11 Physical Addressing Memory Attribute Encodings .. 2:65
4-12 Permitted Speculation ... 2:68
4-13 Register Return Values on Non-faulting Advanced/Speculative Loads............................... 2:69
4-14 Ordering Semantics and Instructions .. 2:70
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual xiii

4-15 Ordering Semantics..2:70
4-16 ALAT Behavior on Non-faulting Advanced/Check Loads...2:74
5-1 ISR Settings for Non-access Instructions...2:87
5-2 Programming Models ...2:89
5-3 Exception Qualification...2:89
5-4 Qualified Exception Deferral...2:90
5-5 Spontaneous Deferral ..2:91
5-6 Interruption Priorities ..2:92
5-7 Interruption Vector Table (IVT)...2:96
5-8 Interrupt Priorities, Enabling, and Masking...2:101
5-9 External Interrupt Control Registers ...2:104
5-10 Local ID Fields..2:105
5-11 Task Priority Register Fields ..2:106
5-12 Interval Timer Vector Fields ...2:107
5-13 Performance Monitor Vector Fields..2:108
5-14 Corrected Machine Check Vector Fields..2:108
5-15 Local Redirection Register Fields...2:108
5-16 Address Fields for Inter-Processor Interrupt Messages ...2:111
5-17 Data Fields for Inter-Processor Interrupt Messages...2:111
6-1 RSE Internal State..2:117
6-2 RSE Operation Instructions and State Modification ...2:119
6-3 RSE Modes (RSC.mode) ...2:120
6-4 Backing Store Pointer Application Registers..2:122
6-5 RSE Control Instructions ..2:123
6-6 RSE Interruption Summary ..2:126
7-1 Debug Breakpoint Register Fields (DBR/IBR)..2:132
7-2 Debug Instructions ...2:133
7-3 Generic Performance Counter Data Register Fields..2:137
7-4 Generic Performance Counter Configuration Register Fields (PMC[4]..PMC[p])...............2:137
7-5 Reading Performance Monitor Data Registers...2:138
7-6 Performance Monitor Instructions ..2:138
7-7 Performance Monitor Overflow Register Fields (PMC[0]..PMC[3])2:140
8-1 Writing of Interruption Resources by Vector...2:146
8-2 ISR Values on Interruption ...2:147
8-3 ISR.code Fields on Intel® Itanium® Traps ..2:149
8-4 Interruption Vectors Sorted Alphabetically ...2:149
9-1 Intercept Code Definition..2:208
9-2 Segment Prefix Override Encodings ..2:208
9-3 Gate Intercept Trap Code Identifier..2:209
9-4 System Flag Intercept Instruction Trap Code Instruction Identifier2:210
10-1 IA-32 System Register Mapping...2:214
10-2 IA-32 System Segment Register Fields (LDT, GDT, TSS)...2:215
10-3 IA-32 EFLAG Field Definition ...2:218
10-4 IA-32 Control Register Field Definition ...2:220
10-5 IA-32 Instruction Summary...2:226
10-6 Instruction Cache Coherency Rules...2:236
10-7 IA-32 Load/Store Sequentiality and Ordering...2:236
10-8 IA-32 Interruption Vector Summary..2:245
10-9 IA-32 Interruption Summary ...2:246
11-1 FIT Entry Types..2:258
11-2 function Field Values ..2:261
11-3 status Field Values ...2:261
xiv Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

11-4 state Field Values .. 2:263
11-5 Processor State Parameter Fields... 2:268
11-6 Software Recovery Bits in Processor State Parameter ... 2:269
11-7 function Field Values ... 2:273
11-8 Processor State Parameter Fields... 2:276
11-9 function Field Values ... 2:277
11-10 PMI Events and Priorities .. 2:278
11-11 PMI Message Vector Assignments.. 2:279
11-12 PAL Procedure Index Assignment... 2:285
11-13 PAL Cache and Memory Procedures .. 2:285
11-14 PAL Processor Identification, Features, and Configuration Procedures 2:286
11-15 PAL Machine Check Handling Procedures ... 2:287
11-16 PAL Power Information and Management Procedures ... 2:287
11-17 PAL Processor Self Test Procedures .. 2:287
11-18 PAL Support Procedures... 2:288
11-19 State Requirements for PSR ... 2:289
11-20 Definition of Terms .. 2:290
11-21 System Register Conventions ... 2:291
11-22 General Registers – Static Calling Convention ... 2:292
11-23 General Registers – Stacked Calling Conventions.. 2:292
11-24 Application Register Conventions.. 2:293
11-25 Processor Bus Features .. 2:295
11-26 cache_type Encoding .. 2:298
11-27 Cache Line State when inv = 0.. 2:299
11-28 Cache Line State when inv = 1.. 2:299
11-29 Cache Memory Attributes .. 2:303
11-30 Cache Store Hints ... 2:303
11-31 Cache Load Hints .. 2:303
11-32 PAL_CACHE_INIT level Argument Values ... 2:305
11-33 PAL_CACHE_INIT restrict Argument Values .. 2:305
11-34 IA-32 System Environment Entry Parameters... 2:320
11-35 MP Information Table .. 2:322
11-36 SAL I/O Intercept Table ... 2:323
11-37 IA-32 Resources at IA-32 System Environment Entry... 2:323
11-38 Register Values at IA-32 System Environment Termination ... 2:324
11-39 I/O Detail Pointer Description .. 2:331
11-40 I/O Type Definition... 2:331
11-41 I/O Size Definition.. 2:331
11-42 Pending Return Parameter Fields ... 2:338
11-43 info_index Values .. 2:342
11-44 level_index Fields .. 2:343
11-45 err_type_index Values... 2:343
11-46 error_info Return Format when info_index = 2 and err_type_index = 0 2:344
11-47 Cache_Check Fields ... 2:345
11-48 TLB_Check Fields ... 2:346
11-49 Bus Check Fields... 2:347
11-50 Reg_File_Check Fields ... 2:349
11-51 uarch_check Fields.. 2:350
11-52 PM_info Fields... 2:355
11-53 PM_buffer Layout .. 2:355
Volume 2: Intel® Itanium® Architecture Software Developer’s Manual xv

11-54 Processor Features ..2:360
11-55 info_request Return Value..2:364
11-56 RSE Hints Implemented ...2:365

Part II: System Programmer’s Guide

2-1 Intel® Itanium® Architecture Provides a Relaxed Ordering Model2:386
2-2 Acquire and Release Semantics Order Intel® Itanium® Memory Operations.....................2:386
2-3 Loads May Pass Stores to Different Locations ..2:387
2-4 Loads May Not Pass Stores in the Presence of a Memory Fence.....................................2:388
2-5 Dependencies Do Not Establish MP Ordering ...2:388
2-6 Memory Ordering and Data Dependency...2:389
2-7 Memory Ordering and Data Dependency Through a Predicate Register...........................2:390
2-8 Memory Ordering and Data and Control Dependencies ..2:390
2-9 Memory Ordering and Control Dependency...2:391
2-10 Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible2:391
2-11 Preventing Store Buffers from Satisfying Local Loads ...2:393
2-12 Bypassing to a Semaphore Operation ...2:394
2-13 Bypassing from a Semaphore Operation ...2:394
2-14 Enforcing the Same Visibility Order to All Observers in a Coherence Domain2:395
2-15 Intel® Itanium® Architecture Obeys Causality ..2:396
2-16 Potential Pipeline Behaviors of the Branch at x from Figure 2-9..2:406
3-1 Interruption Handler Execution Environment (PSR and RSE.CFLE Settings)2:411
4-1 Preserving Intel® Itanium® General and Floating-point Registers......................................2:419
4-2 Register State Preservation at Different Points in the OS..2:422
5-1 Comparison of VHPT Formats ...2:439
6-1 Speculation Recovery Code Requirements ...2:449
9-1 IA-32 Vectors that Need Itanium®-based OS Support ...2:465
xvi Volume 2: Intel® Itanium® Architecture Software Developer’s Manual

Part I: System Architecture
Guide

2

About this Manual 1

The Intel® Itanium® architecture is a unique combination of innovative features such as explicit
parallelism, predication, speculation and more. The architecture is designed to be highly scalable to
fill the ever increasing performance requirements of various server and workstation market
segments. The Itanium architecture features a revolutionary 64-bit instruction set architecture
(ISA), which applies a new processor architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. A key feature of the Itanium architecture is IA-32 instruction set
compatibility.

The Intel® Itanium® Architecture Software Developer’s Manual provides a comprehensive
description of the programming environment, resources, and instruction set visible to both the
application and system programmer. In addition, it also describes how programmers can take
advantage of the features of the Itanium architecture to help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level resources,
programming environment, and the IA-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®
Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of the
architecture.

Chapter 3, “Execution Environment” describes the Itanium register set used by applications and the
memory organization models.

Chapter 4, “Application Programming Model” gives an overview of the behavior of Itanium
application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point architecture
(including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System Environment”
describes the operation of IA-32 instructions within the Itanium System Environment from the
perspective of an application programmer.
Volume 2: About this Manual 2:1

1.1.2 Part 2: Optimization Guide for the Intel® Itanium®
Architecture

Chapter 1, “About the Optimization Guide” gives an overview of the optimization guide.

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment for the Itanium architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications” discusses current performance limitations in
floating-point applications and features that address these limitations.

1.2 Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. This volume also provides a
useful system programmer's guide for writing high performance system software.

1.2.1 Part 1: System Architecture Guide

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®
Architecture Software Developer’s Manual.

Chapter 2, “Intel® Itanium® System Environment” introduces the environment designed to
support execution of Itanium-based operating systems running IA-32 or Itanium-based
applications.

Chapter 3, “System State and Programming Model” describes the Itanium architectural state which
is visible only to an operating system.

Chapter 4, “Addressing and Protection” defines the resources available to the operating system for
virtual to physical address translation, virtual aliasing, physical addressing, and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a processor based on
the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which automatically
saves and restores the stacked subset (GR32 – GR 127) of the general register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Chapter 8, “Interruption Vector Descriptions” lists all interruption vectors.
2:2 Volume 2: About this Manual

Chapter 9, “IA-32 Interruption Vector Descriptions” lists IA-32 exceptions, interrupts and
intercepts that can occur during IA-32 instruction set execution in the Itanium System
Environment.

Chapter 10, “Itanium®-based Operating System Interaction Model with IA-32 Applications”
defines the operation of IA-32 instructions within the Itanium System Environment from the
perspective of an Itanium-based operating system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts processor
implementation-dependent features.

1.2.2 Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second section of
the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multi-processing synchronization
primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what state is preserved and made available to low-level system code when
interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents and state. This chapter also describes system architecture mechanisms that allow
an operating system to reduce the number of registers that need to be spilled/filled on interruptions,
system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction
emulation handlers that Itanium-based operating systems are expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the software stack provides
complete IEEE-754 compliance.

Chapter 9, “IA-32 Application Support” describes the support an Itanium-based operating system
needs to provide to host IA-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform issues and
support for the existing IA-32 I/O port space.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with a focus on what kind of support is needed from Itanium-based operating systems.

Chapter 13, “Firmware Overview” introduces the firmware model, and how various firmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization, and operating
system boot.
Volume 2: About this Manual 2:3

1.2.3 Appendices

Appendix A, “Code Examples” provides OS boot flow sample code.

1.3 Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the Itanium and IA-32 instruction sets, including
instruction format/encoding.

1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumes in the Intel® Itanium®
Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of all Itanium instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides a table of pseudo-code functions which are used to
define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats” describes the encoding and instruction format instructions.

Chapter 5, “Resource and Dependency Semantics” summarizes the dependency rules that are
applicable when generating code for processors based on the Itanium architecture.

1.3.2 Part 2: IA-32 Instruction Set Descriptions

Chapter 1, “Base IA-32 Instruction Reference” provides a detailed description of all base IA-32
instructions, organized in alphabetical order by assembly language mnemonic.

Chapter 2, “IA-32 Intel® MMX™ Technology Instruction Reference” provides a detailed
description of all IA-32 Intel® MMX™ technology instructions designed to increase performance
of multimedia intensive applications. Organized in alphabetical order by assembly language
mnemonic.

Chapter 3, “IA-32 Streaming SIMD Extension Instruction Reference” provides a detailed
description of all IA-32 Streaming SIMD Extension instructions designed to increase performance
of multimedia intensive applications, and is organized in alphabetical order by assembly language
mnemonic.
2:4 Volume 2: About this Manual

1.4 Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level resources. These
resources include instructions and registers.

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the IA-32
Intel®Architecture Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports the execution of
both IA-32 and Itanium-based code.

IA-32 System Environment – The operating system privileged environment and resources as
defined by the IA-32 Intel®Architecture Software Developer’s Manual. Resources include virtual
paging, control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Itanium-Based Firmware – The Processor Abstraction Layer (PAL) and System Abstraction
Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system features that are
implementation dependent.

1.5 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at http://
developer.intel.com:

• Intel® Itanium® 2 Processor Reference Manual for Software Development and
Optimization – This document describes model-specific architectural features incorporated
into the Intel® Itanium® 2 processor, the second processor based on the Itanium architecture.
(Document Number 251110)

• Intel® Itanium® Processor Reference Manual for Software Development – This document
describes model-specific architectural features incorporated into the Intel® Itanium®
processor, the first processor based on the Itanium architecture. (Document Number 245320)

• IA-32 Intel ®Architecture Software Developer’s Manual – This set of manuals describes the
Intel 32-bit architecture. (Document Numbers 245470, 245471, and 245472)

• Itanium™ Software Conventions and Runtime Architecture Guide – This document defines
general information necessary to compile, link, and execute a program on an Itanium-based
operating system. (Document Number 245358)

• Itanium® Processor Family System Abstraction Layer Specification – This document
specifies requirements to develop platform firmware for Itanium-based systems.
(Document Number 245359)

• Extensible Firmware Interface Specification – This document defines a new model for the
interface between operating systems and platform firmware.
Volume 2: About this Manual 2:5

1.6 Revision History

Date of
Revision

Revision
Number Description

October 2002 2.1 Added New fc.i Instruction (Sections 4.4.6.1 and 4.4.6.2, Part I, Vol. 1;
Sections 4.3.3, 4.4.1, 4.4.5, 4.4.7, 5.5.2, and 7.1.2, Part I, Vol. 2; Sections 2.5,
2.5.1, 2.5.2, 2.5.3, and 4.5.2.1, Part II, Vol. 2; and Sections 2.2, 3, 4.1, 4.4.6.5,
and 4.4.10.10, Part I, Vol. 3).

Added New Atomic Operations ld16,st16,cmp8xchg16 (Sections 3.1.8,
3.1.8.6, 4.4.1, 4.4.2, and 4.4.3, Part I, Vol. 1; Section 4.5, Part I, Vol. 2; and
Sections 2.2, 3, 5.3.2, and 5.4, Part I, Vol. 3).

Added Spontaneous NaT Generation on Speculative Load (Sections 5.5.5
and 11.9, Part I, Vol. 2 and Sections 2.2 and 3, Part I, Vol. 3).

Added New Hint Instruction (Section 2.2, Part I, Vol. 3).

Added Fault Handling Semantics for lfetch.fault Instruction (Section 2.2,
Part I, Vol. 3).

Added Capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in
the Firmware Interface Table (Section 11.1.6, Part I, Vol. 2).

Added BR1 to Min-state Save Area and Clarified Alignment (Sections 11.3.2.3
and 11.3.3, Part I, Vol. 2).

Added New PAL Procedures: PAL_LOGICAL_TO_PHYSICAL and
PAL_CACHE_SHARED_INFO (Section 11.9.1, Part I, Vol. 2).

Added Op Fields to PAL_MC_ERROR_INFO (Section 11.9, Part I, Vol. 2).

Added New Error Exit States (Section 11.2.2.2, Part I, Vol. 2).

Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Vol. 2).

Modified CPUID[4] for Atomic Operations and Spontaneous Deferral
(Section 3.1.11, Part I, Vol. 1).

Modified PAL_FREQ_RATIOS (Section 11.2.2, Part I, Vol. 2).

Modified PAL_VERSION (Section 11.9, Part I, Vol. 2).

Modified PAL_CACHE_INFO Store Hints (Section 11.9, Part I, Vol. 2).

Modified PAL_MC_RESUME (Sections 11.3.3 and 11.4, Part I, Vol. 2).

Modified IA_32_Exception (Debug) IIPA Description (Section 9.2, Part I,
Vol. 2).

Clarified Predicate Behavior of alloc Instruction (Section 4.1.2, Part I, Vol. 1
and Section 2.2, Part I, Vol. 3).

Clarified ITC clocking (Section 3.1.8.10, Part I, Vol. 1; Section 3.3.4.2, Part I,
Vol. 2; and Section 10.5.5, Part II, Vol. 2).

Clarified Interval Time Counter (ITC) Fault (Section 3.3.2, Part I, Vol. 2).

Clarified Interruption Control Registers (Section 3.3.5, Part I, Vol. 2).

Clarified Freeze Bit Functionality in Context Switching and Interrupt
Generation (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part I, Vol. 2).

Clarified PAL_BUS_GET/SET_FEATURES (Section 11.9.3, Part I, Vol. 2).

Clarified PAL_CACHE_FLUSH (Section 11.9, Part I, Vol. 2).

Clarified Cache State upon Recovery Check (Section 11.2, Part I, Vol. 2).

Clarified PALE_INIT Exit State (Section 11.4.2, Part I, Vol. 2).

Clarified Processor State Parameter (Section 11.4.2.1, Part I, Vol. 2).

Clarified Firmware Address Space at Reset (Section 11.1, Part I, Vol. 2).

Clarified PAL PMI, AR.ITC, and PMD Register Values (Sections 11.3, 11.5.1,
and 11.5.2, Part I, Vol. 2).

Clarified Invalid Arguments to PAL (Section 11.9.2.4, Part I, Vol. 2).

Clarified itr/itc Instructions (Section 2.2, Part I, Vol. 3).
2:6 Volume 2: About this Manual

December 2001 2.0 Volume 1:

Faults in ld.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 2:

Class pr-writers-int clarification (Table A-5).

PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).

IA-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change - added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change - added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Section 11).

Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).

VHPT read atomicity clarification (Section 4.1).

IIP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).

Revised DV table (Section A.4).

Memory attribute transitions - added new requirements (Section 4.4).

MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation - changed behavior of DCR ‘lc’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes - extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).

Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification - added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).

Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

IA-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).

RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).

IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

Date of
Revision

Revision
Number Description
Volume 2: About this Manual 2:7

July 2000 1.1 Volume 1:

Processor Serial Number feature removed (Chapter 3).

Clarification on exceptions to instruction dependency (Section 3.4.3).

Volume 2:

Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing IA-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Out-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in IIM (p. 9-24).

PAL_CHECK and PAL_INIT calls – exit state changes (Chapter 11).

PAL_CHECK processor state parameter changes (Chapter 11).

PAL_BUS_GET/SET_FEATURES calls – added two new bits (Chapter 11).

PAL_MC_ERROR_INFO call – Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).

PAL_ENTER_IA_32_Env call changes – entry parameter represents the entry
order; SAL needs to initialize all the IA-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH – added a new cache_type argument (Chapter 11.

PAL_SHUTDOWN – removed from list of PAL calls (Chapter 11).

Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).

Volume 3:

fmix instruction page figures corrected (Chapter 2).

Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).

Processor Serial Number feature removed (Chapter 5).

January 2000 1.0 Initial release of document.

Date of
Revision

Revision
Number Description
2:8 Volume 2: About this Manual

2

Intel® Itanium® System Environment 2

As described in Section 2.1, “Operating Environments” on page 1:9, the Itanium architecture
features two full operating system environments: the IA-32 System Environment supports IA-32
operating systems, and the Itanium System Environment supports Itanium-based operating
systems. The architectural model also supports a mixture of IA-32 and Itanium-based application
code within an Itanium-based operating system.

The system environment determines the set of processor system resources seen by the operating
system. These resources include: virtual memory management, physical memory attributes,
external interrupt mechanisms, exception and interrupt delivery, machine check architectures,
debug, performance monitoring, control registers, and the set of privileged instructions.

The choice of system environment is made when a processor boots, and is described in Section 2.1,
“Processor Boot Sequence.” Section 2.2 in this chapter defines the Itanium System Environment.

2.1 Processor Boot Sequence

Figure 2-1 shows the defined boot sequence. Unlike IA-32 processors, which power up in 32-bit
Real Mode, processors in the Itanium processor family power up in the Itanium System
Environment running Itanium-based code. Processor initialization, testing, memory, and platform
initialization/testing are performed by processor firmware. Mechanisms are provided to execute
Real Mode IA-32 boot BIOSs and device drivers during the boot sequence. After the boot
sequence, a determination is made by boot software to continue executing in Itanium System
Environment (for example to boot an Itanium-based operating systems) or to enter the IA-32
operating system environment through the PAL_ENTER_IA_32_ENV firmware call. Refer to
Chapter 11, “Processor Abstraction Layer” for details.
Volume 2: Intel® Itanium® System Environment 2:9

2.2 Intel® Itanium® System Environment Overview

The Itanium system environment is designed to support execution of Itanium-based operating
systems running IA-32 or Itanium-based applications. IA-32 applications can interact with
Itanium-based operating systems, applications and libraries within this environment. Both IA-32
application level code and Itanium instructions can be executed by the operating system and user
level software. The entire machine state, including the IA-32 general registers and floating-point
registers, segment selectors and descriptors is accessible to Itanium-based code. As shown in
Figure 2-2, all major IA-32 operating modes are fully supported.

Figure 2-1. System Environment Boot Flow

Processor
Test & Initialization

Platform Test &
Initialization

IA-32_boot?

Itanium-based OS Boot
(Intel Itanium

IA-32 OS Boot
(IA-32 Instructions

(Intel® Itanium®

(Intel Itanium or

Intel® Itanium® IA-32 System Environment

Reset

Yes

No

Firmware Call to PAL_ENTER_IA_32_ENV

& IA-32 Instructions)

 Only)

System Environment

Instructions)

IA-32 Instructions)

Instructions
2:10 Volume 2: Intel® Itanium® System Environment

In the Itanium system environment, Itanium architecture operating system resources supersede all
IA-32 system resources. Specifically, the IA-32 defined set of control, test, debug, machine check
registers, privilege instructions, and virtual paging algorithms are replaced by the Itanium
architecture system resources. When IA-32 code is running on an Itanium-based operating system,
the processor directly executes all performance critical but non-sensitive IA-32 application level
instructions. Accesses to sensitive system resources (interrupt flags, control registers, TLBs, etc.)
are intercepted into the Itanium-based operating system. Using this set of intervention hooks, an
Itanium-based operating system can emulate or virtualize an IA-32 system resource for an IA-32
application, OS, or device driver.

The Itanium system architecture features are presented in the following chapters:

• Chapter 3 describes system resources.

• Chapter 4 describes the virtual memory architecture.

• Chapter 5 defines the interrupt and exception architecture.

• Chapter 6 describes the register stack engine.

• Chapter 7 describes debug and performance monitoring hooks.

• Chapter 8 describes interruption handler entry points.

Additional support for IA-32 applications in the Itanium system environment is defined by
chapters:

• Chapter 9 describes IA-32 interruption handler entry points.

• Chapter 10, “Itanium®-based Operating System Interaction Model with IA-32 Applications”
describes how IA-32 applications interact with Itanium-based operating systems.

Figure 2-2. Intel® Itanium® System Environment

 Intel® Itanium®IA-32 PM

 Segmentation

Paging & Interruption

Instructions

IA-32 Real mode

Segmentation

IA-32 VM86

Segmentation

Real Mode VM86 Protected Mode
Intel® Itanium®

Instructions and Instructions and Instructions and

Handling in the

Interruption &
Intercepts

Intel Itanium Architecture

Architecture
Volume 2: Intel® Itanium® System Environment 2:11

2:12 Volume 2: Intel® Itanium® System Environment

2

System State and Programming Model 3

This chapter describes the architectural state visible only to an operating system and defines system
state programming models. It covers the functional descriptions of all the system state registers,
descriptions of individual fields in each register, and their serialization requirements. The virtual
and physical memory management details are described in Chapter 4, “Addressing and Protection.”
Interruptions are described in Chapter 5, “Interruptions.”

Note: Unless otherwise noted, references to “interruption” in this chapter refer to IVA-based
interruptions. See “Interruption Definitions” on page 2:79.

3.1 Privilege Levels

Four privilege levels, numbered from 0 to 3, are provided to control access to system instructions,
system registers and system memory areas. Level 0 is the most privileged and level 3 the least
privileged. Application instructions and registers can be accessed at any privilege level. System
instructions and registers defined in this chapter can only be accessed at privilege level 0;
otherwise, a Privilege Operation fault is raised. The processor maintains a Current Privilege Level
(CPL) in the cpl field of the Processor Status Register (PSR). CPL can only be modified by
controlled entry and exit points managed by the operating system. Virtual memory protection
mechanisms control memory accesses based on the Privilege Level (PL) of the virtual page and the
CPL.

3.2 Serialization

For all application and system level resources, apart from the control register file, the processor
ensures values written to a register are observed by instructions in subsequent instruction groups.
This is termed data dependency. For example, writes to general registers, floating-point and
application registers are observed by subsequent reads of the same register. (See “Control
Registers” on page 2:24 for control register serialization requirements.) For modifications of
application level resources with side effects, the side effects are ensured by the processor to be
observed by subsequent instruction groups. This is termed implicit serialization. Application
registers (ARs), with the exception of the Interval Time Counter, the User Mask, when modified by
sum, rum, and mov to psr.um, and the Current Frame Marker (CFM), are implicitly serialized. PMD
registers have special serialization requirements as described in “Generic Performance Counter
Registers” on page 2:136. All other application-level resources (GRs, FRs, PRs, BRs, IP, CPUID)
have no side effects and so need not be serialized.

To avoid serialization overhead in privileged operating system code, system register resources are
not implicitly serialized. The processor does not ensure modification of registers with side effects
are observed by subsequent instruction groups. For system register resources other than control
registers, the processor ensures data dependencies are honored (reads see the results of prior writes
to the same register). See Section 3.3.3 and Table 3-3 on page 2:24 for control register serialization
requirements. This approach simplifies hardware and allows for more efficient software operations.
Volume 2: System State and Programming Model 2:13

For example, during a low level context switch where there is no immediate use of loaded system
registers, these registers can be loaded without any serialization overhead. To ensure side effects are
observed before a dependent instruction is fetched or executed, two serialization operations are
provided: instruction serialization and data serialization.

3.2.1 Instruction Serialization

Instruction serialization ensures that modifications to processor resources are observed before
subsequent instruction group fetches are re-initiated. Software must use an instruction serialization
operation before any instruction group that is dependent upon the modified system resource.
Resource side effects may be observed at any point before the explicit serialization operation.

Modification of the following system resources (if the modification affects instruction fetching)
require instruction serialization: RR, PKR, ITR, ITC, IBR, PMC, PMD, PSR bits as defined in
“Processor Status Register (PSR)” on page 2:18 and Control Registers as defined in “Control
Registers” on page 2:24.

The instructions Return from Interruption (rfi) and Instruction Serialize (srlz.i) perform
explicit instruction serialization.

An interruption performs an implicit instruction serialization operation, so the first instruction
group in the interruption handler will observe the serialized state.

Instruction Serialization Example:

mov ibr[reg]= reg // move to instruction debug register
;; // end of instruction group
srlz.i // ensure subsequent instruction fetches observe

// modification
;; // end of instruction group
inst // dependent instruction

Note: The serializing instruction, the instruction to be serialized, and any operations dependent
on the serialization must be in three separate instruction groups.

3.2.2 Data Serialization

Data serialization ensures that modifications to processor resources affecting both execution and
data memory accesses are observed. Software must issue a data serialize operation prior to the
instruction dependent upon the modified resource. Data serialization can be issued within the same
instruction group as the dependent instruction. Resource side effects may be observed at any point
before the explicit serialization operation.

Modification of the following system resources require data serialization: RR, PKR, DTR, DTC,
DBR, PMC, PMD, PSR bits as defined in “Processor Status Register (PSR)” on page 2:18 and
Control Registers as defined in “Control Registers” on page 2:24.

The control registers are different from the general registers and other registers. Most control
registers require an explicit data serialization between the writing of a control register and the
reading of that same control register. (See Table 3-3 on page 2:24 for serialization requirements for
specific control registers.)
2:14 Volume 2: System State and Programming Model

The Data Serialize (srlz.d) instruction performs explicit data serialization. Instruction
serialization operations (rfi, srlz.i, and interruptions) also perform a data serialization
operation.

Data Serialization Example:

mov rr[reg] = reg //move into region register
;; //end of instruction group
srlz.d //serialize region register modification
ld //perform a dependent load

The serializing instruction and the instruction to be serialized (the one writing the resource) must be
in two different instruction groups. Operations dependent on the serialization and the serialization
can be in the same instruction group, but the srlz instruction must be before the dependent
instruction slot.

3.2.3 Definition of In-flight Resources

When the value of a resource that requires an explicit instruction or data serialization is changed by
one or more writers, that resource is said to be in-flight until the required serialization is
performed. There can be multiple in-flight values if multiple writers have occurred since the last
serialization.

An instruction that reads an in-flight resource will see one of the in-flight values or the state prior to
any of the unserialized writers. However, whether such a reader sees the original or one of the
in-flight values is not predictable.

For a reader of an in-flight resource, this definition includes (but is not limited to) the following
possible outcomes:

• The reader of an in-flight resource may see the most-recently-serialized value or any of the
in-flight values each time it is executed – seeing the value from a particular writer one time
does not guarantee that the same writer’s value will be seen by that reader the next time.

• Multiple readers of an in-flight resource may see different values – each may see the
most-recently-serialized value or any of the in-flight values, independent of what other readers
may see.

• If a single execution of an instruction reads an in-flight resource more than once during its
execution, each read may see a different value.

Thus, the only way to guarantee that the latest value is seen by a reader is to perform the required
serialization.

3.3 System State

The architecture provides a rich set of system register resources for process control, interruptions
handling, protection, debugging, and performance monitoring. This section gives an overview of
these resources.
Volume 2: System State and Programming Model 2:15

3.3.1 System State Overview

Figure 3-1 shows the set of all defined privileged system register resources. Application state as
defined in “Application Register State” on page 1:19 is also accessible.

• Processor Status Register (PSR) – 64-bit register that maintains control information for the
currently running process. See “Processor Status Register (PSR)” on page 2:18 for complete
details.

• Control Registers (CR) – This register name space contains several 64-bit registers that
capture the state of the processor on an interruption, enable system-wide features, and specify
global processor parameters for interruptions and memory management. See “Control
Registers” on page 2:24 for complete information.

• Interrupt Registers – These registers provide the capability of masking external interrupts,
reading external interrupt vector numbers, programming vector numbers for internal processor
asynchronous events and external interrupt sources. For complete information, see “Interrupts”
on page 2:97.

• Interval Timer Facilities – A 64-bit interval timer is provided for privileged and
non-privileged use and as a time base for performance measurements. Timing facilities are
defined in detail in “Interval Time Counter and Match Register (ITC – AR44 and ITM – CR1)”
on page 2:27.

• Debug Breakpoint Registers (DBR/IBR) – 64-bit Data and 64-bit Instruction Breakpoint
Register pairs (DBR, IBR) can be programmed to fault on reference to a range of virtual and
physical addresses generated by either Itanium or IA-32 instructions. See “Debugging” on
page 2:131 for details. The minimum number of DBR register pairs and IBR register pairs is 4
in any implementation. On some implementations, a hardware debugger may use two or more
of these register pairs for its own use; see “Data and Instruction Breakpoint Registers” on
page 2:132 for details.

• Performance Monitor Configuration/Data Registers (PMC/PMD) – Multiple performance
monitors can be programmed to measure a wide range of user, operating system, or processor
performance values. Performance monitors can be programmed to measure performance
values from either IA-32 or Itanium instructions. Performance monitors are defined in
“Performance Monitoring” on page 2:135. The minimum number of generic PMC/PMD
register pairs in any implementation is 4.

• Banked General Registers – A set of 16 banked 64-bit general purpose registers, GR 16-GR
31, are available as temporary storage and register context when operating in low level
interruption code. See “Banked General Registers” on page 2:35 for complete details.

• Region Registers (RR) – Eight 64-bit region registers specify the identifiers and preferred
page sizes for multiple virtual address spaces. Refer to “Region Registers (RR)” on page 2:48
for complete information.

• Protection Key Registers (PKR) – At least sixteen 64-bit protection key registers contain
protection keys and read, write, execute permissions for virtual memory protection domains.
Please see the processor specific documentation for further information on the number of
Protection Key Registers implemented on the Itanium processor. Refer to “Protection Keys” on
page 2:48 for details.

• Translation Lookaside Buffer (TLB) – Holds recently used virtual to physical address
mappings. The TLB is divided into Instruction (ITLB), Data (DTLB), Translation Registers
(TR) and Translation Cache (TC) sections. See “Translation Lookaside Buffer (TLB)” on
page 2:39 for complete details. Translation Registers are software managed portions of the
TLB and the Translation Cache section of the TLB is directly managed by the processor.
2:16 Volume 2: System State and Programming Model

Figure 3-1. System Register Model

I/DBR1

SYSTEM REGISTER SET

APPLICATION REGISTER SET

pr0

 IP

PredicatesFloating-point registers

Instruction Pointer

fr0
pr1
pr2

fr1
fr2

1
81 0

63 0

rr0
rr1

rr7

Region registers
63 0

pkr0
pkr1

protection key regs
63 0

Branch registers

 br0
 br1
 br2

63 0

 br7

gr0
gr1
gr2

63 0

Debug Breakpoint registers
63 0

gr127
fr127

itr0

Translation Lookaside Buffer

gr16

gr31

gr32
fr32

fr31

 PSR

Processor Status register
63 0

Control registers
63 0

cr2
cr1
cr0

cr21 ITIR
cr22
cr23

Performance Monitor

63 0

banked
reg

0 +0.0
+1.0

General registers

0

 nats

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

cr17

cr16 IPSR

cr20 IFA
cr19

cr24 IIM
cr25 IHA

cr64 External

...

37 0

pmd0
pmd1

pmdn

pmc0
pmc1

pmcn

ibr0
ibr1

ibrn

dbr0
dbr1

dbrn

pkrn

itr1

itrn

itc

dtr0
dtr1

dtrn

dtc

cr8

Interrupt

Registerscr81

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Configuration registers

Data registers

User Mask
5 0

 DCR
 ITM
 IVA
 PTA

 IFS
 IIPA

 IIP
 ISR

63 0

ar64

Application registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDRar30

FCRar21

Control
Volume 2: System State and Programming Model 2:17

3.3.2 Processor Status Register (PSR)

The PSR maintains the current execution environment. The PSR is divided into four overlapping
sections (See Figure 3-2): user mask bits (PSR{5:0}), system mask bits (PSR{23:0}), the lower
half (PSR{31:0}), and the entire PSR (PSR{63:0}). PSR fields are defined in Table 3-2 along with
serialization requirements for modification of each field and the state of the field after an
interruption.

The PSR instructions and their serialization requirements are defined in Table 3-1. These
instructions explicitly read or write portions of the PSR. Other instructions also read and write
portions of the PSR as described in Table 3-2 and Table 5-2.

The user mask, PSR{5:0}, can be set and cleared by the Set User Mask (sum), Reset User Mask
(rum) and Move to User Mask (mov psr.um=) instructions at any privilege level. For user mask
modifications by sum, rum and mov, the processor ensures all side effects are observed before
subsequent instruction groups.

Figure 3-2. Processor Status Register (PSR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv rt tb lp db si di pp sp dfh dfl dt rv pk i ic rv mfh mfl ac up be rv
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ia bn ed ri ss dd da id it mc is cpl

Table 3-1. Processor Status Register Instructions

Mnemonic Description Operation
Instr.
Type

Serialization
Required

sum imm Set user mask
from immediate

PSR{5:0} ← PSR{5:0} | imm M implicit

rum imm Reset user
mask from
immediate

PSR{5:0} ← PSR{5:0} & ~imm M implicit

mov psr.um = r2 Move to user
mask

PSR{5:0} ← GR[r2] M implicit

mov r1 = psr.um Move from user
mask

GR[r1] ←PSR{5:0} M none

ssm imm Set system
mask from
immediate

PSR{23:0} ← PSR{23:0} | imm M data/insta

a. Based upon the resource being serialized, use data or instruction serialization.

rsm imm Reset system
mask from
immediate

PSR{23:0} ← PSR{23:0} &~imm M data/insta

mov psr.l = r2 Move to lower
PSR

PSR{31:0} ← GR[r2] M data/insta

mov r1 = psr Move from PSR GR[r1] ←PSR{36:35,31:0}b

b. All other bits of the PSR read as zero.

M none

bsw.0, bsw.1 Bank switch PSR{44} ← 0 or 1 B implicit

rfi Return From
Interruption

PSR{63:0} ← IPSR B implicit
2:18 Volume 2: System State and Programming Model

The system mask, PSR{23:0}, can be set and cleared by the Set System Mask (ssm) and Reset
System Mask (rsm) instructions. Software must issue the appropriate serialization operation before
dependent instructions. The system mask instructions are privileged.

The lower half of the PSR, PSR{31:0}, can be written with the Move to Lower PSR (mov psr.l=)
instruction. Software must issue the appropriate serialization operation before dependent
instructions. The Move to Lower PSR instruction is privileged.

The PSR can be read with the Move from PSR (mov =psr) instruction. Only PSR{36:35} and
PSR{31:0} are written to the target register by Move from PSR. PSR{63:37} and PSR{34:32} can
only be read after an interruption by reading the state in IPSR. The entire PSR is updated from
IPSR by the Return from Interruption (rfi) instruction. An rfi also implicitly serializes the PSR.
Both Move from PSR and Return from Interruption are privileged.

Table 3-2. Processor Status Register Fields

Field Bit Description
Interruption

State
Serialization

Required

User Mask = PSR{5:0}

rv 0 reserved

be 1 Big-Endian – When 1, data memory references are
big-endian. When 0, data memory references are little
endian. This bit is ignored for IA-32 data references,
which are always performed little-endian. Instruction
fetches are always performed little endian.

DCR.be dataa

up 2 User Performance monitor enable – When 1,
performance monitors configured as user monitors are
enabled to count events (including IA-32). When 0, user
configured monitors are disabled. See “Performance
Monitoring” on page 2:135 for details.

unchanged dataa

instb

ac 3 Alignment Check – When 1, all unaligned data memory
references result in an Unaligned Data Reference fault.
When 0, unaligned data memory references may or
may not result in a Unaligned Data Reference fault. See
“Memory Datum Alignment and Atomicity” on page 2:77
for details. Unaligned semaphore references also result
in a Unaligned Data Reference fault, regardless of the
state of PSR.ac. For IA-32 instructions, if PSR.ac is 1
an unaligned IA-32 data memory reference raises an
IA-32_Exception(AlignmentCheck) fault. When 0,
additional IA-32 control bits as defined in Section 10.6.7
also generate alignment checks.

0 dataa

mfl 4 Lower (f2 .. f31) floating-point registers written – This bit
is set to one when an Intel® Itanium® instruction
completes that uses register f2..f31 as a target register.
This bit is sticky and only cleared by an explicit write of
the user mask. When leaving the IA-32 instruction set,
PSR.mfl is set to 1 if PSR.dfl is 0, otherwise PSR.mfl is
unmodified.

unchanged dataa

mfh 5 Upper (f32 .. f127) floating-point registers written – This
bit is set to one when an Intel® Itanium® instruction
completes that uses register f32..f127 as a target
register. This bit is sticky and only cleared by an explicit
write of the user mask. PSR.mfh is unmodified by IA-32
instruction set execution.

unchanged dataa
Volume 2: System State and Programming Model 2:19

System Mask = PSR{23:0}

ic 13 Interruption Collection – When 1 and an interruption
occurs, the current state of the processor is loaded in
IIP, IPSR, IIM and IFS; and additional registers defined
in “Interruption Vector Descriptions” on page 2:145.
When 0, IIP, IPSR, IIM and IFS are not modified on an
interruption (see “Writing of Interruption Resources by
Vector” on page 2:146 for details). When 0, speculative
load exceptions result in deferred exception behavior,
regardless of the state of the DCR and ITLB deferral
bits. Processor operation is undefined if PSR.ic is 0 and
a transition is made to execute IA-32 code.

0 inst/datac

i 14 Interrupt Bit – When 1 and executing Intel® Itanium®
instructions, unmasked pending external interrupts will
interrupt the processor by transferring control to the
external interrupt handler. When 0, pending external
interrupts do not interrupt the processor. The effect of
clearing PSR.i via Reset System Mask (rsm)
instructions is observed by the next instruction.
Toggling PSR.i from one to zero via Move to PSR.l
requires data serialization. When executing IA-32
instructions, external interrupts are enabled if PSR.i
and (CFLG.if is 0 or EFLAG.if is 1). NMI interrupts are
enabled if PSR.i is 1 regardless of EFLAG.if.

0 clear: implicit
serialization
set: datad

pk 15 Protection Key enable – When 1 and PSR.it is 1,
instruction references (including IA-32) check for valid
protection keys. When 1 and PSR.dt is 1, data
references (including IA-32) check for valid protection
keys. When 1 and PSR.rt is 1, protection key checks
are enabled for register stack references. When 0,
neither instruction, data, nor register stack references
are checked for valid protection keys. When PSR.dt,
PSR.rt or PSR.it are 0, PSR.pk is ignored for the
corresponding reference.

unchanged inst/datae

rv 12:6,
16

reserved

dt 17 Data address Translation – When 1, virtual data
addresses are translated and access rights checked.
When 0, data accesses use physical addressing.
PSR.dt must be 1 when entering IA-32 code, otherwise
processor operation is undefined.

unchanged/0j data

dfl 18 Disabled Floating-point Low register set – When 1, a
read or write access to f2 through f31 results in a
Disabled Floating-Point Register fault. When 1, all
IA-32 FP, Intel® MMX2 and Intel® MMX™ instructions
raise a Disabled FP Register fault (regardless whether
the instruction actually references f2-31).

0 data

dfh 19 Disabled Floating-point High register set – When 1, a
read or write access to f32 through f127 results in a
Disabled Floating-Point Register fault. When 1, a
Disabled FP Register fault is raised on the first IA-32
target instruction following a br.ia or rfi, regardless
whether f32-127 are referenced.

0 data

Table 3-2. Processor Status Register Fields (Continued)

Field Bit Description
Interruption

State
Serialization

Required
2:20 Volume 2: System State and Programming Model

sp 20 Secure Performance monitors – Controls the ability of
non-privileged code (including IA-32 code) to read
non-privileged performance monitors. See Table 7-5 on
page 2:138 for values returned by PMD read
instructions. Also, when 0, PSR.up can be modified by
user mask instructions; otherwise, PSR.up is
unchanged by user mask instructions. When 1 or
CFLG.pce is 0, non-privileged IA-32 performance
monitor reads (via rdpmc) raise an
IA-32_Exception(GPFault).

0 data

pp 21 Privileged Performance monitor enable – When 1,
monitors configured as privileged monitors are enabled
to count events (including IA-32 events). When 0,
privileged monitors are disabled. See “Performance
Monitoring” on page 2:135 for details.

DCR.pp inst/datae

di 22 Disable Instruction set transition – When 1, attempts to
switch instruction sets via the IA-32 jmpe or br.ia
instructions results in a Disabled Instruction Set
Transition fault. This bit doesn’t restrict instruction set
transitions due to interruptions or rfi.

0 data

si 23 Secure Interval timer – When 1, the Interval Time
Counter (ITC) register is readable only by privileged
code; non-privileged reads result in a Privileged
Register fault. When 0, ITC is readable at any privilege
level. System software can secure the ITC from
non-privileged IA-32 access by setting either PSR.si or
CFLG.tsd to 1. When secured, an IA-32 rdtsc (read time
stamp counter) instruction at any privilege level other
than the most privileged raises an
IA-32_Exception(GPfault)

0 data

PSR.l = PSR{31:0}

db 24 Debug Breakpoint fault – When 1, data and instruction
address breakpoints are enabled and can cause an
Data/Instruction Debug fault. When 1, IA-32 instruction
address breakpoints are enabled and can cause an
IA-32_Exception(Debug) fault.When 1, IA-32 data
address breakpoints are enabled and can cause an
IA-32_Exception(Debug) Trap.When 0, address
breakpoint faults and traps are disabled.

0 inst/datae

lp 25 Lower Privilege transfer trap – When 1, a Lower
Privilege Transfer trap occurs whenever a taken branch
lowers the current privilege level (numerically
increases). This bit is ignored during IA-32 instruction
set execution.

0 data

tb 26 Taken Branch trap – When 1, the successful completion
of a taken branch results in a Taken Branch trap. rfi
and interruptions can not raise a Taken Branch trap.
When 1, successful completion of a taken IA-32 branch
results in an IA-32_Exception(Debug) trap.

0 data

Table 3-2. Processor Status Register Fields (Continued)

Field Bit Description
Interruption

State
Serialization

Required
Volume 2: System State and Programming Model 2:21

rt 27 Register Stack Translation – When 1, register stack
accesses are translated and access rights are checked.
When 0, register stack accesses use physical
addressing. PSR.dt is ignored for register stack
accesses. The register stack engine must be in
enforced lazy mode (RSC.mode = 00) when modifying
this bit; otherwise, processor behavior is undefined.
During IA-32 instruction execution this bit is ignored and
the register stack is disabled.

unchanged data

rv 31:28 reserved

PSR{63:0}

cplf 33:32 Current Privilege Level –The current privilege level of
the processor (including IA-32). Controls accessibility to
system registers, instructions and virtual memory
pages. A value of 0 is most privileged, a value of 3 is
least privileged. Written by the rfi, epc, and br.ret
instructions. PSR.cpl is unchanged by the jmpe and
br.ia instructions. PSR.cpl cannot be updated by any
IA-32 instructions.

0 rfig

is 34 Instruction Set – When 0, Intel® Itanium® instructions
are executing. When 1, IA-32 instructions are
executing. Written by the rfi and br.ia instructions
and the IA-32 jmpe instruction.

0 rfig, br.iah

mc 35 Machine Check abort mask – When 1, machine check
aborts are masked. When 0, machine check aborts can
be delivered (including IA-32 instruction set execution).
Processor operation is undefined if PSR.mc is 1 and a
transition is made to execute IA-32 code.

unchanged/1i rfig

it 36 Instruction address Translation – When 1, virtual
instruction addresses are translated and access rights
checked. When 0, instruction accesses use physical
addressing. PSR.it must be 1 when entering IA-32
code, otherwise processor operation is undefined.

unchanged/0j rfig

id 37 Instruction Debug fault disable – When 1, Instruction
Debug faults are disabled on the first restart instruction
in the current bundle.k When PSR.id is 1 or EFLAG.rf is
1, IA-32 instruction debug faults are disabled for one
IA-32 instruction. PSR.id and EFLAG.rf are set to 0 after
the successful execution of each IA-32 instruction.

0 rfig

da 38 Disable Data Access and Dirty-bit faults – When 1, Data
Access and Dirty-Bit faults are disabled on the first
restart instruction in the current bundle or for the first
mandatory RSE reference following the rfi.k IA-32
Access/Dirty-bit faults are not affected by PSR.da.l

0 rfig

dd 39 Data Debug fault disable – When 1, Data Debug faults
are disabled on the first restart instruction in the current
bundle or for the first mandatory RSE reference.k IA-32
Data Debug traps are not affected by PSR.dd.l

0 rfig

ss 40 Single Step enable – When 1, a Single Step trap occurs
following the successful execution of the first restart
instruction in the current bundle. Instruction slots 0, 1,
and 2 can be single stepped. When 1 or EFLAG.tf is 1,
an IA-32_Exception(Debug) trap is taken after each
IA-32 instruction.

0 rfig

Table 3-2. Processor Status Register Fields (Continued)

Field Bit Description
Interruption

State
Serialization

Required
2:22 Volume 2: System State and Programming Model

ri 42:41 Restart Instruction – Set on an interruption, indicating
the next instruction in the bundle to be executed. When
the next instruction is the L+X instruction of an MLX,
this field is set to the value 1.

When restarting instructions with rfi, this field
specifies which instruction(s) in the bundle are
restarted. The specified and subsequent instructions
are restarted, all instructions prior to the restart point
are ignored.

0 – restart execution at instruction slot 0

1 – restart execution at instruction slot 1

2 – restart execution at instruction slot 2

3 – reserved

Except at an interruption and for the first restart
instruction following an rfi, the value of this field is
undefined.

This field is set to 0 after any interruption from the IA-32
instruction set and is ignored when IA-32 instructions
are restarted.

instruction
pointer

rfig

ed 43 Exception Deferral – When 1, if the first restart
instruction in the current bundle is a speculative load,
the operation is forced to indicate a deferred exception
by setting the load target register to NaT or NaTVal. No
memory references are performed, however any
address post increments are performed. If the operation
is a speculative advanced load, the ALAT entry
corresponding to the load address and target register is
purged. If the operation is an lfetch instruction,
memory promotion is not performed, however any
address post increments are performed. When 0,
exception deferral is not forced on restarted speculative
loads. If the first restart instruction is not a speculative
load or lfetch instruction, this bit is ignored.kl

0 rfig

bn 44 register Bank – When 1, registers GR16 to GR31 for
bank 1 are accessible. When 0, registers GR16 to
GR31 for bank 0 are accessible. Written by rfi and
bsw instructions.

0 implicitm

ia 45 Disable Instruction Access-bit faults – When 1,
Instruction Access-Bit faults are disabled on the first
restart instruction in the current bundle.k IA-32
Access-bit faults are not affected by PSR.ia.l

0 rfig

rv 63:46 reserved

a. User mask bits are implicitly serialized if accessed via user mask instructions; sum, rum, and move to User
Mask. If modified with system mask instructions; rsm, ssm and move to PSR.l, software must explicitly
serialize to ensure side effects are observed before dependent instructions.

b. User mask modification serialization is implicit only for monitoring data execution events. Software should
issue instruction serialization operations before monitoring instruction events to achieve better accuracy.

c. Requires instruction serialization to guarantee that VHPT walks initiated on behalf of an instruction reference
observe the new value of this bit. Otherwise, data serialization is sufficient to guarantee that the new value is
observed.

d. The effect of masking external interrupts with rsm is observed by the next instruction. However, the
processor does not ensure unmasking interruptions with ssm is immediately observed. Software can issue a
data serialization operation to ensure the effects of setting PSR.i are observed before a given point in
program execution.

Table 3-2. Processor Status Register Fields (Continued)

Field Bit Description
Interruption

State
Serialization

Required
Volume 2: System State and Programming Model 2:23

3.3.3 Control Registers

Table 3-3 defines all registers in the control register name space along with serialization
requirements to ensure side effects are observed by subsequent instructions. However, reads of a
control register must be data serialized with prior writes to the same register. The serialization
required column only refers to the side effects of the data value.

Writes to read-only registers (IVR, IRR0-3) result in an Illegal Operation fault, accesses to reserved
registers result in a Illegal Operation fault. Accesses can only be performed by mov to/from
instructions defined in Table 3-4 at privilege level 0; otherwise, a Privileged Operation fault is
raised.

e. Requires instruction or data serialization, based on whether the dependent “use” is an instruction fetch
access or data access.

f. CPL can be modified due to interruptions, Return From Interruption (rfi), Enter Privilege Code (epc), and
Branch Return (br.ret) instructions.

g. Can only be modified by the Return From Interruption (rfi) instruction. rfi performs an explicit instruction
and data serialization operation.

h. Modification of the PSR.is bit by a br.ia instruction set is implicitly instruction serialized.
i. PSR.mc is set to 1 after a machine check abort or INIT; otherwise, unmodified on interruptions.
j. After an interruption this bit is normally unchanged, however after a PAL-based interruption this bit is set to 0.
k. This bit is set to 0 after the successful execution of each instruction in a bundle except for rfi which may set

it to 1.
l. This bit is ignored when restarting IA-32 instructions and set to zero when br.ia or rfi successfully

complete and before the first IA-32 instruction starts execution.
m. After an interruption, rfi, or bsw the processor ensures register accesses are made to the new register

bank. For interruptions, rfi and bsw, the processor ensures all register accesses and outstanding loads
prior to the bank switch operate on the prior register bank.

Table 3-3. Control Registers

Register Name Description
Serialization

Required

Global
Control
Registers

CR0 DCR Default Control Register inst/data

CR1 ITM Interval Timer Match register dataa

CR2 IVA Interruption Vector Address insta

CR3-CR7 reserved

CR8 PTA Page Table Address inst/datab

CR9-15 reserved

Interruption
Control
Registers

CR16 IPSR Interruption Processor Status Register impliedd

CR17 ISR Interruption Status Register impliedc

CR18 reserved

CR19 IIP Interruption Instruction Pointer impliedd

CR20 IFA Interruption Faulting Address impliedd

CR21 ITIR Interruption TLB Insertion Register impliedd

CR22 IIPA Interruption Instruction Previous Address impliedc

CR23 IFS Interruption Function State impliedd,e

CR24 IIM Interruption Immediate register impliedc

CR25 IHA Interruption Hash Address impliedc

Reserved CR26-63 reserved
2:24 Volume 2: System State and Programming Model

3.3.4 Global Control Registers

3.3.4.1 Default Control Register (DCR – CR0)

The DCR specifies default parameters for PSR values on interruption, some additional global
controls, and whether speculative load faults can be deferred. Figure 3-3 and Table 3-5 define and
describe the DCR fields.

Interrupt
Control
Registers

CR64 LID Local Interrupt ID dataa

CR65 IVR External Interrupt Vector Register (read only) dataa

CR66 TPR Task Priority Register dataa

CR67 EOI End Of External Interrupt dataa

CR68 IRR0 External Interrupt Request Register 0 (read only) dataa

CR69 IRR1 External Interrupt Request Register 1 (read only) dataa

CR70 IRR2 External Interrupt Request Register 2 (read only) dataa

CR71 IRR3 External Interrupt Request Register 3 (read only) dataa

CR72 ITV Interval Timer Vector dataa

CR73 PMV Performance Monitoring Vector dataa

CR74 CMCV Corrected Machine Check Vector dataa

CR75-79 reserved reserved

CR80 LRR0 Local Redirection Register 0 dataa

CR81 LRR1 Local Redirection Register 1 dataa

Reserved CR82-127 reserved reserved

a. Serialization is needed to ensure external interrupt masking, new interval timer match values or new
interruption table addresses are observed before a given point in program execution.

b. Serialization is needed to ensure new values in PTA are visible to the hardware Virtual Hash Page Table
(VHPT) walker before a dependent instruction fetch or data access.

c. These registers are modified by the processor on an interruption or by an explicit move to these registers.
There are no side effects when written.

d. These registers are implied operands to the rfi and/or TLB insert instructions. The processor ensures writes
in previous instruction groups are observed by rfi and/or TLB insert instructions in subsequent instruction
groups. These registers are also modified by the processor on an interruption, subsequent reads return the
results of the interruption. There are no other side effects.

e. IFS written by a cover instruction followed by a move-from IFS is implicitly serialized.

Table 3-4. Control Register Instructions

Mnemonic Description Operation Format

mov cr3 = r2 Move to control register CR[r3] ← GR[r2] M

mov r1 = cr3 Move from control register GR[r1] ← CR[r3] M

srlz.i, rfi Serialize instruction references Ensure side effects are observed by
the instruction fetch stream

M

srlz.d Serialize data references Ensure side effects are observed by
the execute and data streams

M

Table 3-3. Control Registers (Continued)

Register Name Description
Serialization

Required
Volume 2: System State and Programming Model 2:25

Figure 3-3. Default Control Register (DCR – CR0)
63 15 14 13 12 11 10 9 8 7 3 2 1 0

rv dd da dr dx dk dp dm rv lc be pp
49 1 1 1 1 1 1 1 5 1 1 1

Table 3-5. Default Control Register Fields

Field Bit Description
Serialization

Required

pp 0 Privileged Performance monitor default – On interruption, DCR.pp is
loaded into PSR.pp.

data

be 1 Big-Endian default – When 1, Virtual Hash Page Table (VHPT) walker
accesses are performed big-endian; otherwise, little-endian. On
interruption, DCR.be is loaded into PSR.be.

inst

lc 2 IA-32 Lock Check enable – When 1, and an IA-32 atomic memory
reference is defined as requiring a read-modify-write operation external to
the processor under an external bus lock, an IA-32_Intercept(Lock) is
raised. (IA-32 atomic memory references are defined to require an
external bus lock for atomicity when the memory transaction is made to
non-write-back memory or are unaligned across an
implementation-specific non-supported alignment boundary.) When 0,
and an IA-32 atomic memory reference is defined as requiring a
read-modify-write operation external to the processor under external bus
lock, the processor may either execute the transaction as a series of
non-atomic transactions or perform the transaction with an external bus
lock, depending on the processor implementation. Intel® Itanium®
semaphore accesses ignore this bit. All unaligned Intel® Itanium®
semaphore references generate an Unaligned Data Reference fault. All
aligned Intel® Itanium® semaphore references made to memory that is
neither write-back cacheable nor a NaTPage result in an Unsupported
Data Reference fault.

data

dm 8 Defer TLB Miss faults only (VHPT data, Data TLB, and Alternate Data
TLB faults) – When 1, and a TLB miss is deferred, lower priority Debug
faults may still be delivered. A TLB miss fault, deferred or not, precludes
concurrent Page not Present, Key Miss, Key Permission, Access Rights,
or Access Bit faults. This bit is ignored by IA-32 instructions.

data

dp 9 Defer Page not Present faults only – When 1, and a Page not Present
fault is deferred, lower priority Debug faults may still be delivered. A Page
not Present fault, deferred or not, precludes concurrent Key Miss, Key
Permission, Access Rights, or Access Bit faults. This bit is ignored by
IA-32 instructions.

data

dk 10 Defer Key Miss faults only – When 1, and a Key Miss fault is deferred,
lower priority Access Bit, Access Rights or Debug faults may still be
delivered. A Key Miss fault, deferred or not, precludes concurrent Key
Permission faults. This bit is ignored by IA-32 instructions.

data

dx 11 Defer Key Permission faults only – When 1, and a Key Permission fault is
deferred, lower priority Access Bit, Access Rights or Debug faults may
still be delivered. This bit is ignored by IA-32 instructions.

data

dr 12 Defer Access Rights faults only – When 1, and an Access Rights fault is
deferred, lower priority Access Bit or Debug faults may still be delivered.
This bit is ignored by IA-32 instructions.

data

da 13 Defer Access Bit faults only – When 1, and an Access Bit fault is
deferred, lower priority Debug faults may still be delivered. This bit is
ignored by IA-32 instructions.

data

dd 14 Defer Debug faults – When 1, Data Debug faults on speculative loads are
deferred. This bit is ignored by IA-32 instructions.

data

rv 7:3,
63:15

reserved reserved
2:26 Volume 2: System State and Programming Model

For the DCR exception deferral bits, when the bit is 1, and a speculative load results in the specified
fault condition, and the speculative load’s code page exception deferral bit (ITLB.ed) is 1, the
exception is deferred by setting the speculative load target register to NaT or NaTVal. Otherwise,
the specified fault is taken on the speculative load. For a description of faults on speculative loads
see “Deferral of Speculative Load Faults” on page 2:88.

Since DCR.be also controls byte ordering of VHPT references that are the result of instruction
misses, DCR.be requires instruction serialization. Other DCR bits require data serialization only.

3.3.4.2 Interval Time Counter and Match Register (ITC – AR44 and ITM – CR1)

The Interval Time Counter (ITC) and Interval Timer Match (ITM) register support elapsed time
notification, see Figure 3-4 and Figure 3-5.

The ITC is a free-running 64-bit counter that counts up at a fixed relationship to the input clock to
the processor. Multiple reads of the ITC are not guaranteed to return different values due to the fact
that the ITC may be clocked at a somewhat lower frequency then the instruction execution
frequency. This clocking relationship is described in the PAL procedure PAL_FREQ_RATIOS on
page 2:329. A 64-bit overflow condition can occur without notification. The ITC counting rate is
not affected by power management mechanisms. The ITC can be read at any privilege level if
PSR.si is zero. The timer can be secured from non-privileged access by setting PSR.si to 1. When
secured, a read of the ITC by non-privileged code results in a Privileged Register fault. Writes to
the ITC can only be performed at privilege level 0; otherwise, a Privileged Register fault is raised.

The IA-32 Time Stamp Counter (TSC) is similar to ITC. The ITC can be read by the IA-32 rdtsc
(read time stamp counter) instruction. System software can secure the ITC from non-privileged
IA-32 access by setting either PSR.si or CFLG.tsd to 1. When secured, an IA-32 read of the ITC at
any privilege level other than the most privileged raises an IA-32_Exception(GPfault).

When the value in the ITC is equal to the value in the ITM an Interval Timer Interrupt is raised.
Once the interruption is taken by the processor and serviced by software, the ITC may not
necessarily be equal to the ITM. The ITM is accessible only at privilege level 0; otherwise, a
Privileged Operation fault is raised.

The interval counter can be written, for initialization purposes, by privileged code. The ITC is not
architecturally guaranteed to be synchronized with any other processor’s interval time counter in an
multiprocessor system, nor is it synchronized with the wall clock. Software must calibrate interval
timer ticks to wall clock time and periodically adjust for drift. In a multiprocessor system, a
processor's ITC is not architecturally guaranteed to be clocked synchronously with the ITC's on
other processors, and may not be clocked at the same nominal clock rate as ITC's on other
processors. The platform firmware provides information on the clocking of processors in a
multiprocessor system.

Figure 3-4. Interval Time Counter (ITC – AR44)
63 0

ITC
64

Figure 3-5. Interval Timer Match Register (ITM – CR1)
63 0

ITM
64
Volume 2: System State and Programming Model 2:27

Modification of the ITC or ITM is not necessarily serialized with respect to instruction execution.
Software can issue a data serialization operation to ensure the ITC or ITM updates and possible
side effects are observed by a given point in program execution. Software must accept a level of
sampling error when reading the interval timer due to various machine stall conditions,
interruptions, bus contention effects, etc. Please see the processor specific documentation for
further information on the level of sampling error of the Itanium processor.

3.3.4.3 Interruption Vector Address (IVA – CR2)

The IVA specifies the location of the interruption vector table in the virtual address space, or the
physical address space if PSR.it is 0, see Figure 3-6. The size of the vector table is 32K bytes and is
32K byte aligned. The lower 15 bits of the IVA are ignored when written, reads return zeros. All
upper 49 address bits of IVA must be implemented regardless of the size of the physical and virtual
address space. If an unimplemented virtual or physical address (see “Unimplemented Address Bits”
on page 2:61) is loaded into IVA, and an interruption occurs, processor behavior is unpredictable.
See “IVA-based Interruption Vectors” on page 2:96 for a description of an interruption table layout.

3.3.4.4 Page Table Address (PTA – CR8)

The PTA anchors the Virtual Hash Page Table (VHPT) in the virtual address space. See “Virtual
Hash Page Table (VHPT)” on page 2:51 for a complete definition of the VHPT. Operating systems
must ensure that the table is aligned on a natural boundary; otherwise, processor operation is
undefined. See Figure 3-7 and Table 3-6 for the PTA field definitions.

Figure 3-6. Interruption Vector Address (IVA – CR2)
63 15 14 0

IVA ig
49 15

Figure 3-7. Page Table Address (PTA – CR8)
63 15 14 9 8 7 2 1 0

base rv vf size rv ve
49 6 1 6 1 1

Table 3-6. Page Table Address Fields

Field Bits Description

ve 0 VHPT Enable – When 1, the processor is enabled to walk the VHPT.

size 7:2 VHPT Size – VHPT table size in power of 2 increments, table size is 2size bytes. Size
generates a mask that is logically AND’ed with the result of the VHPT hash function.
Minimum VHPT table size is 32K bytes; otherwise, a Reserved Register/Field fault is
raised (see “Virtual Hash Page Table (VHPT)” on page 2:51). The maximum size is 261
bytes for long format VHPTs, and 252 bytes for short format VHPTs.

vf 8 VHPT Format – When 0, 8-byte short format entries are used, when 1, 32-byte long
format entries are used.
2:28 Volume 2: System State and Programming Model

3.3.5 Interruption Control Registers

Registers CR16 - CR25 record information at the time of an interruption (including from the IA-32
instruction set) and are used by handlers to process the interruption.

The interruption control registers can only be read or written while PSR.ic is 0; otherwise, an Illegal
Operation fault is raised. These registers are only guaranteed to retain their values when PSR.ic is
0. When PSR.ic is 1, the processor does not preserve their contents.

The contents of the interruption control registers are defined only when the PSR.ic bit is cleared by
an interruption. If the PSR.ic bit is explicitly cleared (e.g., by using rsm, or mov to PSR), then the
contents of these registers are undefined. If the PSR.ic bit is explicitly set (e.g., by using ssm, or
mov to PSR), then the contents of these registers are undefined until the PSR.ic bit has been
serialized and an interruption occurs.

IIPA has special behavior in case of an rfi to a fault. Refer to “Interruption Instruction Previous
Address (IIPA – CR22)” on page 2:32.

3.3.5.1 Interruption Processor Status Register (IPSR – CR16)

On an interruption and if PSR.ic is 1, the IPSR receives the value of the PSR. The IPSR, IIP and
IFS are used to restore processor state on a Return From Interruption (rfi). The IPSR has the same
format as PSR, see “Processor Status Register (PSR)” on page 2:18 for details.

3.3.5.2 Interruption Status Register (ISR – CR17)

The ISR receives information related to the nature of the interruption, and is written by the
processor on all interruption events regardless of the state of PSR.ic, except for Data Nested TLB
faults. The ISR contains information about the excepting instruction and its properties such as
whether it was doing a read, write, execute, speculative, or non-access operation, see Figure 3-8 and
Table 3-7. Multiple bits may be concurrently set in the ISR, for example, a faulting semaphore
operation will set both ISR.r and ISR.w, and faults on speculative loads will set ISR.sp and ISR.r.
Additional fault or trap specific information is available in ISR.code and ISR.vector. Refer to
Section 8.2 "ISR Settings" for complete definition of the ISR field settings.

base 63:15 VHPT Base virtual address – Defines the starting virtual address of the VHPT table. Base
is logically OR’ed with the hash index produced by the VHPT hash function when
referencing the VHPT. Base must be on 2size boundary otherwise processor operation is
undefined. All base address bits of PTA must be implemented regardless of the size of
the physical and virtual address space. If an unimplemented virtual address (see
“Unimplemented Address Bits” on page 2:61) is used by the processor as a page table
base, all VHPT walks generate an Instruction/Data TLB miss (see “Translation Searching”
on page 2:57).

rv 1, 14:9 reserved

Table 3-6. Page Table Address Fields (Continued)

Field Bits Description
Volume 2: System State and Programming Model 2:29

Figure 3-8. Interruption Status Register (ISR – CR17)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv vector code
8 8 16

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ed ei so ni ir rs sp na r w x
20 1 2 1 1 1 1 1 1 1 1 1

Table 3-7. Interruption Status Register Fields

Field Bits Description

code 15:0 Interruption Code – 16 bit code providing additional information specific to the current
interruption. For IA-32 specific exceptions and software interrupts, contains the IA-32
interruption error code or zero.

vector 23:16 IA-32 exception/interception vector number. For IA-32 exceptions and software
interrupts, contains the IA-32 vector number (e.g., GPFault has a vector number of
13). See Chapter 9, "IA-32 Interruption Vector Descriptions" for details.

x 32 Execute exception – Interruption is associated with an instruction fetch (including
IA-32).

w 33 Write exception – Interruption is associated with a write operation. Both ISR.r and
ISR.w are set for IA-32 read-modify-write instructions.

r 34 Read exception – Interruption is associated with a read operation. Both ISR.r and
ISR.w are set for IA-32 read-modify-write instructions.

na 35 Non-access exception – See Section 5.5.2. This bit is always 0 for interruptions taken
in the IA-32 instruction set.

sp 36 Speculative load exception – Interruption is associated with a speculative load
instruction. This bit is always 0 for interruptions taken in the IA-32 instruction set.

rs 37 Register Stack – Interruption is associated with a mandatory RSE fill or spill. This bit is
always 0 for interruptions taken in the IA-32 instruction set.

ir 38 Incomplete Register frame – The current register frame is incomplete when the
interruption occurred. This bit is always 0 for interruptions taken in the IA-32 instruction
set.

ni 39 Nested Interruption – Indicates that PSR.ic was 0 or in-flight when the interruption
occurred. This bit is always 0 for interruptions taken in the IA-32 instruction set.

so 40 IA-32 Supervisor Override – Indicates the fault occurred during an IA-32 instruction set
supervisor override condition (the processor was performing a data memory accesses
to the IDT, GDT, LDT or TSS segments) or an IA-32 data memory access at a privilege
level of zero. This bit is always 0 for interruptions taken while executing Intel® Itanium®
instructions.

ei 42:41 Excepting Instruction –

0 – exception due to instruction in slot 0

1 – exception due to instruction in slot 1

2 – exception due to instruction in slot 2

For faults and external interrupts, ISR.ei is equal to IPSR.ri. For traps, ISR.ei defines
the slot of the excepting instruction. Traps on the L+X instruction of an MLX set ISR.ei
to 2. This field is always 0 for interruptions taken in the IA-32 instruction set.

ed 43 Exception Deferral – this bit is set to the value of the TLB exception deferral bit
(TLB.ed) for the instruction page containing the faulting instruction. If a translation
does not exist or instruction translation is disabled, or if the interruption is caused by a
mandatory RSE spill or fill, ISR.ed is set to 0. This bit is always 0 for interruptions taken
in the IA-32 instruction set.

rv 31:24,
63:44

reserved
2:30 Volume 2: System State and Programming Model

3.3.5.3 Interruption Instruction Bundle Pointer (IIP – CR19)

On an interruption and if PSR.ic is 1, the IIP receives the value of IP. IIP contains the virtual
address (or physical if instruction translations are disabled) of the next instruction bundle or the
IA-32 instruction to be executed upon return from the interruption. For IA-32 instruction addresses,
IIP is zero extended to 64-bits and specifies a byte granular address. For traps and interrupts, IIP
points to the next instruction to execute. For faults, IIP points to the faulting instruction. As shown
in Figure 3-9, all 64-bits of the IIP must be implemented regardless of the size of the physical and
virtual address space supported by the processor model (see “Unimplemented Address Bits” on
page 2:61). IIP also receives byte-aligned IA-32 instruction pointers. The IIP, IPSR and IFS are
used to restore processor state on a Return From Interruption instruction (rfi). See “Interruption
Vector Descriptions” on page 2:145 for usages of the IIP.

An rfi to Itanium-based code (IPSR.is is 0) ignores IIP{3:0}, an rfi to IA-32 code (IPSR.is is 1)
ignores IIP{63:32}. Ignored bits are assumed to be zero.

Control transfers to unimplemented addresses (see “Unimplemented Address Bits” on page 2:61)
result in an Unimplemented Instruction Address trap. When this trap is delivered, IIP is written as
follows:

• If the trap is taken for an unimplemented virtual address, IIP is written in one of two ways,
depending on the implementation: 1) IIP may be written with the implemented virtual address
bits IP{63:61} and IP{IMPL_VA_MSB:0} only. Bits IIP{60:IMPL_VA_MSB+1} are set to
IP{IMPL_VA_MSB}, i.e., sign-extended. 2) IIP may be written with the full, unimplemented
virtual address from IP.

• If the trap is taken for an unimplemented physical address, IIP is written with the physical
addressing memory attribute bit IP{63} and the implemented physical address bits
IP{IMPL_PA_MSB:0} only. Bits IIP{62:IMPL_PA_MSB+1} are set to 0.

When an rfi is executed with an unimplemented address in IIP (an unimplemented virtual address
if IPSR.it is 1, or an unimplemented physical address if IPSR.it is 0), and an Unimplemented
Instruction Address trap is taken, an implementation may optionally leave IIP unchanged
(preserving the unimplemented address in IIP).

Note: Since IP{3:0} are always 0 when executing Itanium-based code, IIP{3:0} will always be 0
when any interruption is taken from Itanium-based code, with the exception of an Unim-
plemented Instruction Address trap on an rfi, where IIP may optionally be preserved as
whatever value it held before executing the rfi.

3.3.5.4 Interruption Faulting Address (IFA – CR20)

On an interruption and if PSR.ic is 1, the IFA receives the virtual address (or physical address if
translations are disabled) that raised a fault. IFA reports the faulting address for both instruction and
data memory accesses (including IA-32). For faulting data references (including IA-32), IFA points
to the first byte of the faulting data memory operand. IFA reports a byte granular address. For
faulting instruction references (including IA-32), IFA contains the 16-byte aligned bundle address
(IFA{3:0} are zero) of the faulting instruction. For faulting IA-32 instructions, IIP points to the first

Figure 3-9. Interruption Instruction Bundle Pointer (IIP – CR19)
63 0

IIP
64
Volume 2: System State and Programming Model 2:31

byte of the IA-32 instruction, and is byte granular. In the event of an IA-32 instruction spanning a
virtual page boundary, IA-32 instruction fetch faults are reported as either (1) for faults on the first
page, IFA is set to the bundle address (IFA{3:0}=0) of the faulting instruction and IIP points to the
first byte of the faulting instruction, or (2) for faults on the second page, IFA contains the bundle
address of the second virtual page and IIP points to the first byte of the faulting IA-32 instruction.

The IFA also specifies a translation’s virtual address when a translation entry is inserted into the
instruction or data TLB. See “Interruption Vector Descriptions” on page 2:145 and “Translation
Insertion Format” on page 2:44 for usages of the IFA. As shown in Figure 3-10, all 64-bits of the
IFA must be implemented regardless of the size of the virtual and physical space supported by the
processor model (see “Unimplemented Address Bits” on page 2:61).

3.3.5.5 Interruption TLB Insertion Register (ITIR – CR21)

The ITIR receives default translation information from the referenced virtual region register on a
virtual address translation fault. See “Interruption Vector Descriptions” on page 2:145 for the fault
conditions that set the ITIR. The ITIR provides additional virtual address translation parameters on
an insertion into the instruction or data TLB. See “Translation Instructions” on page 2:50 for ITIR
usage information. Figure 3-11 and Table 3-8 define the ITIR fields.

3.3.5.6 Interruption Instruction Previous Address (IIPA – CR22)

For Itanium instructions, IIPA records the last successfully executed instruction bundle address. For
IA-32 instructions, IIPA records the byte granular virtual instruction address zero extended to
64-bits of the faulting or trapping IA-32 instruction. In the case of a fault, IIPA does not report the
address of the last successfully executed IA-32 instruction, but rather the address of the faulting
IA-32 instruction. IIPA preserves bits 3:0 for byte aligned IA-32 instruction addresses.

Figure 3-10. Interruption Faulting Address (IFA – CR20)
63 0

IFA
64

Figure 3-11. Interruption TLB Insertion Register (ITIR)
63 32 31 8 7 2 1 0

cwi1 key ps cwi2
32 24 6 2

Table 3-8. ITIR Fields

Field Bits Description

cwi1, cwi2 63:32,

1:0

On a read these fields may return zeros or the value last written to them. If a non-zero
value is written, a subsequent TLB insert will raise a Reserved Register Field fault
depending on other parameters to the insert. See “Translation Insertion Format” on
page 2:44.

ps 7:2 Page Size – On a TLB insert, specifies the size of the virtual to physical address
mapping. On an instruction or data translation fault, this field is set to the accessed
region’s page size (RR.ps).

key 31:8 protection Key – On a TLB insert specifies a protection key that uniquely tags
translations to a protection domain. On an instruction or data translation fault, Key is set
to the accessed Region Identifier (RR.rid).
2:32 Volume 2: System State and Programming Model

The IIPA can be used by software to locate the address of the instruction bundle or IA-32
instruction that raised a trap or the instruction executed prior to a fault or interruption. In the case of
a branch related trap, IIPA points to the instruction bundle which contained the branch instruction
that raised the trap, while IIP points to the target of the branch.

When an instruction successfully executes without a fault, and the PSR.ic bit was 1 prior to
instruction execution, it becomes the “last successfully executed instruction.” On interruptions,
IIPA contains the address of the last successfully executed instruction bundle or IA-32 instruction,
if PSR.ic was 1 prior to the interruption. If no such instruction exists, e.g., in case of an rfi to a
fault, the contents of IIPA remain unchanged.

When PSR.ic is one, accesses to IIPA cause an Illegal Operation fault. When PSR.ic is zero, IIPA is
not updated by hardware and can be read and written by software. This permits low-level code to
preserve IIPA across interruptions.

If the PSR.ic bit is explicitly cleared, e.g., by using rsm, then the contents of IIPA are undefined.
Only when the PSR.ic bit is cleared by an interruption is the value of IIPA defined. It may point at
the instruction which caused a trap, or at the instruction just prior to a faulting instruction, at an
earlier instruction that became defined by some prior interruption, or by a move to IIPA instruction
when PSR.ic was zero.

If the PSR.ic bit is explicitly set, e.g., by using ssm, then the contents of IIPA are undefined until
the PSR.ic bit has been serialized and an interruption occurs.

During instruction set transitions the following boundary cases exist:

• On faults taken on the first IA-32 instruction after a br.ia or rfi, IIPA records the faulting
IA-32 instruction address.

• On br.ia traps, IIPA records the address of the trapping instruction bundle.

• On faults taken on the first Itanium instruction after leaving the IA-32 instruction set, due to a
jmpe or interruption, IIPA contains the address of the jmpe instruction or the interrupted IA-32
instruction.

• On jmpe Data Debug, Single Step and Taken Branch traps, IIPA contains the address of the
jmpe instruction.

As shown in Figure 3-12, all 64-bits of the IIPA must be implemented regardless of the size of the
physical and virtual address space supported by the processor model (see “Unimplemented Address
Bits” on page 2:61).

3.3.5.7 Interruption Function State (IFS – CR23)

The IFS register is used to reload the current register stack frame (CFM) on a Return From
Interruption (rfi). If the IFS is accessed while PSR.ic is 1, an Illegal Operation fault is raised. The
IFS can only be accessed at privilege level 0; otherwise, a Privileged Operation fault is raised. The
IFS.v bit is cleared on interruption if PSR.ic is 1. All other fields are undefined after an interruption.
If PSR.ic is 0, the cover instruction copies CFM to IFS.ifm and sets IFS.v to 1. See Figure 3-13
and Table 3-9 for the IFS field definitions.

Figure 3-12. Interruption Instruction Previous Address (IIPA – CR22)
63 0

IIPA
64
Volume 2: System State and Programming Model 2:33

3.3.5.8 Interruption Immediate (IIM – CR24)

If PSR.ic is 1, the IIM (Figure 3-14) records the zero-extended immediate field encoded in chk.a,
chk.s, fchkf or break instruction faults. The break.b instruction always writes a zero value and
ignores its immediate field. The IA-32_Intercept vector writes all 64-bits of IIM to indicate the
cause of the intercept. See Table 8-1 on page 2:146 for the value of IIM in other situations. For the
purpose of resource dependency, IIM is written as a result of the fault, not by the instruction itself.

3.3.5.9 Interruption Hash Address (IHA – CR25)

The IHA (Figure 3-15) is loaded with the address of the Virtual Hash Page Table (VHPT) entry the
processor referenced or would have referenced to resolve a translation fault. The IHA is written on
interruptions by the processor when PSR.ic is 1. Refer to “VHPT Hashing” on page 2:54 for
complete details. See Table 8-1 on page 2:146 for the value of IHA in other situations. All upper 62
address bits of IHA must be implemented regardless of the size of the virtual address space
supported by the processor model (see “Unimplemented Address Bits” on page 2:61). The virtual
address written to IHA by the processor is guaranteed to be an implemented virtual addresses on all
processor models; however, if the address referenced by the VHPT is an unimplemented virtual
address, the value of IHA is undefined.

3.3.6 External Interrupt Control Registers

The external interrupt control registers (CR64-81) are defined in “External Interrupt Control
Registers” on page 2:104. They are used to prioritize and deliver external interrupts, send
inter-processor interrupts to other processors and assign interrupt vectors for locally generated
processor interrupts.

Figure 3-13. Interruption Function State (IFS – CR23)
63 62 38 37 0

v rv ifm
1 25 38

Table 3-9. Interruption Function State Fields

Field Bits Description

ifm 37:0 Interruption Frame Marker

v 63 Valid bit, cleared to 0 on interruption if PSR.ic is 1.

rv 62:38 reserved

Figure 3-14. Interruption Immediate (IIM – CR24)
63 0

Interruption Immediate
64

Figure 3-15. Interruption Hash Address (IHA – CR25)
63 2 1 0

Interruption Hash Address ig
62 2
2:34 Volume 2: System State and Programming Model

3.3.7 Banked General Registers

Banked general registers (see Figure 3-16) provide immediate register context for low-level
interruption handlers (e.g., speculation and TLB miss handlers). Upon interruption, the processor
switches 16 general purpose registers (GR16 to GR31) to register bank 0, register bank 1 contents
are preserved.

When PSR.bn is 1, bank 1 for registers GR16 to GR31 is selected; when 0, bank 0 for registers
GR16 to GR31 is selected. Banks are switched in the following cases:

• an interruption selects bank 0,

• rfi switches to the bank specified by IPSR.bn, or

• bsw switches to the specified bank.

On an interruption or bank switch, the processor ensures all prior register accesses (reads and
writes) are performed to the prior register bank. Data values in banked registers are preserved
across bank switches and both banks maintain NaT values when loaded from general registers.
Registers from both banks cannot be addressed at the same time. However, non-banked general
registers (GR0-15, and GR32-127) are accessible regardless of the state of PSR.bn.

The ALAT register target tracking mechanism (see “Data Speculation” on page 1:55) does not
distinguish the two register banks; from the ALAT’s perspective GR16 in bank 0 is the same
register as GR16 in bank 1.

Operating systems should ensure that IA-32 and Itanium-based application code is executed within
register bank 1. If IA-32 or Itanium-based application code executes out of register bank 0, the
application register state (including IA-32) will be lost on any interruption. During interruption
processing the operating system uses register bank 0 as the initial working register context.

Usage of these additional registers is determined by software conventions. However, registers
GR24 to GR31, of bank 0, are not preserved when PSR.ic is 1; operating system code can not rely
on register values being preserved unless PSR.ic is 0. While PSR.ic is 1, processor-specific
firmware may use these registers for machine check or firmware interruption handling at any point
regardless of the state of PSR.i. If PSR.ic is 0, GR24 to GR31 can be used as scratch registers for
low-level interruption handlers. Registers GR16 to GR23 are always preserved; operating system
code can rely on the values being preserved.

Figure 3-16. Banked General Registers

gr0
gr1

63 0

gr16

gr31
gr32

0

general registers nat
0

63 0

banked general
 nat

0

 registers

gr16

gr23

gr127

gr24

gr31

volatile registers
Volume 2: System State and Programming Model 2:35

2:36 Volume 2: System State and Programming Model

2

Addressing and Protection 4

This chapter defines operating system resources to translate 64-bit virtual addresses into physical
addresses, 32-bit virtual addressing, virtual aliasing, physical addressing, memory ordering and
properties of physical memory. Register state defined to support virtual memory management is
defined in Chapter 3, while Chapter 5 provides complete information on virtual memory faults.

Note: Unless otherwise noted, references to “interruption” in this chapter refer to IVA-based
interruptions. See “Interruption Definitions” on page 2:79.

The following key features are supported by the virtual memory model.

• Virtual Regions are defined to support contemporary operating system Multiple Address Space
(MAS) models of placing each process within a unique address space. Region identifiers
uniquely tag virtual address mappings to a given process.

• Protection Domain mechanisms support the Single Address Space (SAS) model, where
processes co-exist within the same virtual address space.

• Translation Lookaside Buffer (TLB) structures are defined to support high-performance paged
virtual memory systems. Software TLB fill and protection handlers are utilized to defer
translation policies and protection algorithms to the operating system.

• A Virtual Hash Page Table (VHPT) is designed to augment the performance of the TLB. The
VHPT is an extension of the processor’s TLB that resides in memory and can be automatically
searched by the processor. A particular operating system page table format is not dictated.
However, the VHPT is designed to mesh with two common translation structures: the virtual
linear page table and hashed page table. Enabling of the VHPT and the size of the VHPT are
completely under software control.

• Sparse 64-bit virtual addressing is supported by providing for large translation arrays
(including multiple levels of hierarchy similar to a cache hierarchy), efficient translation miss
handling support, multiple page sizes, pinned translations, and mechanisms to promote sharing
of TLB and page table resources.

4.1 Virtual Addressing

As seen by Itanium-based application programs, the virtual addressing model is fundamentally a
64-bit flat linear virtual address space. 64-bit general registers are used as pointers into this address
space. IA-32 32-bit virtual linear addresses are zero extended into the 64-bit virtual address space.

As shown in Figure 4-1, the 64-bit virtual address space is divided into eight 261 byte virtual
regions. The region is selected by the upper 3-bits of the virtual address. Associated with each
virtual region is a region register that specifies a 24-bit region identifier (unique address space
number) for the region. Eight out of the possible 224 virtual address spaces are concurrently
accessible via the 8 region registers. The region identifier can be considered the high order address
bits of a large 85-bit global address space for a single address space model, or as a unique ID for a
multiple address space model.
Volume 2: Addressing and Protection 2:37

By assigning sequential region identifiers, regions can be coalesced to produce larger 62-, 63- or
64-bit spaces. For example, an operating system could implement a 62-bit region for process
private data, 62-bit region for I/O, and a 63-bit region for globally shared data. Default page sizes
and translation policies can be assigned to each virtual region.

Figure 4-2 shows the process of mapping a virtual address into a physical address. Each virtual
address is composed of three fields: the Virtual Region Number, the Virtual Page Number, and the
page offset. The upper 3-bits select the Virtual Region Number (VRN). The least-significant bits
form the page offset. The Virtual Page Number (VPN) consists of the remaining bits. The VRN bits
are not included in the VPN. The page offset bits are passed through the translation process
unmodified. Exact bit positions for the page offset and VPN bits vary depending on the page size
used in the virtual mapping.

On a memory reference (any reference other than an insert or purge), the VRN bits select a Region
Identifier (RID) from 1 of the 8 region registers, the TLB is then searched for a translation entry
with a matching VPN and RID value. The VRN may optionally be used when searching for a
matching translation on memory references (references other than inserts and purges – see
Section 4.1.1.4). If a matching translation entry is found, the entry’s physical page number (PPN) is
concatenated with the page offset bits to form the physical address. Matching translations are
qualified by page-granular privilege level access right checks and optional protection domain
checks by verifying the translation’s key is contained within a set of protection key registers and
read, write, execute permissions are granted.

If the required translation is not resident in the TLB, the processor may optionally search the VHPT
structure in memory for the required translation and install the entry into the TLB. If the required
entry cannot be found in the TLB and/or VHPT, the processor raises a TLB Miss fault to request
that the operating system supply the translation. After the operating system installs the translation
in the TLB and/or VHPT, the faulting instruction can be restarted and execution resumed.

Virtual addressing for instruction references are enabled when PSR.it is 1, data references when
PSR.dt is 1, and register stack accesses when PSR.rt is 1.

Figure 4-1. Virtual Address Spaces

224 virtual

virtual address
63 0

261 bytes
per region

4K to 256M
pages

0
1

3

address spaces

8 virtual
regions
2:38 Volume 2: Addressing and Protection

4.1.1 Translation Lookaside Buffer (TLB)

The processor maintains two architectural TLBs as shown in Figure 4-3, the Instruction TLB
(ITLB) and Data TLB (DTLB). Each TLB services translation requests for instruction and data
memory references (including IA-32), respectively. The Data TLB also services translation
requests for references by the RSE and the VHPT walker. The TLBs are further divided into two
sub-sections; Translation Registers (TR) and Translation Cache (TC).

In the remainder of this document, the term TLB refers to the combined instruction, data,
translation register, and translation cache structures.

The TLB is a local processor resource; installation of a translation or local processor purges do not
affect other processor’s TLBs. Global TLB purges are provided to purge translations from all
processors within a TLB coherence domain in a multiprocessor system.

Figure 4-2. Conceptual Virtual Address Translation for References

Figure 4-3. TLB Organization

virtual region number (VRN)

 virtual address

rr0
rr1
rr2

rr7

region

search

protection

63 61 60 0

 hash

 region ID

 Translation Lookaside Buffer (TLB)

pkr0
pkr1
pkr2

 search
key rights

062

physical address

 physical page number (PPN) offset

3

search

24

24

registers

key registers

 virtual page number (VPN) offset

physical page num (PPN)rightsvirtual page num (VPN)key VRNregion ID

search

ITR

itr0itr1itr2

itrn

ITLB

ITC

DTR

dtr0dtr1dtr2

dtrn

DTLB

DTCitc dtc
Volume 2: Addressing and Protection 2:39

4.1.1.1 Translation Registers (TR)

The Translation Register (TR) section of the TLB is a fully-associative array defined to hold
translations that software directly manages. Software can explicitly insert a translation into a TR by
specifying a register slot number. Translations are removed from the TRs by specifying a virtual
address, page size and a region identifier. Translation registers allow the operating system to “pin”
critical virtual memory translations in the TLB. Examples include I/O spaces, kernel memory areas,
frame buffers, page tables, sensitive interruption code, etc. Instruction fetches for interruption
handlers are performed using virtual addresses; therefore, virtual address ranges containing
software translation miss routines and critical interruption sequences should be pinned or else
additional TLB faults may occur. Other virtual mappings may be pinned for performance reasons.

Entries are placed into a specific TR slot with the Insert Translation Register (itr) instruction.
Once a translation is inserted, the processor will not replace the translation to make room for other
translations. Local translations can only be removed by software issuing the Purge Translation
Register (ptr) instruction.

TR inserts and purges may cause other TR and/or TC entries to be removed (refer to Section 4.1.1.4
for details). Prior to inserting a TR entry, software must ensure that no overlapping translation
exists in any TR (including the one being written); otherwise, a Machine Check abort may be
raised, or the processor may exhibit other undefined behavior. Translation register entries may be
removed by the processor due to hardware or software errors. In the presence of an error, the
processor can remove TR entries; notification is raised via a Machine Check abort.

There are at least 8 instruction and 8 data TR slots implemented on all processor models. Please see
the processor specific documentation for further information on the number of translation registers
implemented on the Itanium processor. Translation registers support all implemented page sizes
and must be implemented in a single-level fully-associative array. Any register slot can be used to
specify any virtual address mapping. Translation registers are not directly readable.

In some processor models, translation registers are physically implemented as a subsection of the
translation cache array. Valid TR slots are ignored for purposes of processor replacement on an
insertion into the TC. However, invalid TR slots (unused slots) may be used as TC entries by the
processor. As a result, software inserts into previously invalid TR entries may invalidate a TC entry
in that slot.

Implementations may also place a floating boundary between TR and TC entries within the same
structure where any entry above the boundary is considered a TC and any entry below the boundary
a TR. To maximize TC resources, software should allocate contiguous translation registers starting
at slot 0 and continuing upwards.

4.1.1.2 Translation Cache (TC)

The Translation Cache (TC) is an implementation-specific structure defined to hold the large
working set of dynamic translations for memory references (including IA-32). Please see the
processor specific documentation for further information on Itanium processor TC implementation
details. The processor directly controls the replacement policy of all TC entries.

Entries are installed by software into the translation cache with the Insert Data Translation Cache
(itc.d) and Insert Instruction Translation Cache (itc.i) instructions. The Purge Translation
Cache Local (ptc.l) instruction purges all ITC/DTC entries in the local processor that match the
2:40 Volume 2: Addressing and Protection

specified virtual address range and region identifier. Purges of all ITC/DTC entries matching a
specified virtual address range and region identifier among all processors in a TLB coherence
domain can be globally performed with the Purge Translation Cache Global (ptc.g, ptc.ga)
instruction. The TLB coherence domain covers at least the processors on the same local bus on
which the purge was broadcast. Propagation between multiple TLB coherence domains is platform
dependent. Software must handle the case where a purge does not propagate to all processors in a
multiprocessor system. Translation cache purges do not invalidate TR entries.

All the entries in a local processor’s ITC and DTC can be purged of all entries with a sequence of
Purge Translation Cache Entry (ptc.e) instructions. A ptc.e does not propagate to other
processors.

In all processor models, the translation cache has at least 1 instruction and 1 data entry in addition
to the specified 8 instruction and 8 data translation registers. Implementations are free to implement
translation cache arrays of larger sizes. Implementations may also choose to implement additional
hierarchies for increased performance. At least one translation cache level is required to support all
implemented page sizes. Additional hierarchy levels may or may not be performance optimized for
the preferred page size specified by the virtual region, may be set-associative or fully associative,
and may support a limited set of page sizes. Please see the processor specific documentation for
further information on the Itanium processor implementation details of the translation cache.

The translation cache is managed by both software and hardware. In general, software cannot
assume any entry installed will remain, nor assume the lifetime of any entry since replacement
algorithms are implementation specific. The processor may discard or replace a translation at any
point in time for any reason (subject to the forward progress rules below). TC purges may remove
more entries than explicitly requested. In the presence of a processor hardware error, the processor
may remove TC entries and optionally raise a Corrected Machine Check Interrupt.

In order to ensure forward progress for Itanium-based code, the following rules must be observed
by the processor and software.

• Software may insert multiple translation cache entries per TLB fault, provided that only the
last installed translation is required for forward progress.

• The processor may occasionally invalidate the last TC entry inserted. The processor must
guarantee visibility of the last inserted TC entry to all references while PSR.ic is zero. The
processor must eventually guarantee visibility of the last inserted TC entry until an rfi sets
PSR.ic to 1 and at least one instruction is executed with PSR.ic equal to 1, and completes
without a fault or interrupt. The last inserted TC entry may be occasionally removed before this
point, and software must be prepared to re-insert the TC entry on a subsequent fault. For
example, eager or mandatory RSE activity, speculative VHPT walks, or other interruptions of
the restart instruction may displace the software-inserted TC entry, but when software later
re-inserts the same TC entry, the processor must eventually complete the restart instruction to
ensure forward progress, even if that restart instruction takes other faults which must be
handled before it can complete. If PSR.ic is set to 1 by instructions other than rfi, the
processor does not guarantee forward progress.

• If software inserts an entry into the TLB with an overlapping entry (same or larger size) in the
VHPT, and if the VHPT walker is enabled, forward progress is not guaranteed. See “VHPT
Searching” on page 2:52.

• Software may only make references to memory with physical addresses or with virtual
addresses which are mapped with TRs, or to addresses mapped by the just-inserted translation,
between the insertion of a TC entry, and the execution of the instruction with PSR.ic equal to 1
which is dependent on that entry for forward progress. Software may also make repeated
Volume 2: Addressing and Protection 2:41

attempts to execute the same instruction with PSR.ic equal to 1. If software makes any other
memory references than these, the processor does not guarantee forward progress.

• Software must not defeat forward progress by consistently displacing a required TC entry
through a global or local translation cache purge.

IA-32 code has more stringent forward progress rules that must be observed by the processor and
software. IA-32 forward progress rules are defined in Section 10.6.3.

The translation cache can be used to cache TR entries if the TC maintains the instruction vs. data
distinction that is required of the TRs. A data reference cannot be satisfied by a TC entry that is a
cache of an instruction TR entry, nor can an instruction reference be satisfied by a TC entry that is a
cache of a data TR entry. This approach can be useful in a multi-level TLB implementation.

4.1.1.3 Unified Translation Lookaside Buffers

Some processor models may merge the ITC and DTC into a unified translation cache. The
minimum number of unified entries is 2 (1 for instruction, and 1 for data). Processors may service
instruction fetch memory references with TC entries originally installed into the DTC and service
data memory references with translations originally installed in the ITC. To ensure consistent
operation across processor implementations, software is recommended to not install different
translations into the ITC or DTC for the same virtual region and virtual address. ITC inserts may
remove DTC entries. DTC inserts may remove ITC entries. TC purges remove ITC and DTC
entries.

Instruction and data translation registers cannot be unified. DTR entries cannot be used by
instruction references and ITR entries cannot be used by data references. ITR inserts and purges do
not remove DTR entries. DTR inserts and purges do not remove ITR entries.

4.1.1.4 Purge Behavior of TLB Inserts and Purges

Translations contained in the translation caches (TC) and translation registers (TR) are maintained
in a consistent state by ensuring that TLB insertions remove existing overlapping entries before
new TR or TC entries are installed. Similarly, TLB purges that partially or fully overlap with
existing translations may remove all overlapping entries. In this context, “overlap” refers to two
translations with the same region identifier (but not necessarily identical virtual region numbers),
and with partially or fully overlapping virtual address ranges (determined by the virtual address and
the page size). Examples are: two 4K-byte pages at the same virtual address, or an 8K-byte page at
virtual address 0x2000 and a 4K-byte page at 0x3000.

As described in Section 4.1, each TLB may contain a VRN field, and virtual address bits {63:61}
may be used as part of the match for memory references (references other than inserts and purges).
This binding of a translation to the VRN implies that a lookup of a given virtual address (region
identifier/VPN pair) in either the translation cache or translation registers may result in a TLB miss
if a memory reference is made through a different VRN (even if the region identifiers in the two
region registers are identical). Some processor models may also omit the VRN field of the TLB,
causing the TLB search on memory references to find an entry independent of VRN bits. However,
all processor models are required, during translation cache purge and insert operations, to purge all
possible translations matching the region identifier and virtual address regardless of the specified
VRN.
2:42 Volume 2: Addressing and Protection

A processor may overpurge translation cache entries; i.e., it may purge a larger virtual address
range than required by the overlap. Since page sizes are powers of 2 in size and aligned on that
same power of 2 boundary, purged entries can either be a superset of, identical to, or a subset of the
specified purge range.

Table 4-1 defines the purge behavior of the different TLB insert and purge instructions.

Figure 4-4. Conceptual Virtual Address Searching for Inserts and Purges

Table 4-1. Purge Behavior of TLB Instructions

TLB Instructions
Translation Cache Translation Registers

Instruction Data Instruction Data

itc.i Must purgea

a. Must purge: requires that all partially or fully overlapped translations are removed prior to the insert or purge
operation.

May purgeb

b. May purge: indicates that a processor may remove partially or fully overlapped translations prior to the insert
or purge operation. However, software must not rely on the purge.

Machine Checkc

c. Machine Check: indicates that a processor will cause a Machine Check abort if an attempt is made to insert or
purge a partially or fully overlapped translation. The machine check abort may not be delivered synchronously
with the TLB insert or purge operation itself, but is guaranteed to be delivered, at the latest, on a subsequent
instruction serialization operation.

Must not purged

itr.i Must purge May purge Machine Check Must not purge

itc.d May purge Must purge Must not purge Machine Check

itr.d May purge Must purge Must not purge Machine Check

ptc.l Must purge Must purge Machine Check Machine Check

ptc.g, ptc.ga
(local)e

Must purge Must purge Machine Check Machine Check

ptc.g, ptc.ga
(remote)e

Must purge Must purge Must not purge
Must not Machine
Checkf

Must not purge
Must not Machine
Check

ptc.e Must purge Must purge Must not purge Must not purge

ptr.i Must purge May purge Must purge Must not purge

ptr.d May purge Must purge Must not purge Must purge

virtual region number (VRN)

 virtual address

rr0
rr1
rr2

rr7

region

search

63 61 60 0

 hash

 region ID

 Translation Lookaside Buffer (TLB)

3

search

24

registers

 virtual page number (VPN)

physical page num (PPN)rightsvirtual page num (VPN)key VRNregion ID
Volume 2: Addressing and Protection 2:43

4.1.1.5 Translation Insertion Format

Figure 4-5 shows the register interface to insert entries into the TLB. TLB insertions are performed
by issuing the Insert Translation Cache (itc.d, itc.i) and Insert Translation Registers (itr.d,
itr.i) instructions. The first 64-bit field containing the physical address, attributes and
permissions is supplied by a general purpose register operand. Additional protection key and page
size information is supplied by the Interruption TLB Insertion Register (ITIR). The Interruption
Faulting Address register (IFA) specifies the virtual address for instruction and data TLB inserts.
ITIR and IFA are defined in “Control Registers” on page 2:24. The upper 3 bits of IFA (VRN
bits{63:61}) select a virtual region register that supplies the RID field for the TLB entry. The RID
of the selected region is tagged to the translation as it is inserted into the TLB. If reserved fields or
reserved encodings are used, a Reserved Register Field fault is raised on the insert instruction.

Software must issue an instruction serialization operation to ensure installs into the ITLB are
observed by dependent instruction fetches and a data serialization operation to ensure installs into
the DTLB are observed by dependent memory data references.

Table 4-2 describes all the translation interface fields.

d. Must not purge: the processor does not remove (or check for) partially or fully overlapped translations prior to
the insert or purge operation. Software can rely on this behavior.

e. ptc.g, ptc.ga: two forms of global TLB purges are distinguished: local and remote. The local form
indicates that the ptc.g or ptc.ga was initiated on the local processor. The remote form indicates that this
is an incoming TLB shoot-down from a remote processor.

f. Must not Machine Check: Remote ptc.g or ptc.ga operations must not cause local translation registers
to be purged. Remote ptc.g or ptc.ga operations must not cause the local processor to machine check.

Figure 4-5. Translation Insertion Format
63 53 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

GR[r] ig ed rv ppn ar pl d a ma rv p

ITIR rv key ps rv

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-2. Translation Interface Fields

TLB
Field

Source
Field

Description

rv GR[r]{5,51:50},
ITIR{1:0,63:32},
RR[vrn]{1,63:32}

reserved

p GR[r]{0} Present bit – When 0, references using this translation cause an Instruction or
Data Page Not Present fault. Most other fields are ignored by the processor,
see Figure 4-6 for details. This bit is typically used to indicate that the
mapped physical page is not resident in physical memory. The present bit
is not a valid bit. For each TLB entry, the processor maintains an
additional hidden valid bit indicating if the entry is enabled for matching.

ma GR[r]{4:2} Memory Attribute – describes the cacheability, coherency, write-policy and
speculative attributes of the mapped physical page. See “Memory Attributes”
on page 2:63 for details.
2:44 Volume 2: Addressing and Protection

The format in Figure 4-6 is defined for not-present translations (P-bit is zero).

a GR[r]{5} Accessed Bit – When 0 and PSR.da is 0, data references to the page cause a
Data Access Bit fault. When 0 and PSR.ia is 0, instruction references to the
page cause an Instruction Access Bit fault. When 0, IA-32 references to the
page cause an Instruction or Data Access Bit fault. This bit can trigger a fault
on reference for tracing or debugging purposes. The processor does not
update the Accessed bit on a reference.

d GR[r]{6} Dirty Bit – When 0 and PSR.da is 0, Intel® Itanium® store or semaphore
references to the page cause a Data Dirty Bit fault. When 0, IA-32 store or
semaphore references to the page cause a Data Dirty Bit fault. The processor
does not update the Dirty bit on a write reference.

pl GR[r]{8:7} Privilege Level – Specifies the privilege level or promotion level of the page.
See “Page Access Rights” on page 2:46 for complete details.

ar GR[r]{11:9} Access Rights – page granular read, write and execute permissions and
privilege controls. See “Page Access Rights” on page 2:46 for details.

ppn GR[r]{49:12} Physical Page Number – Most significant bits of the mapped physical address.
Depending on the page size used in the mapping, some of the least significant
PPN bits are ignored.

ig GR[r]{63:53}
IFA{11:0},
RR[vrn]{0,7:2}

available – Software can use these fields for operating system defined
parameters. These bits are ignored when inserted into the TLB by the
processor.

ed GR[r]{52} Exception Deferral – For a speculative load that results in an exception, the
speculative load’s instruction page TLB.ed bit is one of the conditions which
determines whether the exception must be deferred. See “Deferral of
Speculative Load Faults” on page 2:88 for complete details. This bit is ignored
in the data TLB for data memory references and for IA-32 memory references.

ps ITIR{7:2} Page Size – Page size of the mapping. For page sizes larger than 4K bytes
the low-order bits of PPN and VPN are ignored. Page sizes are defined as 2ps

bytes. See “Page Sizes” on page 2:47 for a list of supported page sizes.

key ITIR{31:8} Protection Key – uniquely tags the translation to a protection domain. If a
translation’s Key is not found in the Protection Key Registers (PKRs), access
is denied and a Data or Instruction Key Miss fault is raised. See “Protection
Keys” on page 2:48 for complete details.

vpn IFA{63:12} Virtual Page Number – Depending on a translation’s page size, some of the
least-significant VPN bits specified are ignored in the translation process.
VPN{63:61} (VRN) selects the region register.

rid RR[VRN].rid Virtual Region Identifier – On TLB inserts the Region Identifier selected by
VPN{63:61} (VRN) is used as additional match bits for subsequent accesses
and purges (much like vpn bits).

Figure 4-6. Translation Insertion Format – Not Present
63 32 31 12 11 8 7 2 1 0

GR[r] ig 0

ITIR ig ps rv

IFA vpn ig

RR[vrn] rv rid ig rv ig

Table 4-2. Translation Interface Fields (Continued)

TLB
Field

Source
Field

Description
Volume 2: Addressing and Protection 2:45

4.1.1.6 Page Access Rights

Page granular access controls use 4 levels of privilege. Privilege level 0 is the most privileged and
has access to all privileged instructions; privilege level 3 is least privileged. Access (including
IA-32) to a page is determined by the TLB.ar and TLB.pl fields, and by the privilege level of the
access, as defined in Table 4-3. RSE fills and spills obtain their privilege level from RSC.pl; all
other accesses (including IA-32) obtain their privilege level from PSR.cpl. Within each cell, “–”
means no access, “R” means read access, “W” means write access, “X” means execute access, and
“Pn” means promote PSR.cpl to privilege level “n” when an Enter Privileged Code (epc)
instruction is executed.

Table 4-3. Page Access Rights

TLB.ar TLB.pl
Privilege Levela

a. RSC.pl, for RSE fills and spills; PSR.cpl for all other accesses.

Description
3 2 1 0

0 3 R R R R read only

2 – R R R

1 – – R R

0 – – – R

1 3 RX RX RX RX read, execute

2 – RX RX RX

1 – – RX RX

0 – – – RX

2 3 RW RW RW RW read, write

2 – RW RW RW

1 – – RW RW

0 – – – RW

3 3 RWX RWX RWX RWX read, write, execute

2 – RWX RWX RWX

1 – – RWX RWX

0 – – – RWX

4 3 R RW RW RW read only / read, write

2 – R RW RW

1 – – R RW

0 – – – RW

5 3 RX RX RX RWX read, execute / read, write, exec

2 – RX RX RWX

1 – – RX RWX

0 – – – RWX

6 3 RWX RW RW RW read, write, execute / read, write

2 – RWX RW RW

1 – – RWX RW

0 – – – RW

7 3 X X X RX exec, promoteb / read, execute

b. User execute only pages can be enforced by setting PL to 3.

2 XP2 X X RX

1 XP1 XP1 X RX

0 XP0 XP0 XP0 RX
2:46 Volume 2: Addressing and Protection

Software can verify page level permissions by the probe instruction, which checks accessibility to
a given virtual page by verifying privilege levels, page level read and write permission, and
protection key read and write permission.

Execute-only pages (TLB.ar 7) can be used to promote the privilege level on entry into the
operating system. User level code would typically branch into a promotion page (controlled by the
operating system) and execute the Enter Privileged Code (epc) instruction. When epc successfully
promotes, the next instruction group is executed at the target privilege level specified by the
promotion page. A procedure return branch type (br.ret) can demote the current privilege level.

4.1.1.7 Page Sizes

A range of page sizes are supported to assist software in mapping system resources and improve
TLB/VHPT utilization. Typically, operating systems will select a small range of fixed page sizes to
implement virtual memory algorithms. Larger pages may be statically allocated. For example, large
areas of the virtual address space may be reserved for operating system kernels, frame buffers, or
memory-mapped I/O regions. Software may also elect to pin these translations, by placing them in
the translation registers.

Table 4-4 lists insertable and purgeable page sizes that are supported by all processor models.
Insertable page sizes can be specified in the translation cache, the translation registers, the region
registers and the VHPT. Insertable page sizes can also be used as parameters to TLB purge
instructions (ptc.l, ptc.g, ptc.ga or ptr). Page sizes that are purgeable only may only be used
as parameters to TLB purge instructions.

Processors may also support additional insertable and purgeable page sizes. Please see the
processor specific documentation for further information on the page sizes supported by the
Itanium processor.

Page sizes are encoded in translation entries and region registers as a 6-bit encoded page size field.
Each field specifies a mapping size of 2N bytes, thus a value of 12 represents a 4K-byte page. If
unimplemented page sizes are specified to an itc, itr or mov to region register instruction, a
Reserved Register/Field fault is raised. If unimplemented page sizes are specified for a TLB purge
instruction an implementation may raise a Machine Check abort, may under-purge translations up
to ignoring the request, or may over-purge translations up to removal of all entries from the
translation cache. If unimplemented page sizes are specified by a ptc.g or ptc.ga broadcast from
another processor, an implementation may under-purge translations up to ignoring the request, or
may over-purge translations up to removal of all entries from the translation cache. However, it
must not raise a Machine Check abort.

Virtual and physical pages are aligned on the natural boundary of the page. For example, 4K-byte
pages are aligned on 4K-byte boundaries, and 4 M-byte pages on 4 M-byte boundaries.

Table 4-4. Architected Page Sizes

Page Sizes

4k 8k 16k 64k 256k 1M 4M 16M 64M 256M 4G

Insertable yes yes yes yes yes yes yes yes yes yes –

Purgeable yes yes yes yes yes yes yes yes yes yes yes
Volume 2: Addressing and Protection 2:47

4.1.2 Region Registers (RR)

Associated with each of the 8 virtual regions is a privileged Region Register (RR). Each register
contains a Region Identifier (RID) along with several other region attributes, see Figure 4-7. The
values placed in the region register by the operating system can be viewed as a collection of process
address space identifiers.

Regions support multiple address space operating systems by avoiding the need to flush the TLB
on a context switch. Sharing between processes is promoted by mapping common global or shared
region identifiers into the region register working set of multiple processes. All IA-32 memory
references are through region register 0.

Table 4-5 describes the region register fields. Region Identifier (rid) bits 0 through 17 must be
implemented on all processor models. Some processor models may implement additional bits.
Additional implemented bits must be contiguous and start at bit 18. Unimplemented bits are
reserved. Please see the processor specific documentation for further information on the size of the
Region Identifier implemented on the Itanium processor.

Software must issue an instruction serialization operation to ensure writes into the region registers
are observed by dependent instruction fetches and issue a data serialization operation for dependent
memory data references.

4.1.3 Protection Keys

Protection Keys provide a method to restrict permission by tagging each virtual page with a unique
protection domain identifier. The Protection Key Registers (PKR) represent a register cache of all
protection keys required by a process. The operating system is responsible for management and
replacement polices of the protection key cache. Before a memory access (including IA-32) is
permitted, the processor compares a translation’s key value against all keys contained in the PKRs.
If a matching key is not found, the processor raises a Key Miss fault. If a matching Key is found,
access to the page is qualified by additional read, write and execute protection checks specified by

Figure 4-7. Region Register Format
63 32 31 8 7 2 1 0

rv rid ps rv ve
32 24 6 1 1

Table 4-5. Region Register Fields

Field Bits Description

rv 1,63:32 reserved

ve 0 VHPT Walker Enable – When 1, the VHPT walker is enabled for the region. When 0,
disabled.

ps 7:2 Preferred page Size – Selects the virtual address bits used in hash functions for
set-associative TLBs or the VHPT. Encoded as 2ps bytes. The processor may make
significant performance optimizations for the specified preferred page size for the
region.a

a. For more details on the usage of this field, See “VHPT Hashing” on page 2:54.

rid 31:8 Region Identifier – During TLB inserts, the region identifier from the select region
register is used to tag translations to a specific address space. During TLB/VHPT
lookups, the region identifier is used to match translations and to distribute hash
indexes among VHPT and TLB sets.
2:48 Volume 2: Addressing and Protection

the matching protection key register. If these checks fail, a Key Permission fault is raised. Upon
receipt of a Key Miss or Key Permission fault, software can implement the desired security policy
for the protection domain. Figure 4-8 and Table 4-6 describe the protection key register format and
protection key register fields.

Processor models have at least 16 protection key registers, and at least 18-bits of protection key.
Some processor models may implement additional protection key registers and protection key bits.
Unimplemented bits and registers are reserved. Key registers have at least as many implemented
key bits as region registers have rid bits. Additional implemented bits must be contiguous and start
at bit 18. Please see the processor specific documentation for further information on the number of
protection key registers and protection key bits implemented on the Itanium processor.

Software must issue an instruction serialization operation to ensure writes into the protection key
registers are observed by dependent instruction fetches and a data serialization operation for
dependent memory data references.

The processor ensures uniqueness of protection keys by checking new valid protection keys against
all protection key registers during the move to PKR instruction. If a valid matching key is found in
any PKR register, the processor invalidates the matching PKR register by setting PKR.v to zero,
before performing the write of the new PKR register. The other fields in any matching PKR remain
unchanged when it is invalidated.

Key Miss and Permission faults are only raised when memory translations are enabled (PSR.dt is 1
for data references, PSR.it is 1 for instruction references, PSR.rt is 1 for register stack references),
and protection key checking is enabled (PSR.pk is one).

Data TLB protection keys can be acquired with the Translation Access Key (tak) instruction.
Instruction TLB key values are not directly readable. To acquire instruction key values software
should make provisions to read memory structures.

Figure 4-8. Protection Key Register Format
63 32 31 8 7 4 3 2 1 0

rv key rv xd rd wd v
32 24 4 1 1 1 1

Table 4-6. Protection Register Fields

Field Bits Description

v 0 Valid – When 1, the Protection Register entry is valid and is checked by the
processor when performing protection checks. When 0, the entry is ignored.

wd 1 Write Disable – When 1, write permission is denied to translations in the protection
domain.

rd 2 Read Disable – When 1, read permission is denied to translations in the protection
domain.

xd 3 Execute Disable – When 1, execute permission is denied to translations in the
protection domain.

key 31:8 Protection Key – uniquely tags translation to a given protection domain.

rv 7:4,63:32 reserved
Volume 2: Addressing and Protection 2:49

4.1.4 Translation Instructions

Table 4-7 lists translation instructions used to manage translations. Region registers, protection key
registers and the TLBs are accessed indirectly; the register number is determined by the contents of
a general register.

The processor does not ensure that modification of the translation resources is observed by
subsequent instruction fetches or data memory references. Software must issue an instruction
serialization operation before any dependent instruction fetch and a data serialization operation
before any dependent data memory reference.

Table 4-7. Translation Instructions

Mnemonic Description Operation
Instr.
Type

Serialization
Requirement

mov rr[r3] = r2 Move to region
register

RR[GR[r3]] = GR[r2] M data/inst

mov r1 = rr[r3] Move from region
register

GR[r1] = RR[GR[r3]] M none

mov pkr[r3] = r2 Move to protection key
register

PKR[GR[r3]] = GR[r2] M data/inst

mov r1 = pkr[r3] Move from protection
key register

GR[r1] = PKR[GR[r3]] M none

itc.i r3 Insert instruction
translation cache

ITC = GR[r3], IFA, ITIR M inst

itc.d r3 Insert data translation
cache

DTC = GR[r3], IFA, ITIR M data

itr.i itr[r2] = r3 Insert instruction
translation register

ITR[GR[r2]] = GR[r3], IFA, ITIR M inst

itr.d dtr[r2] = r3 Insert data translation
register

DTR[GR[r2]] = GR[r3], IFA, ITIR M data

probe r1 = r3, r2 Probe data TLB for translation M none

ptc.l r3, r2 Purge a translation from local processor instruction and
data translation cache

M data/inst

ptc.g r3, r2 Globally purge a translation from multiple processor’s
instruction and data translation caches

M data/inst

ptc.ga r3, r2 Globally purge a translation from multiple processor’s
instruction and data translation caches and remove
matching entries from multiple processor’s ALATs

M data/inst

ptc.e r3 Purge local instruction and data translation cache of all
entries

M data/inst

ptr.i r3, r2 Purge instruction translation registers M inst

ptr.d r3, r2 Purge data translation registers M data

tak r1 = r3 Obtain data TLB entry protection key M none

thash r1 = r3 Generate translation’s VHPT hash address M none

ttag r1 = r3 Generate translation tag for VHPT M none

tpa r1 = r3 Translate a virtual address to a physical address M none
2:50 Volume 2: Addressing and Protection

4.1.5 Virtual Hash Page Table (VHPT)

The VHPT is an extension of the TLB hierarchy designed to enhance virtual address translation
performance. The processor’s VHPT walker can optionally be configured to search the VHPT for a
translation after a failed instruction or data TLB search. The VHPT walker provides significant
performance enhancements by reducing the rate of flushing the processor’s pipelines due to a TLB
Miss fault, and by providing speculative translation fills concurrent to other processor operations.

The VHPT, resides in the virtual memory space and is configurable as either the primary page table
of the operating system or as a single large translation cache in memory (see Figure 4-9). Since the
VHPT resides in the virtual address space, an additional TLB miss can be raised when the VHPT is
referenced. This property allows the VHPT to also be used as a linear page table.

The processor does not manage the VHPT or perform any writes into the table. Software is
responsible for insertion of entries into the VHPT (including replacement algorithms), dirty/access
bit updates, invalidation due to purges and coherency in a multiprocessor system. The processor
does not ensure the TLBs are coherent with the VHPT memory image.

If software needs to control the entries inserted into the TLB more explicitly, or programs the
VHPT with differing mappings for the same virtual address range, it may need to take additional
action to ensure forward progress. See “VHPT Searching” on page 2:52.

4.1.5.1 VHPT Configuration

The Page Table Address (PTA) register determines whether the processor is enabled to walk the
VHPT, anchors the VHPT in the virtual address space, and controls VHPT size and configuration
information. The VHPT can be configured as either a per-region virtual linear page table structure
(8-byte short format) or as a single large hash page table (32-byte long format). No mixing of
formats is allowed within the VHPT.

To implement a per-region linear page table structure an operating system would typically map the
leaf page table nodes with small backing virtual translations. The size of the table is expanded to
include all possible virtual mappings, effectively creating a large per-region flat page table within
the virtual address space.

Figure 4-9. Virtual Hash Page Table (VHPT)

TLB

virtual address

hashing
function

VHPT

optional collision search chain

optional operating system page tables

region
registers

rid vpn

PTA

2PTA.size

PTA.base

ps

TC
install
Volume 2: Addressing and Protection 2:51

To implement a single large hash page table, the entire VHPT is typically mapped with a single
large pinned virtual translation placed in the translation registers and the size of the table is reduced
such that only a subset of all virtual mappings can be resident within the table. Operating systems
can tune the size of the hash page table based on the size of physical memory and operating system
performance requirements.

4.1.5.2 VHPT Searching

When enabled, the processor’s VHPT walker searches the VHPT for a translation after a failed
instruction or data TLB search. The VHPT walker checks only the specific VHPT entry addressed
by the short- or the long-format hash function, as selected by PTA.vf. If additional TLB misses are
encountered during the VHPT access, a VHPT Translation fault is raised. If the region-based
short-format VHPT entry contains no reserved bits or encodings, it is installed into the TLB, and
the processor again attempts to translate the failed instruction or data reference. If the long-format
VHPT entry’s tag specifies the correct region identifier and virtual address, and the entry contains
no reserved bits or encodings, it is installed into the TLB, and the processor again attempts to
translate the failed instruction or data reference. Otherwise the processor raises a TLB Miss fault.
The translation is installed into the TLB even if its VHPT entry is marked as not present (p=0).
Software may optionally search additional VHPT collision chains (associativities) or search for
translations within the operating system’s primary page tables. Performance is optimized by
placing frequently referenced translations within the VHPT structure directly searched by the
processor.

The VHPT walker is optional on a given processor model. Software can neither assume the
presence of a VHPT walker, nor that the VHPT walker will find a translation in the VHPT. The
VHPT walker can abort a search at any time for implementation-specific reasons, even if the
required translation entry is in the VHPT. Operating systems must regard the VHPT walker strictly
as a performance optimization and must be prepared to handle TLB misses if the walker fails.

VHPT walks may be done speculatively by the processor's VHPT walker. Additionally, VHPT
walks triggered by non-speculatively-executed instructions are not required to be done in program
order. Therefore, if the walker is enabled and if the VHPT contains multiple entries that map the
same virtual address range, software must set up these entries such that any of them can be used in
the translation of any part of this virtual address range. Additionally, if software inserts a translation
into the TLB which is needed for forward progress, and this translation has a smaller page size than
the translation which would have been inserted on a VHPT walk for the same address, then
software may need to disable the VHPT walker in order to ensure forward progress, since this
inserted translation may be displaced by a VHPT walk before it can be used.

4.1.5.3 Region-based VHPT Short Format

The region-based VHPT short format shown in Figure 4-10 uses 8-byte VHPT entries to support a
per-region linear page table configuration. To use the short-format VHPT, PTA.vf must be set to 0.

Figure 4-10. VHPT Short Format
63 53 52 51 50 49 12 11 9 8 7 6 5 4 2 1 0

ig ed rv ppn ar pl d a ma rv p
11 1 2 38 3 2 1 1 3 1 1
2:52 Volume 2: Addressing and Protection

See “Translation Insertion Format” on page 2:44 for a description of all fields. The VHPT walker
provides the following default values when entries are installed into the TLB.

• Virtual Page Number – implied by the position of the entry in the VHPT. The hashed
short-format entry is considered to be the matching translation.

• Region Identifiers are not specified in the short format. To ensure uniqueness, software must
provide unique VHPT mappings per region. Region identifiers obtained from the referenced
region register are tagged with the translation when inserted into the TLB.

• Page Size – specified by the accessed region’s preferred page size (RR[VA{63:61}].ps)

• Protection Key – specified by the accessed region identifier value (RR[VA{63:61}].rid). As a
result, all implementations must ensure that the number of implemented key bits is greater than
or equal to the number of implemented region identifier bits.

If a translation is marked as not present, ignored fields are usable by software as noted in
Figure 4-11.

4.1.5.4 VHPT Long Format

The long-format VHPT uses 32-byte VHPT entries to support a single large virtual hash page table.
To use the long-format VHPT, PTA.vf must be set to 1. The long format is a superset of the TLB
insertion format, as noted in Figure 4-12, and specifies full translation information (including
protection keys and page sizes). Additional fields are defined in Table 4-8. The long format is
typically used to build the hash page table configuration.

Figure 4-11. VHPT Not-present Short Format
63 1 0

ig 0
64

Figure 4-12. VHPT Long Format
offset 63 52 51 50 49 32 31 12 11 9 8 7 6 5 4 2 1 0

+0 ig ed rv ppn ar pl d a ma rv p

+8 rv key ps rv

+16 ti tag

+24 ig
64

Table 4-8. VHPT Long-format Fields

Field Offset Description

tag +16 Translation Tag – The tag, in conjunction with the VHPT hash index, is used to
uniquely identify the translation. Tags are computed by hashing the virtual page
number and the region identifier. See “VHPT Hashing” on page 2:54 for details on tag
and hash index generation.

ti +16 Tag Invalid Bit – If one, this bit of the tag indicates an invalid tag. On all processor
implementations, the VHPT walker and the ttag instruction generate tags with the ti
bit equal to 0. A VHPT entry with the ti bit equal to one will never be inserted into the
processor’s TLBs. Software can use the ti bit to invalidate long-format VHPT entries in
memory.

ig +24 available – field for software use, ignored by the processor. Operating systems may
store any value, such as a link address to extend collision chains on a hash collision.
Volume 2: Addressing and Protection 2:53

If a translation is marked as not present, ignored fields are usable by software as noted in
Figure 4-13.

For multiprocessor systems, atomic updates of long-format VHPT entries may be ensured by
software as follows:

• Before making multiple non-atomic updates to a VHPT entry in memory, software is required
to set its ti bit to one.

• After making multiple non-atomic updates to a VHPT entry in memory, software may clear its
ti bit to zero to re-enable tag matches.

The updates to the VHPT entry in memory must be constrained to be observable only after the store
that sets the ti bit to one is observable. This can be accomplished with a mf instruction, or by
performing the updates to the VHPT entry with release stores. Similarly, the clearing of the ti bit
must be constrained to be observable only after all of the updates to the VHPT entry are observable.
This can be accomplished with a mf instruction, or by performing the clear of the ti bit with a
release store.

4.1.6 VHPT Hashing

The processor provides two methods for software to determine a VHPT entry’s address: the
Translation Hash (thash) instruction, and the Interruption Hash Address (IHA) register defined on
page 2:34. The virtual address of the VHPT entry is placed in the IHA register when a VHPT
Translation or TLB fault is delivered. In the long format, IHA can be used as a starting address to
scan additional collision chains (associativities) defined by the operating system or to perform a
search in software. The thash instruction is used to generate a VHPT entry’s address outside of
interruption handlers and provides the same hash function that is used to calculate IHA.

thash produces a VHPT entry’s address for a given virtual address and region identifier, depending
on the setting of the PTA.vf bit. When PTA.vf=0, thash returns the region-based short-format
index as defined in “Region-based VHPT Short-format Index” on page 2:55. When PTA.vf=1,
thash returns the long-format hash as defined in “Long-format VHPT Hash” on page 2:55. The
ttag instruction is only useful for long-format hashing, and generates a unique 64-bit ti/tag
identifier that the processor’s VHPT walker will check when it looks up a given virtual address and
region identifier. Software should use the ttag instruction, and either the thash instruction or the
IHA register when forming translation tags and hash addresses for the long-format VHPT. These
resources encapsulate the implementation-specific long-format hashing functionality and improve
performance.

Figure 4-13. VHPT Not-present Long Format
offset 63 8 7 2 1 0

+0 ig 0

+8 ig ps rv

+16 ti tag

+24 ig
2:54 Volume 2: Addressing and Protection

4.1.6.1 Region-based VHPT Short-format Index

In the region-based short format, the linear page table for each region resides in the referenced
region itself. As a result, the short-format VHPT consists of separate per-region page tables, which
are anchored in each region by PTA.base{60:15}. For regions in which the VHPT is enabled, the
operating system is required to maintain a per-region linear page table. As defined in Figure 4-14,
the VHPT walker uses the virtual address, the region’s preferred page size, and the PTA.size field to
compute a linear index into the short-format VHPT.

The size of the short-format VHPT (PTA.size) defines the size of the mapped virtual address space.
The maximum architectural table size in the short format is 252 bytes per region. To map an entire
region (261 bytes) using 4Kbyte pages, 2(61-12) = 249 pages must be mappable. A short-format
VHPT entry is 8 bytes = 23 bytes large. As a result, the maximum table size is 2(61-12+3) = 252 bytes
per region. If the short format is used to map an address space smaller than 261, a smaller
short-format table (PTA.size<52) can be used. Mapping of an address space of 2n with 4KByte
pages requires a minimum PTA.size of (n-9).

In the short format, the thash instruction returns the region-based short-format index defined in
Figure 4-14. The ttag instruction is not used with the short format. VHPT translation and TLB
miss faults write the IHA register with the region-based short-format index defined in Figure 4-14.

4.1.6.2 Long-format VHPT Hash

The long-format VHPT is a single large contiguous hash table that resides in the region defined by
PTA.base. As defined in Figure 4-15, the VHPT walker uses the virtual address, the region
identifier, the region’s preferred page size, and the PTA.size field to compute a hash index into the
long-format VHPT. PTA.base{63:15} defines the base address and the region of the long-format
VHPT. PTA.size reflects the size of the hash table, and is typically set to a number significantly
smaller than 264; the exact number is based on operating system performance requirements.

The long-format hash function (tlb_vhpt_hash_long) and long-format tag generation function
are implementation specific. However, on all processor models the hash and tag functions must
exclude the virtual region number (virtual address bits VA{63:61}) from the hash and tag

Figure 4-14. Region-based VHPT Short-format Index Function

Mask = (1 << PTA.size) - 1;
VHPT_Offset = (VA{IMPL_VA_MSB:0} u>> RR[VA{63:61}].ps) << 3;
VHPT_Addr = (VA{63:61} << 61) |

(((PTA.base{60:15} & ~Mask{60:15}) | (VHPT_Offset{60:15} &
Mask{60:15})) << 15) |

VHPT_Offset{14:0};

Figure 4-15. VHPT Long-format Hash Function

Mask = (1 << PTA.size) - 1;
HPN = VA{IMPL_VA_MSB:0} u>> RR[VA{63:61}].ps;
Hash_Index = tlb_vhpt_hash_long(HPN,RR[VA{63:61}].rid);
// model-specific hash function
VHPT_Offset = Hash_Index << 5;
VHPT_Addr = (PTA.base{63:61} << 61) |

(((PTA.base{60:15} & ~Mask{60:15}) | (VHPT_Offset{60:15}
& Mask{60:15})) << 15) | VHPT_Offset{14:0};
Volume 2: Addressing and Protection 2:55

computations. This ensures that a unique 85-bit global virtual address hashes to the same VHPT
hash address, regardless of which region the address is mapped to. All processor implementations
guarantee that the most significant bit of the tag (ti bit) is zero for all valid tags. The hash index and
tag together must uniquely identify a translation. The processor must ensure that the indices into the
hashed table, the region’s preferred page size, and the tag specified in an indexed entry can be used
in a reverse hash function to uniquely regenerate the region identifier and virtual address used to
generate the index and tag. This must be possible for all supported page sizes, implemented virtual
addresses and legal values of region identifiers. A hash function is reversible if using the hash result
and all but one input produces the missing input as the result of the reverse hash function. The
easiest hash function and reverse hash function is a simple XOR of bits. To ensure uniqueness,
software must follow these rules:

1. Software must use only one preferred page size for each unique region identifier at any given
time; otherwise, processor operation is undefined.

2. All tags for translations within a given region must be created with the preferred page size
assigned to the region; otherwise, processor operation is undefined.

3. Software is not allowed to have pages in the VHPT that are smaller than the preferred page
size for the region; otherwise, processor operation is undefined. Software can specify a page
with a page size larger than the preferred page size in the VHPT, but tag values for the
entries representing that page size must be generated using the preferred page size assigned
to that region.

4. To reuse a region identifier with a different preferred page size, software must first ensure
that the VHPT contains no insertable translations for that rid, purge all translations for that
rid from all processors that may have used it, and then update the region register with the
new preferred page size.

4.1.7 VHPT Environment

The processor’s VHPT walker can optionally be configured to search the VHPT for a translation
after a failed instruction or data TLB search. The VHPT walker is enabled for different types of
references under the following conditions:

• Data and non-access references (including IA-32): PTA.ve=1, and RR[VA{63:61}].ve=1, and
PSR.dt=1.

• Instruction fetches (including IA-32): PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1,
and PSR.it=1, and PSR.ic=1.

• RSE references: PTA.ve=1, and RR[VA{63:61}].ve=1, and PSR.dt=1, and PSR.rt=1.

If the walker is not enabled, and an attempt is made to reference the VHPT, an Alternate
Instruction/Data TLB Miss fault is raised. The remainder of this section assumes that the VHPT is
enabled.

Region registers must support all implemented page sizes so software can use IHA, thash and
ttag to manage the VHPT. thash and ttag are defined to operate on all page sizes supported by
the translation cache, regardless of the VHPT walker’s supported page sizes. The PTA register must
be implemented on processor models that do not implement a VHPT walker. Software must ensure
PTA is initialized and serialized before issuing ttag, thash, before enabling the VHPT walker or
issuing a reference that may cause a VHPT walk. The minimum VHPT size is 32KBytes
(PTA.size=15), and operating systems must ensure that the VHPT is aligned on the natural
boundary of the structure; otherwise, processor operation is undefined. For example, a 64K-byte
table must be aligned on a 64K-byte boundary.
2:56 Volume 2: Addressing and Protection

VHPT walker references to the VHPT are performed at privilege level 0, regardless of the state of
PSR.cpl. VHPT byte ordering is determined by the state of DCR.be. When DCR.be=1, VHPT
walker references are performed using big-endian memory formats; otherwise, VHPT walker
references are little-endian. A long-format VHPT reference is matched against the data break-point
registers as a 32-byte reference.

The VHPT is accessed by the processor only if the VHPT is virtually mapped into cacheable
memory areas. The walker may access the VHPT speculatively, i.e., references may be performed
that are not required by an in-order execution of the program. Any VHPT or TLB faults
encountered during a VHPT walker’s search are not reported until the faulting translation is
required by an in-order execution of the program. If the VHPT is mapped into non-cacheable
memory areas the VHPT is not referenced, and all TLB misses result in an Instruction/Data TLB
Miss fault.

The VHPT walker will abort the search and deliver an Instruction/Data TLB Miss fault if an
attempt is made to install translations that have reserved bits or encodings, or if the translation
mapping the VHPT would have taken one of the following faults: Data Page Not Present, Data NaT
Page Consumption, Data Key Miss, Data Key Permission, Data Access Bit, or Data Debug. The
VHPT walker may abort a search and deliver an Instruction/Data TLB Miss fault at any time for
implementation-specific reasons.

The processor’s VHPT walker is required to read and insert VHPT entries from memory atomically
(an 8-byte atomic read-and-insert for short format, and a 32-byte atomic read-and-insert for long
format). Some implementation strategies for achieving this atomicity are as follows:

• If the walker performs its VHPT read with multiple cache accesses which are not done as an
atomic unit, and if an update to part of the entry that is being installed is made in-between these
multiple reads, the walker must abort the insert and deliver an Instruction/Data TLB Miss.

• If the walker performs its VHPT read and the insertion of the entry into the TLB as separate
actions, and not as an atomic unit, and if an update to part of the entry that is being installed is
made in-between the read and the insert, the walker must either abort the insert and deliver an
Instruction/Data TLB Miss, or ignore the update and install the complete old entry.

• If the purge address range of a TLB purge operation (ptc.l, ptc.e, local or remote ptc.g or
ptc.ga, ptr.i, or ptr.d) overlaps the virtual address the walker is attempting to insert, then
the walker must either abort the insert and deliver an Instruction/Data TLB Miss, or delay the
purge operation until after the walker either completes the insertion or aborts the walk.

The RSE can only raise a VHPT fault on a mandatory RSE spill/fill operation as defined for
successful execution of an alloc, loadrs, flushrs, br.ret or rfi instruction. Eager RSE
operations may generate speculative VHPT walks provided encountered faults are not reported.

Data TLB Miss faults encountered during a VHPT walk are permitted and, when PSR.ic=1, are
converted into a VHPT Translation fault as defined in the next section.

4.1.8 Translation Searching

The general sequence of searching the TLB and VHPT is shown in Figure 4-16. On a failed TLB
search, if the VHPT walker is disabled for the referenced region an Alternate Instruction/Data TLB
Miss fault is raised. If the VHPT walker is enabled for the referenced region, the VHPT is accessed
to locate the missing translation. See “VHPT Environment” on page 2:56. If additional TLB misses
are encountered during the VHPT walker’s references, a VHPT Translation fault is raised. If the
Volume 2: Addressing and Protection 2:57

VHPT walker does not find the required translation in the VHPT or the search is aborted, an
Instruction/Data TLB Miss fault is raised. Otherwise the entry is loaded into the ITC or DTC.
Provided the above fault conditions are not detected, the processor may load the entry into the ITC
or DTC even if an in-order execution of the program did not require the translation.

The VHPT walker’s inserts into the TC follow the same purge-before-insert rules that software
inserts are subject to (see Table 4-1, “Purge Behavior of TLB Instructions,” on page 2:43). VHPT
walker inserts into the DTC behave like itc.d; VHPT walker inserts into the ITC behave like
itc.i. If an instruction reference results in a VHPT walk that misses in the data TLB, the DTC
insert for the translation for the VHPT acts like an itc.d. VHPT walker insertions of entries that
exist in TRs are not allowed. Specifically, the VHPT walker may search for any virtual address, but
if the address is mapped by a TR, it must not be inserted into the TC. Software must not create
overlapping translations in the VHPT that are larger than a currently existing TR translation. A

Figure 4-16. TLB/VHPT Search

Virtual Address

search TLB

not found

 Inst VHPT Walker Enabled

yes

no

search VHPT

VHPT walkerVHPT Instruction fault

found

found

 fault checks
Page Not Present
NaT Page Consumption
Key Miss
Key Permission
Access Rights

Access Memory

no fault

failed search:

Alternate Instruction

Instruction TLB Miss fault tag mismatch or
walker abort

TLB Miss

TLB Miss fault

Faults:

TC Insert

Instruction TLB VHPT Search

Access Bit
Debug

Virtual Address

search TLB

not found

 Data

yes

no

search VHPT

VHPT walker

VHPT Data fault

found

found

 fault checks

Page Not Present
NaT Page Consumption
Key Miss
Key Permission
Access Rights

Access Memory

no fault

failed search:

Dirty Bit

tag mismatch or
walker abort

Access Bit

0

 PSR.ic

Data Nested TLB

implemented VA?

yes

no
Unimplemented Data Address fault

TLB Miss

fault

Faults:

Alternate Data

0

 PSR.ic

Data Nested TLB
fault

TLB Miss fault

Data TLB Miss

0

 PSR.ic

Data Nested TLB
fault

fault TC Insert

1/in-flight

1/in-flight

1/in-flight

VHPT Walker Enabled

Data TLB VHPT Search

Unaligned Data Reference
Debug

Unsupported Data Reference
2:58 Volume 2: Addressing and Protection

VHPT walker insert may result in a Machine Check abort if an overlap exists between a TR and the
inserted VHPT entry.

After the translation entry is loaded, additional TLB faults are checked; these include in priority
order: Page Not Present, NaT page Consumption, Key Miss, Key Permission, Access Rights,
Access Bit, and Dirty Bit faults. Table 4-9 describes the TLB and VHPT walker related faults.

On a failed TLB/VHPT search, the processor loads interruption registers and translation defaults as
defined in “Interruption Vector Descriptions” on page 2:145 defining the parameters of the
translation fault. Provided the operating system accepts the defaults provided, only the physical
address portion of a TLB entry need be provided on a TLB insert.

Table 4-9. TLB and VHPT Search Faults

Fault Description

VHPT Instruction/Data Raised if there is an additional TLB miss when the VHPT walker attempts to
access the VHPT. Typically used to construct leaf table mappings for linear page
table configurations.

Alternate Instruction/Data

TLB Miss

Raised when the VHPT walker is not enabled and an instruction or data reference
causes a TLB miss. For example, the VHPT walker can be disabled within a given
virtual region so region-specific translation algorithms can be utilized.

Instruction/Data TLB Miss Raised when the VHPT walker is enabled, but the processor:

• Cannot locate the required VHPT entry, or

• The processor aborts the VHPT search for implementation-specific
reasons, or

• The VHPT walker is not implemented, or

• The referenced region specifies a non-supported VHPT preferred page
size, or

• Reserved fields or unimplemented PPN bits are used in the translation, or

• The hash address falls into unimplemented virtual address space, or

• The hash address matches a data debug register.

Instruction/Data TLB Miss handlers are essentially software walkers of the VHPT.

Data Nested TLB Raised when a Data TLB Miss, Alternate Data TLB Miss, or VHPT Data
Translation fault occurs and PSR.ic is 0 and not in-flight (e.g., fault within a TLB
miss handler). Data Nested TLB faults enable software to avoid overheads for
potential data TLB Miss faults.

Instruction/Data Page Not
Present

The referenced translation’s P-bit is 0.

Instruction/Data NaT Page
Consumption

A non-speculative load, store, mandatory RSE load/store, execution on, or
semaphore operation accesses a page marked with the physical memory attribute
NaTPage. See “Not a Thing Attribute (NaTPage)” on page 2:72 for details.

Instruction/Data Key Miss The referenced translation’s permission key is not present in the set of valid
protection key registers.

Instruction/Data Key
Permission

The referenced translation is denied read, write, execute permissions by the
matching protection key registers.

Instruction/Data Access
Rights

Page granular read, write, execute and privilege level accesses are denied.

Data Dirty Bit The referenced translation’s Dirty bit is 0 on a store or semaphore operation.

Instruction/Data Access Bit The referenced translation’s Access bit is 0.
Volume 2: Addressing and Protection 2:59

4.1.9 32-bit Virtual Addressing

32-bit virtual data addressing is supported in the Itanium instruction set architecture by three
models: zero-extension, sign-extension, and pointer “swizzling”. IA-32 memory references use the
zero-extension model, all IA-32 32-bit virtual linear addresses are zero extended into the 64-bit
virtual address space.

The zero-extension model performs address computations with the add and shladd instructions
while software ensures that the upper 32-bits are always zeros. This model constrains 32-bit virtual
addressing to virtual region zero. In this model, regions 1 to 7 are accessible only by 64-bit
addressing.

In the sign-extension model, software ensures that the upper 32-bits of a virtual address are always
equal to bit 31. Address computations use the add, shladd, and sxt instructions. This model splits
the 32 bit address space into 2 halves that are spread into 231 bytes of virtual regions 0 and 7 within
the 64-bit virtual address space. In this model, regions 2 to 6 are accessible only by 64-bit
addressing.

The pointer “swizzling” model performs address computations with the addp4, and shladdp4
instructions. These instructions generate a 32-bit address within the 64-bit virtual address space as
shown in Figure 4-17. The 32-bit virtual address space is divided into 4 sections that are spread into
230 bytes of virtual regions 0 to 3 within the 64-bit virtual address space. In this model, regions 4 to
7 are accessible only by 64-bit addressing.

In the pointer “swizzling” model, mappings within each region do not necessarily start at offset
zero, since the upper 2-bits of a 32-bit address serve both as the virtual region number and an offset
within each region. Virtual address bits{62:61} do not participate in the address addition, therefore
some regions may be effectively larger than 230 bytes due to the addition of a 32-bit offset and lack
of a carry into bits{62:61}. Note that the conversion is non-destructive: a converted 64-bit pointer
can be used as a 32-bit pointer. Flat 31 or 32 bit address spaces can be constructed by assigning the
same region identifier to contiguous region registers. Branches into another 230-byte region are
performed by first calculating the target address in the 32-bit virtual space and then converting to a
64-bit pointer by addp4. Otherwise, branch targets will extend above the 230 byte boundary within
the originating region.

Figure 4-17. 32-bit Address Generation using addp4

0
63 62 61 60 32 31 0

63 32 31 0

000000

63 32 31 30 29 0

+

base offset
2:60 Volume 2: Addressing and Protection

4.1.10 Virtual Aliasing

Virtual aliasing (two or more virtual pages mapped to the same physical page) is functionally
supported for memory references (including IA-32), however performance may be degraded on
some processor models where the distance between virtual aliases is less than 1 MB. To avoid any
possible performance degradation, software is advised to use aliases whose virtual addresses differ
by an integer multiple of 1 MB. The processor ensures cache coherency and data dependencies in
the presence of an alias. Stores using a virtual alias followed by a load with another alias to the
same physical location see the effects of prior stores to the same physical memory location.

To support advanced loads in the presence of a virtual alias, the processor ensures that the
Advanced Load Address Table (ALAT) is resolved using physical addresses and is coherent with
physical memory. For details, please refer to “Detailed Functionality of the ALAT and Related
Instructions” on page 1:56.

4.2 Physical Addressing

Objects in memory and I/O occupy a common 63-bit physical address space that is accessed using
byte addresses. Accesses to physical memory and I/O may be performed via virtual addresses
mapped to the 63-bit physical address space or by direct physical addressing. Current page table
formats allow for mapping virtual addresses into 50 bits of physical address space (on processor
implementations that support this many physical address bits). Future extensions to the page table
formats will allow larger mappings, up to the full 63 bits of physical address space.

Physical addressing for instruction references (including IA-32) is enabled when PSR.it is 0, data
references (including IA-32) when PSR.dt is 0, and register stack references when PSR.rt is 0.

While software views the physical addressing as being 63-bits, implementations may implement
between 32 and 63 physical address bits. All processor models must implement a contiguous set of
physical address bits starting at bit 32 and continuing upwards. Please see the processor specific
documentation for further information on the number of physical address bits implemented on the
Itanium processor. Implementations must validate that memory references are performed to
implemented physical address bits. Instruction references to unimplemented physical addresses
result in an Unimplemented Instruction Address Trap on the last valid instruction. Data references
to unimplemented physical addresses result in an Unimplemented Data Address fault. Memory
references to unpopulated address ranges result in an asynchronous Machine Check abort, when the
platform signals a transaction time-out. Exact machine check behavior is model specific.

4.3 Unimplemented Address Bits

Based on the processor model, some physical and/or virtual address bits may not be implemented.
Regardless of the number of implemented address bits, all general purpose, branch, control and
application registers implement all 64 register bits on all processors. Similarly, regardless of the
number of implemented address bits, data and instruction breakpoint registers must implement all
64 address bits and all 56 mask bits on all processors.
Volume 2: Addressing and Protection 2:61

4.3.1 Unimplemented Physical Address Bits

As shown in Figure 4-18, a 64-bit physical address consists of three fields: physical memory
attribute (PMA), unimplemented and implemented bits.

All processor models implement at least 32 physical address bits, bits 0 to 31, plus the physical
memory attribute bit. Additional implemented physical bits must be contiguous starting at bit 32.
IMPL_PA_MSB is the implementation-specific position of the most significant implemented
physical address bit. In a processor that implements all physical address bits, IMPL_PA_MSB is
62. Please see the processor specific documentation for further information on the number of
physical address bits implemented on the Itanium processor.

If unimplemented physical address bits are set by software, an Unimplemented Data Address fault
is raised during the TLB insert instructions (itc, itr). Inserts performed by the VHPT walker, as
noted in “VHPT Hashing” on page 2:54, abort the VHPT search if unimplemented or reserved
fields are used. For translations marked as Not-Present (TLB.p is 0), the processor does not check
the validity of PPN and some reserved bits as noted in Figure 4-6.

When a processor model does not implement all physical address bits, the missing bits are defined
to be zero. Physical addresses in which bits PA{62:min(IMPL_PA_MSB+1,62)} are not zero are
considered “unimplemented” physical addresses on that processor model. Physical addresses are
checked for correctness on use by ensuring that PA{62:min(IMPL_PA_MSB+1,62)} bits are zero.

4.3.2 Unimplemented Virtual Address Bits

As shown in Figure 4-19, a 64-bit virtual address consists of three fields: virtual region number
(VRN), unimplemented and implemented bits.

All processor models provide three VRN bits in VA{63:61}. IMPL_VA_MSB is the
implementation-specific bit position of the most significant implemented virtual address bit. In
addition to the three VRN bits, all processor models implement at least 51 virtual address bits; i.e.,
the smallest IMPL_VA_MSB is 50. In a processor that implements all 64 virtual address bits
IMPL_VA_MSB is 60. Please see the processor specific documentation for further information on
the number of virtual address bits implemented on the Itanium processor.

When a processor model does not implement all virtual address bits, the missing bits are defined to
be a sign-extension of VA{IMPL_VA_MSB}. Virtual addresses in which bits
VA{60:min(IMPL_VA_MSB+1,60)} do not match VA{IMPL_VA_MSB} are considered
“unimplemented” virtual addresses on that processor model. Virtual addresses are checked for
correctness on use by ensuring that VA{60:min(IMPL_VA_MSB+1,60)} bits are identical to
VA{IMPL_VA_MSB}.

Figure 4-18. Physical Address Bit Fields
63 62 IMPL_PA_MSB 0

PMA unimplemented implemented
1 62 - IMPL_PA_MSB IMPL_PA_MSB + 1

Figure 4-19. Virtual Address Bit Fields
63 6160 IMPL_VA_MSB 0

VRN unimplemented implemented
3 60 - IMPL_VA_MSB IMPL_VA_MSB + 1
2:62 Volume 2: Addressing and Protection

4.3.3 Instruction Behavior with Unimplemented Addresses

The use of an unimplemented address affects instruction execution as described in the bullet list
below. If instruction address translation is enabled, an “unimplemented address” refers to an
unimplemented virtual address. If instruction address translation is disabled, an “unimplemented
address” refers to an unimplemented physical address.

• Non-speculative memory references (non-speculative loads, stores, and semaphores), the
following non-access references: fc, fc.i, tpa, lfetch.fault, and probe.fault, and
mandatory RSE operations to unimplemented addresses result in an Unimplemented Data
Address fault.

• Virtual addresses used by instruction and data TLB purge/insert operations are checked, and if
the base address (register r3 of the purge, IFA for inserts) targets an unimplemented virtual
address, a Unimplemented Data Address fault is raised. The page size of the insert or purge is
ignored.

• Speculative loads from unimplemented addresses always return a NaT bit in the target register.

• A non-faulting probe instruction to an unimplemented address returns zero in the target
register.

• A tak instruction to an unimplemented address returns one in the target register.

• A non-faulting lfetch to an unimplemented address is silently ignored.

• Eager RSE operations to unimplemented addresses do not fault.

• Execution of a taken branch, taken chk, or an rfi to an unimplemented address, or execution
of a non-branching slot 2 instruction in a bundle at the upper edge of the implemented address
space (where the next sequential bundle address would be an unimplemented address) results
in an Unimplemented Instruction Address trap on the branch, chk, rfi or non-branching slot 2
instruction.

• When ptc.g or ptc.ga operations place a virtual address on the bus, the virtual address is
sign-extended to a full 64-bit format. If an incoming ptc.g or ptc.ga presents a virtual
address base that targets an unimplemented virtual address, the upper (unimplemented) virtual
address bits are dropped, and the purge is performed with the truncated address.

4.4 Memory Attributes

When virtual addressing is enabled, memory attributes defining the speculative, cacheability and
write-policies of the virtually mapped physical page are defined by the TLB. When physical
addressing is enabled, memory attributes are supplied as described in “Physical Addressing
Memory Attributes” on page 2:64.

4.4.1 Virtual Addressing Memory Attributes

For virtual memory references, the memory attribute field of each virtual translation describes
physical memory properties as shown in Table 4-10.
Volume 2: Addressing and Protection 2:63

The attribute UCE is identical to UC except when executing an fetchadd instruction. UCE
enables the exporting of the fetchadd instruction outside the processor. Support for UCE is
model-specific; see “Effects of Memory Attributes on Memory Reference Instructions” on
page 2:73 for details.

Insert TLB instructions (itc, itr) that attempt to insert reserved memory attributes (Table 4-10)
into the TLB raise Reserved Register/Field faults. External system operation is undefined if
software inserts a memory attribute supported by the processor but not supported by the external
system.

If software modifies the memory attributes for a page, it must follow the attribute transition
requirements in Section 4.4.11, “Memory Attribute Transition” on page 2:74.

It is recommended that processor models report a Machine Check abort if the following memory
attribute aliasing is detected:

• cache hit on an uncacheable page, other than as the target of a local or remote flush cache (fc,
fc.i) instruction (see “Effects of Memory Attributes on Memory Reference Instructions” on
page 2:73).

4.4.2 Physical Addressing Memory Attributes

The selection of memory attributes for physical addressing is selected by bit 63 of the address
contained in the address base register as shown in Figure 4-20 and Table 4-11.

Table 4-10. Virtual Addressing Memory Attribute Encodings

Attribute Mnemonic ma Cacheability Write Policy Speculation
Coherenta with

Respect to

a. The Coherency column in this table refers to multiprocessor coherence on normal, side-effect free memory.
The data dependency rules defined in “Memory Access Ordering” on page 1:63 ensure uni-processor
coherence for the memory attributes listed in each row.

Write Back WB 000 Cacheable Write back
Non-sequential &

speculative

WB, WBL

Write
Coalescing

WC 110

Uncacheable

Coalescing Not MP coherentb

b. WC is not MP coherent w.r.t. any memory attribute, but is uni-processor coherent w.r.t. itself.

Uncacheable UC 100

Non-coalescing
Sequential &

non-speculative
UC, UCEUncacheable

Exported
UCE 101

Reservedc

c. This memory attribute is reserved for Software use.

001

Reserved
010
011

NaTPage NaTPage 111 Cacheable N/A Speculative N/A

Figure 4-20. Physical Addressing Memory

Base Register

Physical Address

62 0

63 62 0

attribute
2:64 Volume 2: Addressing and Protection

See “Speculation Attributes” on page 2:67 for a description of physical addressing limited
speculation. Bit{63} is discarded when forming the physical address, effectively creating a
write-back name space and an uncached name space as shown in Figure 4-21.

Software must use the correct name space when using physical addressing; otherwise, I/O devices
with side-effects may be accessed speculatively. Physical addressing accesses are ordered only if
ordered loads or ordered stores are used. Otherwise, physical addressing memory references are
unordered.

4.4.3 Cacheability and Coherency Attribute

A page can be either cacheable or uncacheable. If a page is marked cacheable, the processor is
permitted to allocate a local copy of the corresponding physical memory in all levels of the
processor memory/cache hierarchy. Allocation may be modified by the cache control hints of
memory reference instructions.

A page which is cached is coherent with memory; i.e., the processor and memory system ensure
that there is a consistent view of memory from each processor. Processors support multiprocessor
cache coherence based on physical addresses between all processors in the coherence domain
(tightly coupled multiprocessors). Coherency is supported in the presence of virtual aliases,
although software is recommended to use aliases which are an integer multiple of 1 MB apart to
avoid any possible performance degradation.

Processors are not required to maintain coherency between processor local instruction and data
caches for Itanium-based code; i.e., locally initiated Itanium stores may not be observed by the
local instruction cache. Processors are required to maintain coherency between processor local
instruction and data caches for IA-32 code. Instruction caches are also not required to be coherent
with multiprocessor Itanium instruction set originated memory references. Instruction caches are

Table 4-11. Physical Addressing Memory Attribute Encodings

Bit{63} Mnemonic Cacheability Write Policy Speculation
Coherenta with

respect to

a. Coherency here refers to multiprocessor coherence on normal, side-effect free memory.

0 WBL Cacheable Write Back Non-sequential &
limited speculation

WBL, WB

1 UC Uncached Non-coalescing Sequential &
non-speculative

UC, UCE

Figure 4-21. Addressing Memory Attributes

263 Physical
Address Space

g

263

263

264

0

uncached
non-speculative

cached write-back
limited speculation
name space

UC

WBL

name space
Volume 2: Addressing and Protection 2:65

required to be coherent with multiprocessor IA-32 instruction set originated memory references.
The processor must ensure that transactions from other I/O agents (such as DMA) are physically
coherent with the instruction and data cache.

For non-cacheable references the processor provides no coherency mechanisms; the memory
system must ensure that a consistent view of memory is seen by each processor. See “Coalescing
Attribute” on page 2:66 for a description of coherency for the coalescing memory attribute.

4.4.4 Cache Write Policy Attribute

Write-back cacheable pages need only modify the processor’s copy of the physical memory
location; written data need only be passed to the memory system when the processor’s copy is
displaced, or a Flush Cache (fc) instruction is issued to flush a virtual address. A cache line can
only be written back to memory if a store, semaphore (successful or not), the ld.bias, a
mandatory RSE store, or a .excl hinted lfetch instruction targeting that line has executed without a
fault. These events enable write-backs. A synchronized fc instruction disables subsequent
write-backs (after the line has been flushed).

As described in “Invalidating ALAT Entries” on page 1:58, platform visible removal of cache lines
from a processor’s caches (e.g., cache line write-backs or platform visible replacements) cause the
corresponding ALAT entries to be invalidated.

4.4.5 Coalescing Attribute

For uncacheable pages, the coalescing attribute informs the processor that multiple stores to this
page may be collected in a coalescing buffer and issued later as a single larger merged transaction.
The processor may accumulate stores for an indefinite period of time. Multiple pending loads may
also be coalesced into a single larger transaction which is placed in a coalescing buffer. Coalescing
is a performance hint for the processor; a processor may or may not implement coalescing.

A processor with multiple coalescing buffers must provide a flush policy that flushes buffers at
roughly equal rate even if some buffers are only partially full. The processor may make coalesced
buffer flushes visible in any order. Furthermore, individual bytes within a single coalesced buffer
may be flushed and made visible in any order.

Stores (including IA-32), which are coalesced, are performed out of order; coalescing may occur in
both the space and time domains. For example, a write to bytes 4 and 5 and a write to bytes 6 and 7
may be coalesced into a single write of bytes 4, 5, 6, and 7. In addition, a write of bytes 5 and 6 may
be combined with a write of bytes 6 and 7 into a single write of bytes 5, 6, and 7.

Any release operation (regardless of whether it references a page with a coalescing memory
attribute), or any fence type instruction, forces write-coalesced data to be flushed and made visible
prior to the instruction itself becoming visible. (See Table 4-14 on page 2:70 for a list of release and
fence instructions.) Any IA-32 serializing instruction, or access to an uncached memory type,
forces write-coalesced data to become flushed and made visible prior to itself becoming visible.
Even though IA-32 stores and loads are ordered, the write-coalesced data is not flushed unless the
IA-32 stores or loads are to uncached memory types.

The Flush Cache (fc, fc.i) instruction flushes all write-coalesced data whose address is within at
least 32 bytes of the 32-byte aligned address specified by the Flush Cache (fc, fc.i) instruction,
forcing the data to become visible. The Flush Cache (fc, fc.i) instruction may also flush
2:66 Volume 2: Addressing and Protection

additional write-coalesced data. The Flush Write buffers (fwb) instruction is a “hint” to the
processor to expedite flushing (visibility) of any pending stores held in the coalescing buffer(s),
without regard to address.

No indication is given when the flushing of the stores is completed. An fwb instruction does not
ensure ordering of coalesced stores, since later stores may be flushed before prior stores. To ensure
prior coalesced stores are made visible before later stores, software must issue a release operation
between stores.

The processor may at any time flush coalesced stores in any order before explicitly requested to do
so by software.

Coalesced pages are not ensured to be coherent with other processors’ coalescing buffers or caches,
or with the local processor’s caches. Loads to coalesced memory pages by a processor see the
results of all prior stores by the same processor to the same coalesced memory page. Memory
references made by the coalescing buffer (e.g., buffer flushes) have an unordered non-sequential
memory ordering attribute. See “Sequentiality Attribute and Ordering” on page 2:69.

Data that has been read or prefetched into a coalescing buffer prior to execution of an Itanium
acquire or fence type instruction is invalidated by the acquire or fence instruction. (See Table 4-14
for a list of acquire and fence instructions.)

4.4.6 Speculation Attributes

For present pages (TLB.p=1) which are marked with a speculative or a NaTPage memory attribute,
the processor may prefetch instructions (including IA-32), perform address generation and perform
load accesses (including IA-32) without resolving prior control dependencies, including predicates,
branches and interruptions. A page should only be marked speculative if accesses to that page have
no side-effects. For example, many memory-mapped I/O devices have side-effects associated with
reads and should be marked non-speculative. If a page is marked speculative, a processor can read
any location in the page at any time independent of a programmer’s intentions or control flow
changes. As a result, software is required, at all times, to maintain valid page table attributes for the
ppn, ps and ma fields of all present translations whose memory attribute is speculative or NaTPage.
High-performance operation is only attainable on speculative pages. The speculative attribute is a
hint; a processor may behave non-speculatively.

Prefetches are enabled if a speculative translation exists. Prefetches are asynchronous data and
instruction memory accesses that appear logically to initiate and finish between some pair of
instructions. This access may not be visible to subsequent flush cache (fc, fc.i) and/or TLB purge
instructions. This behavior is implementation-dependent.

The processor will not initiate memory references (16-byte instruction bundle fetches, IA-32
instruction fetches, RSE fills and spills, VHPT references, and data memory accesses) to
non-speculative pages until all previous control dependencies (predicates, branches, and
exceptions) are resolved; i.e., the memory reference is required by an in-order execution of the
program. Additionally, for references to non-speculative pages, the processor:

• May not generate any memory access for a control or data speculative data reference.

• Will generate exactly one memory access for each aligned, non-speculative data reference.
(Misaligned data references may cause multiple memory accesses, although these accesses are
guaranteed to be non-overlapping – each byte will be accessed exactly once.)

• May generate multiple 16-byte memory accesses (to the same address) for each 16-byte
instruction bundle fetch reference.
Volume 2: Addressing and Protection 2:67

Limited speculation is used to improve performance when using physical addressing to cachable
memory. Because the memory is physically addressed, the processor can have no expectation as to
whether or not a given 4k-byte physical page exists until the page has been successfully accessed
through a non-speculative reference. A non-speculative reference is an instruction or data
reference made to the page by an in-order execution of the program. An instruction fetch (or data
fetch) which meets this requirement, but which takes an Instruction Debug (or Data Debug) fault or
an External interrupt is still a non-speculative reference. Data-speculative references are considered
non-speculative for this purpose. Control-speculative references are not allowed for
limited-speculation pages and thus do not affect limited-speculation behavior.

Unless a limited-speculation page is speculatively accessible, only non-speculative references may
be made to it. While a limited-speculation page is speculatively accessible, the processor may
access it normally including the use of caching and hardware-generated speculative references
to improve performance. Hardware-generated speculative references include non-demand
instruction prefetches (including IA-32), data references by instructions which have not yet been
determined to be required by an in-order execution of the program (due to potential exceptions on
prior instructions or mispredictions on prior branches), hardware-generated data prefetch
references, and eager RSE memory references. A limited-speculation page can be made
speculatively accessible only after the successful completion of a non-speculative reference to the
page. Once a limited-speculation page is speculatively accessible, the page can be made
speculatively inaccessible either explicitly by software (described in Section 4.4.11, “Memory
Attribute Transition” on page 2:74) or implicitly for implementation-specific reasons.

To ensure virtual and physical accesses to non-speculative pages are performed in program order
and only once per program order occurrence, the rules in Table 4-12 and Table 4-13 are defined.
Software should also ensure that RSE spill/fill transactions are not performed to non-speculative
memory that may contain I/O devices; otherwise, system behavior is undefined.

Table 4-12. Permitted Speculation

Memory
Attribute

Load
(ld)a

a. Includes the faulting form of line prefetch (lfetch.fault).

Speculative
Load
(ld.s)b

b. Includes the non-faulting form of line prefetch (lfetch), which does not cause a cache fill if the memory
attribute is non-speculative or limited speculation.

Advanced
Load
(ld.a)

Speculative
Advanced

Load (ld.sa)

Hardware-generated
Speculative
Referencesc

c. Hardware-generated speculative references include non-demand instruction prefetches (including IA-32),
hardware-generated data prefetch references, and eager RSE memory references.

Speculative Yes Yes Yes Yes Yes

Non-speculative Yes Always Fail Always Fail Always Fail Prohibited

Limited Speculation Yes Always Fail Yes Always Fail Limitedd

d. The processor may only issue hardware-generated speculative references to a 4K-byte physical page while
the page is speculatively accessible.
2:68 Volume 2: Addressing and Protection

4.4.7 Sequentiality Attribute and Ordering

Memory ordering is defined in Section 4.4.7, “Memory Access Ordering” on page 1:63. This
section defines additional ordering rules for non-cacheable memory, cache synchronization
(sync.i) and global TLB purge operations (ptc.g, ptc.ga).

As described in Section 4.4.7, read-after-write, write-after-write, and write-after-read dependencies
to the same memory location (memory dependency) are performed in program order by the
processor1. Otherwise, all other memory references may be performed in any order unless the
reference is specifically marked as ordered. IA-32 memory references follow a stronger processor
consistency memory model. See “IA-32 Memory Ordering” on page 2:236. for IA-32 memory
ordering details. Explicit ordering takes the form of a set of Itanium instructions: ordered load and
check load (ld.acq, ld.c.clr.acq), ordered store (st.rel), semaphores (cmpxchg, xchg,
fetchadd), memory fence (mf), synchronization (sync.i) and global TLB purge (ptc.g,
ptc.ga). The sync.i instruction is used to maintain an ordering relationship between instruction
and data caches on local and remote processors. The global TLB purge instructions maintain
multiprocessor TLB coherence.

Table 4-14 defines a set of “Orderable Instructions” that follow one of four ordering semantics:
unordered, release, acquire or fence. The table defines the ordering semantics and the instructions
of each category. Only these Itanium instructions can be used to establish multiprocessor ordering
relations.

In the following discussion, the terms previous and subsequent are used to refer to the program
specified order. The term visible is used to refer to all architecturally visible effects of performing
an instruction. For memory accesses and semaphores this involves at least reading or writing
memory. For mf.a, visibility is defined by platform acceptance of previous memory accesses.
Visibility of sync.i is defined by visibility of previous flush cache (fc, fc.i) operations. For
ALAT lookups (ld.c, chk.a), visibility is determination of ALAT hit or miss. For global TLB
purge operations, visibility is defined by removal of an address translation from the TLBs on all
processors in the TLB coherence domain. Global TLB purge instructions (ptc.g and ptc.ga)
follow release semantics both on the local and the remote processor.

Table 4-13. Register Return Values on Non-faulting Advanced/Speculative Loads

Memory
Attribute

Speculative Load
(ld.s)

Advanced Load
(ld.a)

Speculative Advanced Load
(ld.sa)

Success Failure Success Failure Success Failure

Speculative Value Nata

a. Speculative or speculative advanced loads that cause deferred exceptions result in failed speculation. The
processor aborts the reference. If the target of the load is a GR, the processor sets the register ’s NaT bit to
one. If the target of the load is an FR, the processor sets the target FR to NaTVal. The processor performs all
other side-effects (such as post-increment).

Value N/a Value NaTa

Non-speculative N/A Natb

b. Speculative or speculative advanced loads to limited or non-speculative memory pages result in failed
speculation. The processor aborts the reference. If the target of the load is a GR, the processor sets the
register’s NaT bit to 1. If the target of the load is an FR, the processor sets the target FR to NaTVal. The
processor performs all other side-effects (such as post-increment).

N/A Zeroc

c. Advanced loads to non-speculative memory pages always fail. The processor aborts the reference, sets the
target register to zero, and performs all other side-effects (such as post-increment).

N/A NaTb

Limited Speculation N/A Natb Value N/a N/a NaTb

1. Although VHPT walks are performed somewhat asynchronously with respect to program execution, each walker VHPT read appears as
though it were performed atomically, at some single point in the program order.
Volume 2: Addressing and Protection 2:69

Itanium memory accesses to sequential pages occur in program order with respect to all other
sequential pages in the same peripheral domain, but are not necessarily ordered with respect to
non-sequential page accesses. A peripheral domain is a platform-specific collection of uncacheable
addresses. An I/O device is normally contained in a peripheral domain and all sequential accesses
from one processor to that device will be ordered with respect to each other. Sequentiality ensures
that uncacheable, non-coalescing memory references from one processor to a peripheral domain
reach that domain in program order. Sequentiality does not imply visibility.

Inter-Processor Interrupt Messages (8-byte stores to a Processor Interrupt Block address, through a
UC memory attribute) are exceptions to the sequential semantics. IPI’s are not ordered with respect
to other IPI’s directed at the same processor. Further, fence operations do not enforce ordering
between two IPI’s. See Section 5.8.4.2, “Interrupt and IPI Ordering” on page 2:112.

Table 4-15 defines the ordering between unordered, release, acquire and fence type operations to
sequential and non-sequential pages. Table 4-15 defines the minimal ordering requirements; an
implementation may enforce more restrictive ordering than required by the architecture. The actual
mechanism for enforcing memory access ordering is implementation dependent.

Table 4-14. Ordering Semantics and Instructions

Ordering
Semantics

Description Orderable Intel® Itanium® Instructions

Unordered

Unordered instructions may become visible in
any order.

ld, ld.s, ld.a, ld.sa, ld.fill,
ldf, ldf.s, ldf.sa, ldf.fill,
ldfp, ldfp.s, ldfp.sa,
st, st.spill,
stf, stf.spill,
mf.a, sync.i,
ld.c, chk.a

Release
Release instructions guarantee that all
previous orderable instructions are made
visible prior to being made visible themselves.

cmpxchg.rel, fetchadd.rel,
st.rel, ptc.g, ptc.ga

Acquire
Acquire instructions guarantee that they are
made visible prior to all subsequent orderable
instructions.

cmpxchg.acq, fetchadd.acq,
xchg, ld.acq, ld.c.clr.acq

Fence

Fence instructions combine the release and
acquire semantics into a bi-directional fence;
i.e., they guarantee that all previous orderable
instructions are made visible prior to any
subsequent orderable instruction being made
visible.

mf

Table 4-15. Ordering Semantics

Second Operation

First Operation Fence
Non-sequential Sequentiala

a. Except for IPI.

Acquire Release Unordered Acquire Release Unordered

Fence O O O O O O O

Non-sequential Acquire O O O O O O O

Release O – O – – O –

Unordered O – O – – O –

Sequentiala Acquire O O O O OS OS OS

Release O – O – S OS S

Unordered O – Ob

b. “O” indicates that the first and second operation become visible in program order.

–c Sd OSe S
2:70 Volume 2: Addressing and Protection

Table 4-15 establishes an order between operations on a particular processor. For operations to
cacheable write-back memory the order established by these rules is observed by all observers in
the coherence domain.

For example, when this sequence is executed on a processor:

st [a]
st.rel [b]

and a second processor executes this sequence:

ld.acq [b]
ld [a]

if the second processor observes the store to [b], it will also observe the store to [a].

Unless an ordering constraint from Table 4-15 prevents a memory read1 from becoming visible, the
read may be satisfied with values found in a store buffer (or any logically equivalent structure).
These values need not be globally visible even when the operation that created the value was a
st.rel. This local bypassing behavior may make accesses of different sizes but with overlapping
memory references appear to complete non-atomically. To ensure that a memory write is globally
observed prior to a memory read, software must place an explicit fence operation between the two
operations.

Aligned st.rel and semaphore operations2 from multiple processors to cacheable write-back
memory become visible to all observers in a single total order (i.e., in a particular interleaving; if it
becomes visible to any observer, then it is visible to all observers), except that for st.rel each
processor may observe (via ld or ld.acq) its own update prior to it being observed globally.

The Itanium architecture ensures this single total order only for aligned st.rel and semaphore
operations to cacheable write-back memory. Other memory operations3 from multiple processors
are not required to become visible in any particular order, unless they are constrained w.r.t. each
other by the ordering rules defined in Table 4-15.

Ordering of loads is further constrained by data dependency. That is, if one load reads a value
written by an earlier load by the same processor (either directly or transitively, through either
registers or memory), then the two loads become visible in program order.

For example, when this sequence is executed on a processor:

st [a] = data
st.rel [b] = a

and a second processor executes this sequence:

ld x = [b]
ld y = [x]

if the second processor observes the store to [b], it will also observe the store to [a].

c. A dash indicates no ordering is implied.
d. “S” indicates that the first and the second operation reach a peripheral domain in program order.
e. “OS” implies that both “O” and “S” ordering relations apply.

1. This includes all types of loads (ld and ld.acq), and RSE and VHPT memory reads. Note, however, that the read operation of
semaphores cannot be satisfied with values found in a store buffer.

2. Both acquire and release semaphore forms
3. e.g. unordered stores, loads, ld.acq, or memory operations to pages with attributes other than write-back cacheable.
Volume 2: Addressing and Protection 2:71

Also for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new’

and a second processor executes this sequence:

ld x = [b]
cmp.eq p1 = x, ‘new’

(p1) ld y = [a]

if the second processor observes the store to [b], it will also observe the store to [a].

And for example, when this sequence is executed on a processor:

st [a]
st.rel [b] = ‘new’

and a second processor executes this sequence:

ld x = [b]
cmp.eq p1 = x, ‘new’

(p1) br target
...

target:
ld y = [a]

if the second processor observes the store to [b], it will also observe the store to [a].

The flush cache (fc, fc.i) instruction follows data dependency ordering. fc and fc.i are ordered
with respect to previous and subsequent load, store, or semaphore instructions to the same line,
regardless of the specified memory attribute. fc and fc.i are not ordered with respect to memory
operations to different lines. mf does not ensure visibility of fc and fc.i operations. Instead, the
sync.i instruction synchronizes fc and fc.i instructions, and the sync.i is made visible using
an mf instruction.

4.4.8 Not a Thing Attribute (NaTPage)

A NaTPage attribute prevents non-speculative references to a page, and ensures that speculative
references to the page always defer the Data NaT Page Consumption fault. However, as described
in “Speculation Attributes” on page 2:67, the processor may issue memory references to a
NaTPage. As a result, all NaTPages must be backed by a valid physical page.

Speculative or speculative advanced loads to pages marked as a NaTPage cause the deferred
exception indicator (NaT or NaTVal) to be written to the load target register, and the memory
reference is aborted. However, all other effects of the load instruction such as post-increment are
performed. Instruction fetches, loads, stores and semaphores (including IA-32), but except for
Itanium speculative loads, pages marked as NaTPage raise a NaT Page Consumption fault.

A speculative reference to a page marked as NaTPage may still take lower priority faults, if not
explicitly deferred in the DCR. See “Deferral of Speculative Load Faults” on page 2:88.
2:72 Volume 2: Addressing and Protection

4.4.9 Effects of Memory Attributes on Memory Reference
Instructions

Memory attributes affect the following Itanium instructions.

• ldfe, stfe: Hardware support for 10-byte memory accesses to a page that is neither a
cacheable page with write-back write policy nor a NaTPage is optional. On processor
implementations that do not support such accesses, an Unsupported Data Reference Fault is
raised when an unsupported reference is attempted.

For extended floating-point loads the fault is delivered only on the normal, advanced, and
check load flavors (ldfe, ldfe.a, ldfe.c.nc, ldfe.c.clr). Control speculative flavors of
the ldfe instruction that target pages that are not cacheable with write-back policy always
defer the fault. Refer to “Deferral of Speculative Load Faults” on page 2:88 for details.

• cmpxchg and xchg: These instructions are only supported to cacheable pages with write-back
write policy. cmpxchg and xchg accesses to NaTPages causes a Data NaT Page Consumption
fault. cmpxchg and xchg accesses to pages with other memory attributes cause an Unsupported
Data Reference fault.

• fetchadd: The fetchadd instruction can be executed successfully only if the access is to a
cacheable page with write-back write policy or to a UCE page. fetchadd accesses to
NaTPages cause a Data NaT Page Consumption fault. Accesses to pages with other memory
attributes cause an Unsupported Data Reference fault. When accessing a cacheable page with
write-back write policy, atomic fetch and add operation is ensured by the processor
cache-coherence protocol. For highly contended semaphores, the cache line transactions
required to guarantee atomicity can limit performance. In such cases, a centralized “fetch and
add” semaphore mechanism may improve performance. If supported by the processor and the
platform, the UCE attribute allows the processor to “export” the fetchadd operation to the
platform as an atomic “fetch and add.” Effects of the exported fetchadd are platform
dependent. If exporting of fetchadd instructions is not supported by the processor, a
fetchadd instruction to a UCE page takes an Unsupported Data Reference fault.

• Flush Cache Instructions – fc instructions must always be “broadcast” to other processors,
independent of the memory attribute in the local processor. It is legal to use an uncacheable
memory attribute for any valid address when used as a flush cache (fc) instruction target. This
behavior is required to enable transitions from one memory attribute to another and in case
different memory attributes are associated with the address in another processor.

• Prefetch instructions – lfetch and any implicit prefetches to pages that are not cacheable are
suppressed. No transaction is initiated. This allows programs to issue prefetch instructions
even if the program is not sure the memory is cacheable.

4.4.10 Effects of Memory Attributes on Advanced/Check Loads

The ALAT behavior of advanced and check loads is dependent on the memory attribute of the page
referenced by the load. These behaviors are required; advanced and check load completers are not
hints.

All speculative pages have identical behavior with respect to the ALAT. Advanced loads to
speculative pages always allocate an ALAT entry for the register, size, and address tuple specified
by the advanced load. Speculative advanced loads allocate an ALAT entry if the speculative load is
successful (i.e., no deferred exception); if the speculative advanced load results in a deferred
exception, any matching ALAT entry is removed and no new ALAT entry is allocated. Check loads
Volume 2: Addressing and Protection 2:73

with clear completers (ld.c.clr, ld.c.clr.acq, ldf.c.clr) remove a matching ALAT entry on
ALAT hit and do not change the state of the ALAT on ALAT miss. Check loads with no-clear
completers (ld.c.nc, ldf.c.nc) allocate an ALAT entry on ALAT miss. On ALAT hit, the ALAT
is unchanged if an exact ALAT match is found (register, address, and size); a new ALAT entry with
the register, address, and size specified by the no-clear check load may be allocated if a partial
ALAT match is found (match on register).

Advanced loads (speculative or non-speculative variants) to non-speculative pages always remove
any matching ALAT entry. Check loads to non-speculative pages that miss the ALAT never allocate
an ALAT entry, even in the case of a no-clear check load. ALAT hits on check loads to
non-speculative pages (which can occur if a previous advanced load referenced that page via a
speculative memory attribute) result in undefined behavior; when changing an existing page from
speculative to non-speculative (or vice-versa), software should ensure that any ALAT entries
corresponding to that page are invalidated.

Limited speculation pages behave like non-speculative pages with respect to speculative advanced
loads, and behave like speculative pages with respect to all other advanced and/or check loads.

Table 4-16 describes the ALAT behavior of advanced and check loads for the different speculation
memory attributes.

4.4.11 Memory Attribute Transition

If software modifies the memory attributes for a page, it must perform explicit actions to ensure
that subsequent reads and writes using the new attribute will be coherent with prior reads and writes
that were performed with the old attribute. Processors may have separate buffers for coalescing,
uncacheable and cacheable references, and these buffers need not be coherent with each other.

4.4.11.1 Virtual Addressing Memory Attribute Transition

To change a virtually-addressed page from one attribute to another, software must perform the
following sequence. (The address of the page whose attribute is being modified is referred to as
“X”).

Note: This sequence is ONLY required if the new mapping and the old mapping do not have the
same memory attribute.

Table 4-16. ALAT Behavior on Non-faulting Advanced/Check Loads

Memory
Attribute

ld.sa
Response ld.a

Response

ld.c.clr,
ld.c.clr.acq,

ldf.c.clr
Response

ld.c.nc,
ldf.c.nc

Response

no NaT NaT
ALAT

hit
ALAT
miss

ALAT
hit

ALAT
miss

speculative alloc remove alloc remove nop unchangeda

a. May allocate a new ALAT entry if size and/or address are different than the corresponding ld.a or ld.sa whose
ALAT entry was matched.

alloc

non-speculative n/a remove remove undefined nop undefined must not
alloc

limited speculation n/a remove alloc remove nop unchangeda alloc
2:74 Volume 2: Addressing and Protection

On the processor initiating the transition, perform the following steps 1-3:

1. PTE[X].p = 0 // Mark page as not present

This prevents any processors from reading the old mapping (with the old attribute) from the
VHPT after this point.

2. ptc.ga [X] ;; // Global shootdown and ALAT invalidate
 // for the entire page

This removes the mapping from all processor TC’s in the coherence domain, and it forces all
processors to flush any pending WC or UC stores from write buffers.

3. mf ;; // Ensure visibility of ptc.ga to local data stream
srlz.i ;; // Ensure visibility of ptc.ga to local instruction stream

After step 3, no processor in the coherence domain will initiate new memory references or
prefetches to the old translation. Note, however, that memory references or prefetches
initiated to the old translation prior to step 2 may still be in progress after step 3. These
outstanding memory references and prefetches may return instructions or data which may be
placed in the processor cache hierarchy; this behavior is implementation-specific.

If the new memory attribute is an uncacheable attribute, and if the old attribute was
cacheable (or if it is not known at this point in the code sequence what the old attribute was),
then software must drain any current prefetches and ensure that any cached data from the
page is removed from caches. To do this, software must perform steps 4-10. If the new
memory attribute is cacheable, then software may skip steps 4-10, and go straight to step 11.

4. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to zero to
indicate that the transition is for virtual memory attributes. The return argument from this
procedure informs the caller if this procedure call is needed on remote processors or not. If
this procedure call is not needed on remote processors, then software may skip the IPI in step
5 and go straight to step 6 below.

5. Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to
reach all processors in the coherence domain, perform step 4 above on all processors in the
coherence domain, and wait for all PAL_PREFETCH_VISIBILITY calls to complete on all
processors in the coherence domain before continuing.

After steps 4 and 5, no more new instruction or data prefetches will be made to page “X” by
any processor in the coherence domain. However, processor caches in the coherence domain
may still contain “stale” data or instructions from prior prefetch or memory references to
page “X”.

6. Insert a temporary UC translation for page “X”.

7. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for all of page “X” (page size = ps)
fc [X+ps-32] ;;

// Ensure cache flushes are also seen by processors' instruction fetch
sync.i ;;

After step 7, all flush cache instructions initiated in step 7 are visible to all processors in the
coherence domain, i.e., no processor in the coherence domain will respond with a cache hit
on a memory reference to an address belonging to page “X”.
Volume 2: Addressing and Protection 2:75

8. Purge the temporary UC translation from the TLB

9. Call PAL_MC_DRAIN

10. Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to
reach all processors in the coherence domain, perform step 9 above on all processors in the
coherence domain, and wait for all PAL_MC_DRAIN calls to complete on all processors in
the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to page [X] have
been evicted from all caches in the coherence domain and forced onto the bus. Note that this
operation does not ensure that the cache lines have been written back to memory.

11. Insert the new mapping with the new memory attribute

4.4.11.2 Physical Addressing Attribute Transition – Disabling Prefetch/
Speculation and Removing Cacheability

When a non-speculative reference is made to a physical address with the WBL attribute, the 4K
page containing that address becomes speculatively accessible. This allows the processor that made
the non-speculative reference to subsequently make speculative references to this page. (See the
description of limited speculation in Section 4.4.6, “Speculation Attributes” on page 2:67.)

If the same physical memory is then to be accessed with the UC attribute, software must first make
all such addresses speculatively inaccessible and flush any cached copies from the cache.
Otherwise, an uncacheable reference may hit in cache, causing a Machine Check abort.

Also, if physical memory is to be removed from the system, or if physical memory is to be
re-configured in such a way that some physical address X, which used to correspond to some
portion of memory will now corresponds to nothing in the system, software take these same
actions. Otherwise, the processor may initiate a speculative prefetch after the memory has been
removed or re-configured, causing a Machine Check abort.

On the processor initiating the transition, perform the following steps:

1. Call PAL_PREFETCH_VISIBILITY

Call PAL_PREFETCH_VISIBILITY with the input argument trans_type equal to one to
indicate that the transition is for physical memory attributes. This PAL call terminates the
processor's rights to make speculative references to any limited speculation pages (i.e., it
makes all WBL pages speculatively inaccessible – see the discussion on limited speculation
in Section 4.4.6.)

The return argument from this procedure informs the caller if this procedure call is needed
on remote processors or not. If this procedure call is not needed on remote processors, then
software may skip the IPI in step 2 and go straight to step 3 below.

2. Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to
reach all processors in the coherence domain, perform step 1 above on all processors in the
coherence domain, and wait for all PAL_PREFETCH_VISIBILITY calls to complete on all
processors in the coherence domain before continuing.
2:76 Volume 2: Addressing and Protection

On the processor initiating the disabling process, continue the sequence:

3. fc [X] // flush all processor caches in the coherence domain
fc [X+32]
fc [X+64]
... // ... for all of page “X” (page size = ps)
fc [X+ps-32] ;;

// Ensure cache flushes are also seen by processors' instruction fetch
sync.i ;;

After step 3, all flush cache instructions initiated in step 3 are visible to all processors in the
coherence domain, i.e., no processor in the coherence domain will respond with a cache line
hit on a memory reference to an address belonging to page “X”.

4. Call PAL_MC_DRAIN.

5. Using the IPI mechanism defined in “Inter-Processor Interrupt Messages” on page 2:110 to
reach all processors in the coherence domain, perform step 4 above on all processors in the
coherence domain, and wait for all PAL_MC_DRAIN calls to complete on all processors in
the coherence domain before continuing.

This further guarantees that any cache lines containing addresses belonging to page [X] have
been evicted from all caches in the coherence domain and forced onto the bus. Note that this
operation does not ensure that the cache lines have been written back to memory.

This sequence ensures that speculation and prefetch are disabled for all WBL pages, that all
outstanding prefetches have completed, and that the caches have been flushed. It may also be
necessary to take additional platform-dependent steps to ensure that all cache write-back
transactions have completed to memory before removing or re-configuring physical
memory.

4.5 Memory Datum Alignment and Atomicity

All Itanium instruction fetches, aligned load, store and semaphore operations (including IA-32) are
atomic, except for floating-point extended memory references (ldfe, stfe, and IA-32 10-byte
memory references) to non-write-back cacheable memory. In some processor models, aligned
10-byte Itanium floating-point extended memory references to non-write-back cacheable memory
may raise an Unsupported Data Reference fault. See “Effects of Memory Attributes on Memory
Reference Instructions” on page 2:73 for details. Loads are allowed to be satisfied with values
obtained from a store buffer (or any logically equivalent structure) where architectural ordering
permits, and values loaded may appear to be non-atomic. For details, refer to “Sequentiality
Attribute and Ordering” on page 2:69.

Load pair instructions are performed atomically under the following conditions: a 16-byte aligned
load integer/double pair is performed as an atomic 16-byte memory reference. An 8-byte aligned
load single pair is performed as an atomic 8-byte memory reference.

An aligned ld16 or st16 instruction is performed as an atomic 16-byte memory reference. For
these instructions, the address specified must be 16-byte aligned. Unaligned ld16 and st16
instructions result in an Unaligned Data Reference fault regardless of the state of PSR.ac.
Volume 2: Addressing and Protection 2:77

Aligned Itanium data memory references never raise an Unaligned Data Reference fault.
Minimally, each Itanium instruction and its corresponding template are fetched together atomically.
Itanium unordered loads can use the store buffer for data values. See “Sequentiality Attribute and
Ordering” on page 2:69 for details.

When PSR.ac is 1, any Itanium data memory reference that is not aligned on a boundary the size of
the operand results in an Unaligned Data Reference fault; e.g., 1, 2, 4, 8, 10, and 16-byte datums
should be aligned on 1, 2, 4, 8, 16, and 16-byte boundaries respectively to avoid generation of an
Unaligned Data Reference fault. When PSR.ac is 1, any IA-32 data memory reference that is not
aligned on a boundary the size of the operand results in an IA-32_Exception(AlignmentCheck)
fault.

Note: 10-byte and floating-point load double pair datum alignment is 16-bytes. The alignment of
long format 32-byte VHPT references is always 32-bytes.

Unaligned Itanium semaphore references (cmpxchg, xchg, fetchadd) result in an Unaligned Data
Reference fault regardless of the state of PSR.ac. For the cmp8xchg16 instruction, the address
specified must be 8-byte aligned.

When PSR.ac is 0, Itanium data memory references that are not aligned may or may not result in an
Unaligned Data Reference fault based on the implementation. The level of unaligned memory
support is implementation specific. However, all implementations will raise an Unaligned Data
Reference fault if the datum referenced by an Itanium instruction spans a 4K aligned boundary, and
many implementations will raise an Unaligned Data Reference fault if the datum spans a cache line.
Implementations may also raise an Unaligned Data Reference fault for any other unaligned Itanium
memory reference. Software is strongly encouraged to align data values to avoid possible
performance degradation for both IA-32 and Itanium-based code. When PSR.ac is 0 and IA-32
alignment checks are also disabled, no fault is raised regardless of alignment for IA-32 data
memory references.

Unaligned advanced loads are supported, though a particular implementation may choose not to
allocate an ALAT entry for an unaligned advanced load. Additionally, the ALAT may
“pessimistically” allocate an entry for an unaligned load by allocating a larger entry than the natural
size of the datum being loaded, as long as the larger entry completely covers the unaligned address
range (e.g. a ld4.a to address 0x3 may allocate an 8-byte entry starting at address 0x0). Stores
(unaligned or otherwise) may also pessimistically invalidate unaligned ALAT entries.
2:78 Volume 2: Addressing and Protection

2

Interruptions 5

Interruptions are events that occur during instruction processing, causing the flow control to be
passed to an interruption handling routine. In the process, certain processor state is saved
automatically by the processor. Upon completion of interruption processing, a return from
interruption (rfi) is executed which restores the saved processor state. Execution then proceeds
with the interrupted instruction.

From the viewpoint of response to interruptions, the processor behaves as if it were not pipelined.
That is, it behaves as if a single Itanium instruction (along with its template) is fetched and then
executed; or as if a single IA-32 instruction is fetched and then executed. Any interruption
conditions raised by the execution of an instruction are handled at execution time, in sequential
instruction order. If there are no interruptions, the next Itanium instruction and its template, or the
next IA-32 instruction, are fetched.

This chapter describes both the IA-32 and Itanium interruption mechanisms as well as the
interactions between them. The descriptions of the Itanium interruption vectors and IA-32
exceptions, interruptions, and intercepts are in Chapter 8.

5.1 Interruption Definitions

Depending on how an interruption is serviced, interruptions are divided into: IVA-based
interruptions and PAL-based interruptions.

• IVA-based interruptions are serviced by the operating system. IVA-based interruptions are
vectored to the Interruption Vector Table (IVT) pointed to by CR2, the IVA control register
(See “IVA-based Interruption Vectors” on page 2:96).

• PAL-based interruptions are serviced by PAL firmware, system firmware, and possibly the
operating system. PAL-based interruptions are vectored through a set of hardware entry points
directly into PAL firmware (See Chapter 11, “Processor Abstraction Layer”).

Interruptions are divided into four types: Aborts, Interrupts, Faults, and Traps.

• Aborts
A processor has detected a Machine Check (internal malfunction), or a processor reset. Aborts
can be either synchronous or asynchronous with respect to the instruction stream. The abort
may cause the processor to suspend the instruction stream at an unpredictable location
with partially updated register or memory state. Aborts are PAL-based interruptions.

• Machine Checks (MCA)
A processor has detected a hardware error which requires immediate action. Based on the
type and severity of the error the processor may be able to recover from the error and
continue execution. The PALE_CHECK entry point is entered to attempt to correct the
error.

• Processor Reset (RESET)
A processor has been powered-on or a reset request has been sent to it. The PALE_RESET
entry point is entered to perform processor and system self-test and initialization.
Volume 2: Interruptions 2:79

• Interrupts
An external or independent entity (e.g., an I/O device, a timer event, or another processor)
requires attention. Interrupts are asynchronous with respect to the instruction stream. All
previous instructions (including IA-32) appear to have completed. The current and
subsequent instructions have no effect on machine state. Interrupts are divided into
Initialization interrupts, Platform Management interrupts, and External interrupts.
Initialization and Platform Management interrupts are PAL-based interruptions;
external interrupts are IVA-based interruptions.

• Initialization Interrupts (INIT)
A processor has received an initialization request. The PALE_INIT entry point is entered
and the processor is placed in a known state.

• Platform Management Interrupts (PMI)
A platform management request to perform functions such as platform error handling,
memory scrubbing, or power management has been received by a processor. The
PALE_PMI entry point is entered to service the request. Program execution may be
resumed at the point of interruption. PMIs are distinguished by unique vector numbers.
Vectors 0 through 3 are available for platform firmware use and are present on every
processor model. Vectors 4 and above are reserved for processor firmware use. The size of
the vector space is model specific.

• External Interrupts (INT)
A processor has received a request to perform a service on behalf of the operating system.
Typically these requests come from I/O devices, although the requests could come from
any processor in the system including itself. The External Interrupt vector is entered to
handle the request. External Interrupts are distinguished by unique vector numbers in the
range 0, 2, and 16 through 255. These vector numbers are used to prioritize external
interrupts. Two special cases of External Interrupts are Non-Maskable Interrupts and
External Controller Interrupts.

• Non-Maskable Interrupts (NMI)
Non-Maskable Interrupts are used to request critical operating system services. NMIs
are assigned external interrupt vector number 2.

• External Controller Interrupts (ExtINT)
External Controller Interrupts are used to service Intel 8259A-compatible external
interrupt controllers. ExtINTs are assigned locally within the processor to external
interrupt vector number 0.

• Faults
The current Itanium or IA-32 instruction which requests an action which cannot or should not
be carried out, or system intervention is required before the instruction is executed. Faults are
synchronous with respect to the instruction stream. The processor completes state changes
that have occurred in instructions prior to the faulting instruction. The faulting and
subsequent instructions have no effect on machine state. Faults are IVA-based
interruptions.

• Traps
The IA-32 or Itanium instruction just executed requires system intervention. Traps are
synchronous with respect to the instruction stream. The trapping instruction and all
previous instructions are completed. Subsequent instructions have no effect on
machine state. Traps are IVA-based interruptions.

Figure 5-1 summarizes the above classification. Unless otherwise indicated, the term
“interruptions” in the rest of this chapter refers to IVA-based interruptions. PAL-based interruptions
are described in detail in Chapter 11.
2:80 Volume 2: Interruptions

5.2 Interruption Programming Model

When an interruption event occurs, hardware saves the minimum processor state required to enable
software to resolve the event and continue. The state saved by hardware is held in a set of
interruption resources, and together with the interruption vector gives software enough information
to either resolve the cause of the interruption, or surface the event to a higher level of the operating
system. Software has complete control over the structure of the information communicated, and the
conventions between the low-level handlers and the high-level code. Such a scheme allows
software rather than hardware to dictate how to best optimize performance for each of the
interruptions in its environment. The same basic mechanisms are used in all interruptions to support
efficient low-level fault handlers for events such as a TLB fault, speculation fault, or a key miss
fault.

On an interruption, the state of the processor is saved to allow a software handler to resolve the
interruption with minimal bookkeeping or overhead. The banked general registers (see “Efficient
Interruption Handling” on page 2:86) provide an immediate set of scratch registers to begin work.
For low-level handlers (e.g., TLB miss) software need not open up register space by spilling
registers to either memory or control registers.

Upon an interruption, asynchronous events such as external interrupt delivery are disabled
automatically by hardware to allow software to either handle the interruption immediately or to
safely unload the interruption resources and save them to memory. Software will either deal with
the cause of the interruption and rfi back to the point of the interruption, or it will establish a new
environment and spill processor state to memory to prepare for a call to higher-level code. Once
enough state has been saved (such as the IIP, IPSR, and the interruption resources needed to resolve
the fault) the low-level code can re-enable interruptions by restoring the PSR.ic bit and then the
PSR.i bit. (See “Re-enabling External Interrupt Delivery” on page 2:103.) Since there is only one
set of interruption resources, software must save any interruption resource state the operating
system may require prior to unmasking interrupts or performing an operation that may raise a
synchronous interruption (such as a memory reference that may cause a TLB miss).

The PSR.ic (interruption state collection) bit supports an efficient nested interruption model. Under
normal circumstances the PSR.ic bit is enabled. When an interruption event occurs, the various
interruption resources are overwritten with information pertaining to the current event. Prior to

Figure 5-1. Interruption Classification

Aborts Interrupts Faults Traps

PAL-Based Interruptions

IVA-Based Interruptions

RESET

MCA

INIT

PMI

INT
(NMI, ExtINT, ...)
Volume 2: Interruptions 2:81

saving the current set of interruption resources, it is often advantageous in a miss handler to
perform a virtual reference to an area which may not have a translation. To prevent the current set
of resources from being overwritten on a nested fault, the PSR.ic bit is cleared on any interruption.
This will suppress the writing of critical interruption resources if another interruption occurs while
the PSR.ic bit is cleared. If a data TLB miss occurs while the PSR.ic bit is zero, then hardware will
vector to the Data Nested TLB fault handler.

For a complete description of interruption resources (IFA, IIP, IPSR, ISR, IIM, IIPA, ITIR, IHA,
IFS) see “Control Registers” on page 2:24.

5.3 Interruption Handling during Instruction Execution

Execution of Itanium instructions involves calculating the address of the current bundle from the
region registers and the IP and then fetching, decoding, and executing instructions in that bundle.
Execution of IA-32 instructions involves calculating the 64-bit linear address of the current
instruction from the EIP, code segment descriptors, and region registers and then fetching,
decoding, and executing the IA-32 instruction. (See Section 3.4).

The execution process involves performing the events listed below. The values of the PSR bits are
the values that exist before the instruction is executed (except for the case of instructions that are
immediately preceded by a mandatory RSE load which clears the PSR.da and PSR.dd bits).
Changes to the PSR bits only affect subsequent instructions, and are only guaranteed to be visible
by the insertion of the appropriate serializing operation. See “Serialization” on page 2:13.
Execution flow is shown in Figure 5-2.

1. Resets are always enabled, and may occur anytime during instruction execution.

2. If the PSR.mc bit is 0 then machine check aborts may occur.

3. The processor checks for enabled pending INITs and PMIs, and for enabled unmasked
pending external interrupts.

4. For Itanium-based code, the processor checks for a valid register stack frame.

• If incomplete and RSE Current Frame Load Enable (RSE.CFLE) is set, then perform a
mandatory RSE load and start again at step one. The mandatory load operation may fault.
A non-faulting mandatory RSE load will clear PSR.da and PSR.dd.

• If valid, then clear RSE.CFLE.

5. For IA-32 code, IA-32 instruction addresses are checked for possible instruction breakpoint
faults. The IA-32 effective instruction address (EIP) is converted into a 64-bit virtual linear
address IP and IA-32 defined code segmentation and code fetch faults are checked and may
result in a fault.

6. When PSR.is is 0, the bundle is fetched using the IP. When PSR.is is 1, an IA-32 instruction
is fetched using IP.

• If the PSR.it bit is 1, virtual address translation of the instruction address is performed.
Address translation may result in a fault.

• If the PSR.pk bit is 1, access key checking is enabled and may result in a fault.

• For Itanium instructions the IBR registers are checked for possible instruction breakpoint
faults.

• The fetched instruction is decoded and executed.
2:82 Volume 2: Interruptions

• For IA-32 code, the fetched IA-32 instruction is checked to see if the opcode is an illegal
opcode, results in an instruction intercept or the opcode bytes are longer than 15 bytes
resulting in an fault.

• If a fault occurs during execution, the processor completes all effects of the instructions
prior to the faulting instruction, and does not commit the effect of the faulting instruction
and all subsequent instructions. It then takes the interruption for the fault. IIP is loaded
with the IP of the bundle or IA-32 instruction which contains the instruction that caused
the fault.

• The PSR.dd, PSR.id, PSR.ia, PSR.da, and PSR.ed bits are set to 0 after an Itanium
instruction is successfully executed without raising a fault. The PSR.da and PSR.dd bits
are also set to 0 after the execution of each mandatory RSE memory reference that does

Figure 5-2. Interruption Processing

Note: The solid
line represents the
normal execution

fetch current
instruction,

execute current

vector to
highest-priority

vector to highest-
priority interrupt

vector to
highest-priority

process fault commit state for
instruction

process all traps

incomplete
frame and
RSE.CFLE

trap

process interrupt

fault

perform mandatory
RSE load

enabled
unmasked interrupt

pending?

fault

YES

YESYESYES

YES

YES

NO

YES

NO

NO

NO

NO

RFI

RFI

RFI

RFI
Volume 2: Interruptions 2:83

not raise a fault. PSR.da, PSR.ia, PSR.dd, and PSR.ed bits are cleared before the first
IA-32 instruction starts execution after a br.ia or rfi instruction. EFLAG.rf and PSR.id
bits are set to 0 after an IA-32 instruction is successfully executed.

• If an rfi instruction is in the current bundle, then on the execution of rfi, the value from
the IIP is copied into the IP, the value from IPSR is copied into the PSR, and the
RSE.CFLE is set. On an rfi if IFS.v is set, then IFS.pfm is copied into CFM and the
register stack BOF is decremented by CFM.sof. The following Itanium or IA-32
instruction is executed based on the new IP and PSR values.

7. Traps are handled after execution is complete.

• If the instruction just completed set the instruction pointer (IP) to an unimplemented
address, an Unimplemented Instruction Address trap is taken.

• If the instruction just completed was an Itanium floating-point instruction which raised a
trap, a Floating-point trap is taken.

• For IA-32 instructions, if Data Breakpoint traps are enabled and one or more data
breakpoint registers matched during execution of the instruction, a Data Breakpoint trap is
taken.

• If the PSR.lp bit is 1, and an Itanium branch lowers the privilege level, then a
Lower-Privilege Transfer trap is taken.

• If the PSR.tb bit is 1 and a branch (including IA-32) occurred during execution, then a
Taken Branch trap occurs.

• If no other trap was taken and the PSR.ss bit is 1, then a Single Step trap occurs.

• If more than one trap is triggered (such as Unimplemented Instruction Address trap,
Lower-Privilege Transfer trap, and Single Step trap) the highest priority trap is taken. The
ISR.code contains a bit vector with one bit set for each trap triggered.

A sequential execution model is presented in the preceding description. Implementations are free to
use a variety of performance techniques such as pipelined, speculative, or out-of-order execution
provided that, to the programmer, the illusion that instructions are executed sequentially is
preserved.

5.4 PAL-based Interruption Handling

The actions a processor takes and the state that it modifies immediately after a PAL-based
interruption is received are implementation dependent, unless otherwise indicated. For example, an
implementation may choose to support a set of shadow resources on a machine check abort which
enables recovery even when PSR.ic is 0. It may also choose to use the same resources as an
IVA-based interruption event, and hence only support recovery if PSR.ic is 1 at the time of the
abort. On the other hand, a processor must set PSR.it to 0 and PSR.mc to 1 after a machine check
abort. See Chapter 11, “Processor Abstraction Layer” for details on PAL-based interruptions. See
model specification documentation for the processor state and actions for all PAL-based firmware
interruptions.
2:84 Volume 2: Interruptions

5.5 IVA-based Interruption Handling

IVA-based interruption handling is implemented as a fast context switch. On IVA-based
interruptions, instruction and data translation is left unchanged, the endian mode is set to the system
default, and delivery of most PSR-controlled interruptions is disabled (including delivery of
asynchronous events such as external interrupts). The processor is responsible for saving only a
minimal amount of state in the interruption resource registers prior to vectoring to the
Itanium-based software handler.

When an interruption occurs, the processor takes the following actions:

1. If PSR.ic is 0:

• IPSR, IIP, IIPA, and IFS.v are unchanged.

• Interruption-specific resources IFA, IIM, and IHA are unchanged.

If PSR.ic is 1:

• PSR is saved in IPSR. If PSR is in-flight, IPSR will get the most recent in-flight value of
PSR (i.e., PSR is serialized by the processor before it is written into IPSR). For Itanium
traps, the value written to IPSR.ri is the next instruction slot that would have been
executed if there had been no trap. For all other interruptions, the value written to IPSR.ri
is the instruction slot on which the interruption occurred (1 for interruptions on the L+X
instruction of an MLX). For interruptions in the IA-32 instruction set, IPSR.ri is set to 0.

• IP is written into IIP. For faults and external interrupts, the saved IP is the IP at which the
interruption occurred. For traps, the saved IP is the value after the execution of the IA-32
or Itanium instruction which caused the trap. For branch-related traps, IIP is written with
the target of the branch; for all other traps, IIP is written with the address of the bundle or
IA-32 instruction containing the next sequential instruction.

• IIPA receives the IP of the last successfully executed Itanium instruction. For IA-32
instructions, IIPA receives the IP of the faulting or trapping IA-32 instruction.

• The interruption resources IFA, IIM, IHA, and ITIR are written with information specific
to the particular fault, trap, or interruption taken. These registers serve as parameters to
each of the interruption vectors. The IFS valid bit (IFS.v) is cleared. All other bits in the
IFS are undefined.

If PSR.ic is in-flight:

• Interruption state may or may not be collected in IIP, IPSR, IIPA, ITIR, IFA, IIM, and
IHA.

• The value of IFS (including IFS.v) is undefined.

2. ISR bits are overwritten on all interruptions except for a Data Nested TLB fault. The
instruction slot which caused the interruption is saved in ISR.ei (2 for traps, 1 for other
interruptions, on the L+X instruction of an MLX). For IA-32 code, ISR.ei is set to 0. If
PSR.ic is 0 or in-flight when the interruption occurs, ISR.ni is set to 1. Otherwise, ISR.ni is
set to 0. ISR.ni is always 0 for interruptions taken in IA-32 code.

3. The defined bits in the PSR are set to zero except as follows:

• PSR.up, PSR.mfl, PSR.mfh, PSR.pk, PSR.dt, PSR.rt, PSR.mc, and PSR.it are unchanged
for all interruptions.

• PSR.be is set to the value of the default endian bit (DCR.be). If DCR.be is in-flight at the
time of interruption, PSR.be may receive either the old value of DCR.be or the in-flight
value.
Volume 2: Interruptions 2:85

• PSR.pp is set to the value of the default privileged performance monitor bit (DCR.pp). If
DCR.pp is in-flight at the time of interruption, PSR.pp may receive either the old value of
DCR.pp or the in-flight value.

Since PSR.cpl is set to zero, the processor will execute at the most privileged level.

4. RSE.CFLE is set to zero.

5. IP gets the appropriate IVA vector for the interruption. If IVA is in-flight at the time of
interruption, IP receives either the vector specified by the old IVA value or the vector
specified by the in-flight value.

6. The processor performs an instruction serialization and execution of Itanium instructions
begins at the IP obtained in step 5 above. The instruction serialization event ensures that all
previous control register changes and side effects due to such changes are visible to the first
instruction of the interruption handler.

5.5.1 Efficient Interruption Handling

A set of 16 banked registers are provided by the processor to assist in the efficient processing of
low-level Itanium interruptions and instruction emulation. These registers allow a low-level routine
to have immediate access to a small set of static registers without having to save and restore their
contents to memory at the start and end of each handler. The extra bank of registers exists in the
same name space as the normal registers, overlapping GR16 to GR31. Which set of physical
registers are accessed through GR16 to GR31 is determined by the PSR.bn bit. On an interruption
this bit is forced to zero allowing access to the alternate set of 16 registers which can be used as
scratch space or to hold predetermined values. Software can return to the original set of 16 GRs by
setting the PSR.bn bit to one with bsw instruction. The rfi instruction may also restore the PSR.bn
bit to the value at the time of the interruption which is held in the IPSR. Eight additional registers
(KR0-KR7) can be used to hold latency critical information for a handler. These application
registers (KR0-KR7) can be read but not written by non-privileged code.

When the processor handles an interruption event the current stack frame remains unchanged and
the IFS valid bit is cleared. The remaining contents of IFS are undefined. While the interruption
handler is running, the register stack engine (RSE) may spill/fill registers to/from the backing store
if eager RSE stores/loads are enabled. The RSE will not load or store registers in the current frame
(except as required on a br.ret or rfi in order to load the contents of the frame before continuing
execution). For most low-level interruptions the current frame will not be modified.
High-performance interruption handlers will not need to perform any register stack manipulation.
For example, a TLB miss handler does not need access to any registers in the interrupted frame. An
rfi instruction after an interruption and before a cover operation will also leave the frame marker
unchanged (desired behavior for a low-level interruption handler). When an interruption handler
falls off the fast path it is required to issue a cover instruction so that the interrupted frame can
become part of backing store. See “Switch from Interrupted Context” on page 2:129.

It may be desirable to emulate a faulting instruction in the interruption handler and rfi back to the
next sequential instruction rather than resuming at the faulting instruction. Some Itanium
instructions can be emulated without having to read the bundle from memory, through knowledge
of the vector, software convention, and information from the ISR (e.g., emulation of tpa).
However, most Itanium instructions will require reading the bundle from memory and decoding the
operation (e.g., an unaligned load). To correctly emulate an unaligned load, the bundle is read from
memory using the value in the IIP which contains the bundle address. The instruction within the
bundle that caused the interruption is determined by the ISR.ei field. Once the operation is decoded
2:86 Volume 2: Interruptions

and emulation completes, the effect of the faulting instruction must be nullified when control is
returned to the point of the fault.

An Itanium instruction is skipped by adjusting PSR.ri and possibly IIP prior to performing the rfi
to the interrupted bundle. This is done by incrementing IPSR.ri by the number of slots this
instruction occupies (usually 1). If the resulting IPSR.ri is 3, then reset IPSR.ri to 0 and advance IIP
by 1 bundle (16 bytes). Emulating X-unit instructions requires setting IPSR.ri to 0 and setting IIP to
the next bundle (X-unit instructions take up two instruction slots). IPSR, IIP, and IFS.pfm (if valid)
will be restored on an rfi to the PSR, IP, and CFM registers.

5.5.2 Non-access Instructions and Interruptions

The non-access Itanium instructions are: fc, fc.i, lfetch, probe, tpa, and tak. These
instructions reference the TLB but do not directly read or write memory. They are distinguished
from normal load/store instructions since an operating system may wish to handle an interruption
raised by a non-access instruction differently.

All non-access Itanium instructions can cause interruptions (tpa, fc, fc.i, probe, tak only for
non-TLB related reasons). ISR.code will be set to indicate which non-access instruction caused the
interruption. See Table 5-1 for ISR field settings for non-access instructions.

5.5.3 Single Stepping

The processor can single step through a series of instructions by enabling the single step PSR.ss bit.
This is accomplished by setting the IPSR.ss bit and performing an rfi back to the instruction to be
single stepped over. When single stepping, the processor will execute one IA-32 instruction or one
Itanium instruction pointed to by the IPSR.ri field.

After single stepping Itanium instruction slot 2 (IPSR.ri = 2) or when the template is MLX and
single stepping instruction slot 1 (IPSR.ri = 1), the IIP will point to the next bundle, and IPSR.ri
will point to slot 0.

Table 5-1. ISR Settings for Non-access Instructions

Instruction
ISR Fields

code{3:0} na r w

tpa 0 1 0 0

fc, fc.i 1 1 1 0

probe 2 1 0 or 1a

a. Sets r or w or both to 1 depending on the probe form.

0 or 1a

tak 3 1 0 0

lfetch, lfetch.fault 4 1 1 0

probe.fault 5 1 0 or 1a 0 or 1a
Volume 2: Interruptions 2:87

5.5.4 Single Instruction Fault Suppression

Four bits, PSR.id, PSR.da, PSR.ia, and PSR.dd are defined to suppress faults for one Itanium
instruction or one mandatory RSE memory operation. The PSR.id bit is used to suppress the
instruction debug fault for one IA-32 or Itanium instruction. This bit will be cleared in the PSR
after the first successfully executed instruction. The PSR.ia bit is used to suppress the Instruction
Access Bit fault for one Itanium instruction. This bit will be cleared in the PSR after the first
successfully executed instruction. The PSR.da and PSR.dd bits are used to suppress Dirty-Bit, Data
Access-Bit and Data Debug faults for one Itanium instruction, or for one mandatory RSE memory
reference. The PSR.da and PSR.dd bits will be cleared in the PSR after the first instruction is
executed without raising a fault, or after the first mandatory RSE memory reference that does not
raise a fault completes. PSR.da, PSR.ia and PSR.dd are cleared before the first IA-32 instruction
starts execution after a br.ia or rfi instruction. Software may set the PSR.id, PSR.da, PSR.ia and
PSR.dd bits in the IPSR prior to an rfi. The rfi will restore the PSR from the IPSR. By using
these disable bits, software may step over a debug or dirty/access event and continue execution.

5.5.5 Deferral of Speculative Load Faults

Speculative and speculative advanced loads can defer fault handling by suppressing the speculative
memory reference, and by setting the deferred exception indicator (NaT bit or NaTVal) of the load
target register. Other effects of the instruction (such as post increment) are performed. Additionally,
software can suppress the memory reference of speculative and speculative advanced loads
independent of any exception.

Deferral is the process of generating a deferred exception indicator and not performing the
exception processing at the time of its detection (and potentially never at all). Once a deferred
exception indicator is generated, it will propagate through all uses until the speculation is checked
by using either a chk.s instruction, a chk.a instruction (for speculative advanced loads), or a
non-speculative use. This causes the appropriate action to be invoked to deal with the exception.

Three different programming models are supported: no-recovery, recovery and always-defer. In
the no-recovery model, only fatal exceptional conditions are deferred – these are conditions which
cannot be resolved without either involving the program’s exception-handling code or terminating
the program. In the recovery model, performance may be increased by deferring additional
exceptional conditions. The recovery model is used only if the program provides additional
“recovery” code to re-execute failed speculative computations. When a speculative load is executed
with PSR.ic equal to 1, and ITLB.ed equal to 0, the no-recovery model is in effect. When PSR.ic is
1 and ITLB.ed is 1, the recovery model is in effect. The always-defer model is supported for use in
system code which has PSR.ic equal to 0. In this model, all exceptional conditions which can be
deferred are deferred. This permits speculation in environments where faulting would be
unrecoverable.

In addition to the deferral of exceptional conditions, speculative loads may be deferred
automatically by hardware based on implementation-dependent criteria, such as the detection of a
cache miss. Such deferral is referred to as spontaneous deferral, and is done in order to increase
performance. Spontaneous deferral is allowed only in the recovery model.
2:88 Volume 2: Interruptions

Speculative load exceptions are categorized into three groups:

• Ones which always raise a fault

• Ones which always defer

• Ones which always raise a fault in the no-recovery model, but can defer based on the
speculative deferral control bits in the DCR control register, in the recovery model.

Aborts, external interrupts, RSE or instruction-fetch-related faults that happen to occur on a
speculative load are always raised (since they are not related to the speculative load instruction).
Illegal Operation faults and Disabled Floating-point Register faults that occur on a speculative load
are always raised.

Processing of exception conditions for speculative and speculative advanced loads is done in three
stages: qualification, deferral and prioritization.

During the execution of a load instruction, multiple exception conditions may be detected
simultaneously. For non-speculative loads these exception conditions are prioritized and only the
highest priority one raises a fault. For speculative loads, however, some exception conditions may
be deferred. As a result, it is possible for lower priority exceptions, which are not also deferred, to
raise a fault. For some exception conditions, though, other lower priority conditions are
meaningless, and are said to be qualified, or precluded. Exception qualification is described in
Table 5-3.

Table 5-2. Programming Models

PSR.ic PSR.it ITLB.ed Model DCR-based Deferral Spontaneous Deferral

0 x x Always defer No No

1 0 x No recovery No No

1 1 0 No recovery No No

1 1 1 Recovery Yes Yes

Table 5-3. Exception Qualification

Exception Condition Precluded by Concurrent Exception Condition

Register NaT Consumption
(NaT’ed address)

none

Unimplemented Data Address Register NaT Consumption

Alternate Data TLB Register NaT Consumption Unimplemented Data Address

VHPT data Register NaT Consumption Unimplemented Data Address

Data TLB Register NaT Consumption Unimplemented Data Address

Data Page Not Present Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB

Data NaT Page Consumption Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Miss Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Key Permission Register NaT Consumption
Unimplemented Data Address
VHPT data
Data TLB

Alternate Data TLB
Data Page Not Present
Data Key Miss

Data Access Rights Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present
Volume 2: Interruptions 2:89

After exception conditions are detected and qualified, the remaining exception conditions are
checked for deferral. Deferral occurs after fault qualification and determines which memory access
exceptions raised by speculative loads are automatically deferred by hardware.

Deferral is controlled by PSR.ed, PSR.it, PSR.ic, the speculative deferral control bits in the DCR,
the exception deferral bit of the code page’s instruction TLB entry (ITLB.ed), and the memory
attribute of the referenced data page. The speculative load and speculative advanced load exception
deferral conditions are as follows:

• When PSR.ic is 0 and regardless of the state of DCR, and ITLB.ed bits (see Table 5-2), all
exception conditions related to the data reference are deferred.

• Regardless of the state of DCR, PSR.it, PSR.ic, and ITLB.ed bits, Unimplemented Data
Address exception conditions and Data NaT Page Consumption exception conditions (caused
by references to NaTPages) are always deferred.

• When PSR.it and ITLB.ed are both 1, and the appropriate DCR bit is 1 for the exception, the
speculative load exception is deferred.

• When PSR.it and ITLB.ed are both 1, Unaligned Data Reference exception conditions are
deferred.

The conditions for deferral are given in Table 5-4. See also “Default Control Register (DCR –
CR0)” on page 2:25.

Data Access Bit Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Data Debug Register NaT Consumption Unimplemented Data Address

Unaligned Data Reference Register NaT Consumption Unimplemented Data Address

Unsupported Data Reference Register NaT Consumption
Unimplemented Data Address
VHPT data

Data TLB
Alternate Data TLB
Data Page Not Present

Table 5-4. Qualified Exception Deferral

Qualified Exception Deferred if

Register NaT Consumption (NaT’ed address) always

Unimplemented Data Address always

Alternate Data TLB !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

VHPT data !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data TLB !PSR.ic || (PSR.it && ITLB.ed && DCR.dm)

Data Page Not Present !PSR.ic || (PSR.it && ITLB.ed && DCR.dp)

Data NaT Page Consumption always

Data Key Miss !PSR.ic || (PSR.it && ITLB.ed && DCR.dk)

Data Key Permission !PSR.ic || (PSR.it && ITLB.ed && DCR.dx)

Data Access Rights !PSR.ic || (PSR.it && ITLB.ed && DCR.dr)

Data Access Bit !PSR.ic || (PSR.it && ITLB.ed && DCR.da)

Data Debug !PSR.ic || (PSR.it && ITLB.ed && DCR.dd)

Unaligned Data Reference !PSR.ic || (PSR.it && ITLB.ed)

Unsupported Data Reference always

Table 5-3. Exception Qualification (Continued)

Exception Condition Precluded by Concurrent Exception Condition
2:90 Volume 2: Interruptions

The conditions for spontaneous deferral are given in Table 5-5. See the Get Processor Dependent
Features procedure for details on enabling/disabling spontaneous deferral.

After checking for deferral, execution of a speculative load instruction proceeds as follows:

• When PSR.ed is 1, then a deferred exception indicator (NaT bit or NaTVal) is written to the
load target register, regardless of whether it has an exception or not and regardless of the state
of DCR, PSR.it, PSR.ic and the ITLB.ed bits.

• If PSR.ed is 0 and there is at least one exception condition which is neither precluded nor
deferred, then a fault is taken corresponding to the highest-priority exception condition which
is neither precluded nor deferred. Prioritization of non-deferred speculative load faults follows
the same interruption priorities as non-speculative instruction faults (Table 5-6 on page 2:92).
However, deferred speculative load faults do not take part in the prioritization. As a result,
depending on DCR settings, a lower priority fault may be taken, even if a higher priority
exception condition exists, but is deferred.

• If PSR.ed is 0 and there are exception conditions, but all are either precluded or deferred, then
a deferred exception indicator (NaT bit or NaTVal) is written to the load target register.

• If PSR.ed is 0, and there are no exception conditions, and if the memory attribute of the
referenced page is uncacheable or limited speculation, then a deferred exception indicator
(NaT bit or NaTVal) is written to the load target register. See “Speculation Attributes” on
page 2:67.

• If PSR.ed is 0, and there are no exception conditions, and if spontaneous deferral is enabled
and permitted by the programming model, then a deferred exception indicator (NaT bit or
NaTVal) may optionally be written to the load target register.

• Otherwise, the load executes normally.

If automatic hardware deferral is not enabled, software may still choose to defer exception
processing (for speculative loads) at the time of the fault. If the code page has its ITLB.ed bit equal
to 1, then the operating system may choose to defer a non-fatal exception. It is expected that the
operating system will always defer fatal exceptions. To assist software in the deferral of non-fatal
or fatal exceptions, the system architecture provides three additional resources: ISR.sp, ISR.ed, and
PSR.ed.

ISR.sp indicates whether the exception was the result of a speculative or speculative advanced load.
The ISR.ed bit captures the code page ITLB.ed bit, and allows deferral of a non-fatal exception due
to a speculative load. If both the ISR.sp and ISR.ed bit are 1 on an interruption, then the operating
system may defer a non-fatal exception by using the PSR.ed bit to perform the action of hardware
deferral for one executed instruction. Software may use the same PSR.ed mechanism to defer fatal
speculative load exceptions.

5.6 Interruption Priorities

Table 5-6 contains a complete list of the architecture defined interruptions (including IA-32),
grouped according to type (aborts, interrupts, faults and traps), instruction set, and listed in priority
order. Interruptions are delivered in priority order. If more than one instruction detects an

Table 5-5. Spontaneous Deferral

Implementation-dependent condition may optionally be deferred if

(PSR.ic && PSR.it && ITLB.ed && spontaneous_deferral_enabled())
Volume 2: Interruptions 2:91

interruption within a bundle, the interruption occurring in the lowest numbered instruction slot is
raised. Lower priority faults and traps are discarded. Lower priority interrupts are held pending.

The shaded interruptions are disabled if the instruction generating the interruption is predicated off.
All other interruptions are either “bundle related” (so the predicate bits do not affect them) or are
caused by instructions that cannot be predicated off. Incomplete Register frame (IR) faults 6
through 17 are identical in behavior to faults 43, 48 through 59 (exclusive of 57) except they are of
a higher priority. IR faults 6 through 17 can only be caused by mandatory RSE load operations that
result from br.ret, or rfi instructions, but not from loadrs instructions (for details see Section
“RSE Interruptions” on page 2:125).

The number in parenthesis after each vector name is the page number where the vector is described
in detail.

Table 5-6. Interruption Priorities

Type Instr. Set Interruption Name Vector Name
IA-32

Classa

Aborts
IA-32,
Intel®

Itanium®

1 Machine Reset (RESET) PALE_RESET vector
N/A

2 Machine Check (MCA) PALE_CHECK vector

Inter-
rupts

3 Initialization Interrupt (INIT) PALE_INIT vector
N/A

4 Platform Management Interrupt (PMI) PALE_PMI vector

5 External Interrupt (INT) External Interrupt vector

Faults

Intel®

Itanium®

6 IR Unimplemented Data Address fault General Exception vector

N/A

7 IR Data Nested TLB fault Data Nested TLB vector

8 IR Alternate Data TLB fault Alternate Data TLB vector

9 IR VHPT Data fault VHPT Translation vector

10 IR Data TLB fault Data TLB vector

11 IR Data Page Not Present fault Page Not Present vector

12 IR Data NaT Page Consumption fault NaT Consumption vector

13 IR Data Key Miss fault Data Key Miss vector

14 IR Data Key Permission fault Key Permission vector

15 IR Data Access Rights fault Data Access Rights vector

16 IR Data Access Bit fault Data Access-Bit vector

17 IR Data Debug fault Debug vector

Faults IA-32 18 IA-32 Instruction Breakpoint fault IA-32 Exception vector (Debug)

A

19 IA-32 Code Fetch faultb IA-32 Exception vector (GPFault)

IA-32,
Intel®

Itanium®

20 Alternate Instruction TLB fault Alternate Instruction TLB vector

21 VHPT Instruction fault VHPT Translation vector

22 Instruction TLB fault Instruction TLB vector

23 Instruction Page Not Present fault Page Not Present vector

24 Instruction NaT Page Consumption fault NaT Consumption vector

25 Instruction Key Miss fault Instruction Key Miss vector

26 Instruction Key Permission fault Key Permission vector

27 Instruction Access Rights fault Instruction Access Rights vector

28 Instruction Access Bit fault Instruction Access-Bit vector
2:92 Volume 2: Interruptions

Intel®

Itanium®
29 Instruction Debug fault Debug vector

IA-32
30 IA-32 Instruction Length > 15 bytes IA-32 Exception vector (GPFault)

B
31 IA-32 Invalid Opcode fault IA-32 Intercept vector (Instruction)

32 IA-32 Instruction Intercept fault IA-32 Intercept vector (Instruction)

Intel®

Itanium®

33 Illegal Operation fault General Exception vector

34 Illegal Dependency fault General Exception vector

35 Break Instruction fault Break Instruction vector

36 Privileged Operation fault General Exception vector

IA-32,
Intel®

Itanium®

37 Disabled Floating-point Register fault Disabled FP-Register vector

B38 Disabled Instruction Set Transition fault General Exception vector

IA-32
39 IA-32 Device Not Available fault IA-32 Exception vector (DNA)

40 IA-32 FP Error faultc IA-32 Exception vector (FPError)
C

IA-32,
Intel®

Itanium®

41 Register NaT Consumption fault NaT Consumption vector

Intel®

Itanium®
42 Reserved Register/Field fault General Exception vector

43 Unimplemented Data Address fault General Exception vector

44 Privileged Register fault General Exception vector

45 Speculative Operation fault Speculation vector

IA-32
46 IA-32 Stack Exception IA-32 Exception vector (StackFault)

C

47 IA-32 General Protection Fault IA-32 Exception vector (GPFault)

Faults

IA-32,
Intel®

Itanium®

48 Data Nested TLB fault Data Nested TLB vector

49 Alternate Data TLB faultd Alternate Data TLB vector

50 VHPT Data faultd VHPT Translation vector

51 Data TLB faultd Data TLB vector

52 Data Page Not Present faultd Page Not Present vector

53 Data NaT Page Consumption faultd NaT Consumption vector

54 Data Key Miss faultd Data Key Miss vector

55 Data Key Permission faultd Key Permission vector

56 Data Access Rights faultd Data Access Rights vector

57 Data Dirty Bit fault Dirty-Bit vector

58 Data Access Bit faultd Data Access-Bit vector

Intel®

Itanium®

59 Data Debug faultd Debug vector

60 Unaligned Data Reference faultd Unaligned Reference vector

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name
IA-32

Classa
Volume 2: Interruptions 2:93

5.6.1 IA-32 Interruption Priorities and Classes

Table 5-6 establishes a well defined priority between faults, traps and interrupts (including IA-32).
However, IA-32 instruction set generated interruptions are divided into interruption classes. While
priority among these IA-32 interruption classes is well defined by the table (except as noted below),
interruption priority within each IA-32 interruption class is implementation dependent and may
vary from processor to processor as defined below:

Class A – Faults from fetching an instruction. Priority of IA-32 Instruction Breakpoint, IA-32 Code
Fetch (GPFault(0)), and Instruction TLB faults (Alternate Instruction TLB fault to Instruction
Access Bit fault) may vary based on instruction alignment and page boundaries in a model specific
way. Faults are prioritized as defined in the table if the instruction does not span a virtual page. If an
IA-32 instruction spans a virtual page, IA-32 Code Fetch faults (IA-32_Exception(GPFault)) due to

IA-32

61 IA-32 Alignment Check fault IA-32 Exception vector (AlignmentCheck)

C

62 IA-32 Locked Data Reference fault IA-32 Intercept vector (Lock)

63 IA-32 Segment Not Present fault IA-32 Exception vector (NotPresent)

64 IA-32 Divide by Zero fault IA-32 Exception vector (Divide)

65 IA-32 Bound fault IA-32 Exception vector (Bound)

66 IA-32 Streaming SIMD Extension Numeric
Error fault

IA-32 Exception vector (StreamSIMD)

Intel®

Itanium®

67 Unsupported Data Reference fault Unsupported Data Reference vector

68 Floating-point fault Floating-point Fault vector

Traps

Intel®

Itanium®

69 Unimplemented Instruction Address trap Lower-Privilege Transfer Trap vector

70 Floating-point trap Floating-point Trap vector

71 Lower-Privilege Transfer trap Lower-Privilege Transfer Trap vector

72 Taken Branch trap Taken Branch Trap vector

73 Single Step trap Single Step Trap vector

IA-32

74 IA-32 System Flag Intercept trap IA-32 Intercept vector (SystemFlag)

D

75 IA-32 Gate Intercept trap IA-32 Intercept vector (Gate)

76 IA-32 INTO trap IA-32 Exception vector (Overflow)

77 IA-32 Breakpoint (INT 3) trap IA-32 Exception vector (Debug)

78 IA-32 Software Interrupt (INT) trap IA-32 Interrupt vector (Vector#)

79 IA-32 Data Breakpoint trap IA-32 Exception vector (Debug)

80 IA-32 Taken Branch trap IA-32 Exception vector (Debug)

81 IA-32 Single Step trap IA-32 Exception vector (Debug)

a. IA-32 Interruption Class, see Section 5.6.1 for details
b. IA-32 Code Fetch faults include Code Segment Limit Violation and other Code Fetch checks defined in Section 6.2.3.3.
c. IA-32 FP Error fault conditions detected on an IA-32 FP instruction are reported as a fault on the next IA-32 FP instruction that

performs an FWAIT operation.
d. If not deferred.

Table 5-6. Interruption Priorities (Continued)

Type Instr. Set Interruption Name Vector Name
IA-32

Classa
2:94 Volume 2: Interruptions

code segment (CS) Limit violations can be raised above or below Instruction TLB faults as defined
below:

• If the starting effective address of the IA-32 instruction exceeds the code segment limit, then
the IA-32 Code Fetch fault has higher priority than any Instruction TLB faults. If the starting
effective address of the IA-32 instruction is within the code segment limit, then Instruction
TLB faults have higher priority for the starting effective address.

• If the IA-32 instruction spans a virtual page and the code segment limit is equal to the page
boundary, the IA-32 Code Fetch fault has higher priority than any Instruction TLB faults on
the second page. Otherwise if the code segment limit is greater than the page boundary, any
Instruction TLB faults on the second page have higher priority than the IA-32 Code Fetch
fault.

Class B – Faults from decoding an instruction. Priority of IA-32 Instruction Length, IA-32 Invalid
Opcode, and IA-32 Instruction Intercept, Disabled Floating Point Register, Disabled Instruction Set
Transition, and Device Not Available faults are model specific. If the IA-32 instruction spans a
virtual page, IA-32 Instruction Length >15 byte Faults (IA-32_Exception(GPFault)) can have
higher priority than Instruction TLB faults as defined below:

• If the IA-32 prefix bytes on the first page are >= 15 bytes, an IA-32 Instruction >15 byte fault
(GPFault) is taken first regardless of any Instruction TLB faults on the second page.

• If the IA-32 prefix bytes on the first page are < 15 bytes, Instruction TLB faults on the second
page may or may not have priority over any possible IA-32 Instruction Length fault.

Class C – Faults resulting from executing an instruction. Priority of faults is model specific and can
vary across processor implementations. Most faults are related to data memory references, other
fault priorities can vary due to model-specific differences across processor implementations. The
memory fault priorities (IA-32 Stack Exception through Data Access Bit fault) defined in the table
only apply to a single IA-32 data memory reference that does not cross a virtual page. If an IA-32
instruction requires multiple data memory references or a single data memory reference crosses a
virtual page:

• If any given IA-32 instruction requires multiple data memory references, all possible faults are
raised on the first data memory reference before any faults are checked on subsequent data
memory references. This implies lower priority faults on an earlier memory reference will be
raised before higher priority faults on a later data memory reference within a single IA-32
instruction. The order of data memory references initiated by an IA-32 instruction is
implementation dependent and may vary from processor to processor. Software can not
assume all higher priority data memory faults are raised before all lower priority data memory
faults within a single IA-32 instruction.

• If a single IA-32 data memory reference crosses a virtual page, the processor checks for faults
in a model specific order: Any faults present on one page are checked and reported before any
faults are checked and reported on the other page. This implies that a single data reference that
crosses a virtual page can raise lower priority data memory faults on one page before higher
priority data memory faults are raised on the other page. For example, Data Key Miss faults
(lower priority) on the first page could be raised before a Data TLB Miss Fault (higher priority)
on the second page. Software can not assume all higher priority data memory faults are raised
before all lower priority data memory faults within a single IA-32 instruction.

Class D – Traps on the current IA-32 instruction. Trap conditions are reported concurrently on the
same exception vector or via a trap code specifying all concurrent traps.
Volume 2: Interruptions 2:95

5.7 IVA-based Interruption Vectors

Table 5-7 contains the processor’s interruption vector table (IVT). The base of the IVT is held in the
IVA control register. The size of the IVT is 32KB. The first 20 vectors are designed to provide more
code space by allowing 64 bundles per vector (16 bytes per bundle) for performance-critical
interruption handlers. The second 48 vectors provide 16 bundles per vector. Several vectors have
more than one interruption associated with them. Information provided in the ISR allows the
handler to distinguish which fault or trap caused the event.

Some vectors require additional software decoding to determine the cause of the interruption.
Additional information for this decoding is provided in the ISR.code field. See Chapter 8,
"Interruption Vector Descriptions" for a complete specification of the information supplied in the
ISR for each of the vectors.

PAL-based interruptions (RESET, MCA, INIT, and PMI) do not reference the IVT.

Table 5-7. Interruption Vector Table (IVT)

Offset Vector Name Interruption(s) Page

0x0000 VHPT Translation vector 9, 21, 50 2:151

0x0400 Instruction TLB vector 22 2:153

0x0800 Data TLB vector 10, 51 2:154

0x0c00 Alternate Instruction TLB vector 20 2:155

0x1000 Alternate Data TLB vector 8, 49 2:156

0x1400 Data Nested TLB vector 7, 48 2:157

0x1800 Instruction Key Miss vector 25 2:158

0x1c00 Data Key Miss vector 13, 54 2:159

0x2000 Dirty-Bit vector 57 2:160

0x2400 Instruction Access-Bit vector 28 2:161

0x2800 Data Access-Bit vector 16, 58 2:162

0x2c00 Break Instruction vector 35 2:163

0x3000 External Interrupt vector 5 2:164

0x3400 Reserved

0x3800 Reserved

0x3c00 Reserved

0x4000 Reserved

0x4400 Reserved

0x4800 Reserved

0x4c00 Reserved

0x5000 Page Not Present vector 11, 23, 52 2:165

0x5100 Key Permission vector 14, 26, 55 2:166

0x5200 Instruction Access Rights vector 27 2:167

0x5300 Data Access Rights vector 15, 56 2:168

0x5400 General Exception vector 6, 33, 34, 36, 38, 42, 43, 44 2:169

0x5500 Disabled FP-Register vector 37 2:171

0x5600 NaT Consumption vector 12, 24, 41, 53 2:172

0x5700 Speculation vector 45 2:174

0x5800 Reserved

0x5900 Debug vector 17, 29, 59 2:175

0x5a00 Unaligned Reference vector 60 2:176
2:96 Volume 2: Interruptions

5.8 Interrupts

This section describes the programming model of the high performance interrupt architecture. As
shown in Figure 5-3, interrupts are managed by the processor and by one or more intelligent
external interrupt controllers or devices in the I/O subsystem. The processor is responsible for
queuing and masking interrupts, sending and receiving inter-processor interrupt (IPI) messages,
receiving interrupt messages from external interrupt controller(s), and managing local interrupt
sources. This document describes the processor’s interrupt control mechanism only; for details on
external interrupt controllers or I/O devices refer to platform documentation.

As defined in “Interruption Definitions” on page 2:79 there are three kinds of interrupts:
initialization interrupts (INITs), platform management interrupts (PMIs), and external interrupts
(INTs).

The processors and external interrupt controllers communicate over the processor’s system bus
with an implementation specific interrupt messaging protocol. Interrupts are generated by a number
of different interrupt sources in the system:

• External (I/O) devices – Interrupt messages from any external source can be directed to any
one processor by an external interrupt controller or by I/O devices capable of directly sending
interrupt messages. An interrupt message informs the processor that an interrupt request is
being made, and, in the case of PMIs and external interrupts, specifies a unique vector number
for the interrupt. Interrupt messages are only issued on the “assertion edge” of an interrupt;
“deassertion” of an interrupt does not result in an interrupt message.

0x5b00 Unsupported Data Reference vector 67 2:177

0x5c00 Floating-point Fault vector 68 2:178

0x5d00 Floating-point Trap vector 70 2:179

0x5e00 Lower-Privilege Transfer Trap vector 69, 71 2:180

0x5f00 Taken Branch Trap vector 72 2:181

0x6000 Single Step Trap vector 73 2:182

0x6100 Reserved

0x6200 Reserved

0x6300 Reserved

0x6400 Reserved

0x6500 Reserved

0x6600 Reserved

0x6700 Reserved

0x6800 Reserved

0x6900 IA-32 Exception vector 18, 19, 30, 39, 40, 46, 47, 61, 63, 64, 65, 76,
77, 79, 80, 81

2:183

0x6a00 IA-32 Intercept vector 31, 32, 62, 74, 75 2:184

0x6b00 IA-32 Interrupt vector 78 2:185

0x6c00 Reserved

 Reserved

0x7f00 Reserved

Table 5-7. Interruption Vector Table (IVT) (Continued)

Offset Vector Name Interruption(s) Page
Volume 2: Interruptions 2:97

• Locally connected devices – These interrupts originate on the processor’s interrupt pins
(LINT, INIT, PMI), and are always directed to the local processor. The LINT pins can be
connected directly to an Intel 8259A-compatible external interrupt controller. The LINT pins
are programmable to be either edge-sensitive or level-sensitive, and for the kind of interrupt
that gets generated. If programmed to generate external interrupts, the vector number is a
programmed constant per LINT pin. Only the LINT pins connected to the processor can
directly generate level-sensitive interrupts (See “Edge- and Level-sensitive Interrupts” on
page 2:113). LINT pins cannot be programmed to generate level-sensitive PMIs or INITs. The
INIT and PMI pins generate their corresponding interrupts. For PMI pins a PMI vector 0
interrupt is generated.

• Internal processor interrupts – such as interval timer, performance monitoring, and
corrected machine checks. These are always directed to the local processor. A unique vector
number can be programmed for each source.

• Other processors – A processor can interrupt any individual processor, including itself, by
sending an Inter-Processor Interrupt (IPI) message to a specific target processor. See
“Inter-Processor Interrupt Messages” on page 2:110.

The destination of an interrupt message is any one processor in the system, and is specified by a
unique processor identifier. A different destination can be specified for each interrupt. There is no
mechanism to “broadcast” a single interrupt to all processors in the system.

The following terms are used in the interrupt definition:

• The processor is said to receive an interrupt, if one of the processor’s interrupt pins is asserted,
the processor detected an interrupt message bus transaction containing the processor’s unique
identifier, or the processor detected an internal interrupt event.

• After receiving an interrupt, the processor internally holds the interrupt pending. The interrupt
is said to be pended when it is received and held by the processor.

Figure 5-3. Interrupt Architecture Overview

System Bus

Processor Processor Processor

I/O Bus

External Interrupt

LINT0
LINT1

IPI Messages

Interrupt

Devices

Messages

Controller
Devices

Bridge

PMI
INIT
2:98 Volume 2: Interruptions

• For edge-sensitive interrupts, an external interrupt is held pending until the interrupt is
acquired by software at which point it is said to be in-service. INITs and PMIs are held pending
until the corresponding PAL vector is entered and PAL firmware clears the pending indication
at which point they are said to be completed. For level-sensitive interrupts programmed
through the LINT pins, the interrupt is held pending as long as the pin is asserted. Deassertion
of a level-sensitive interrupt removes the pending indication (see “Edge- and Level-sensitive
Interrupts” on page 2:113).

• The processor maintains an individual interrupt pending indication for INITs. Since external
interrupts and PMIs are also signified by a unique interrupt vector number, the processor
maintains individual pending indications per vector. An occurrence of an interrupt on a vector
that is already marked as pending cannot be distinguished from previous interrupts on the same
vector because the interrupts are pended in the same internal pending bit, and are therefore
treated as “the same” interrupt occurrence.

• When interrupt delivery is enabled and the highest priority pending interrupt is unmasked (as
defined below), the processor accepts the pending interrupt, interrupts the control flow of the
processor and transfers control to the software interrupt handler.

• An external interrupt is said to be in-service when software acquires the interrupt vector from
the processor by reading the IVR register (see “External Interrupt Vector Register (IVR –
CR65)” on page 2:105). The processor then removes the pending indication for the interrupt
vector. The processor maintains one in-service indicator for each unique vector number. Note
that there are no in-service indicators for INITs and PMIs.

• Once an external interrupt is in-service it remains so until software indicates service for that
external interrupt is complete. By writing to the EOI register (see “End of External Interrupt
Register (EOI – CR67)” on page 2:106) software indicates that service for the highest-priority
in-service external interrupt is complete. The processor then removes the in-service indication
for the highest-priority external interrupt vector. INITs and PMIs are completed when PAL
firmware clears the corresponding pending indication.

• The priority of interrupts is defined in Table 5-8. Entry A is higher priority than interrupt B, if
entry A appears at a higher location in the table than entry B. Interrupt priority is used to select
interrupts that require urgent service over less urgent interrupt requests.

• Interrupt delivery is enabled when software programs the processor to accept any unmasked
interrupt. INITs delivery is enabled when PSR.mc is 0. PMIs delivery is enabled when PSR.ic
is 1. For Itanium-based code execution, external interrupts delivery is enabled when PSR.i is 1.

• Masking applies only to external interrupts. Unmasked interrupts are those external interrupts
of higher priority than the highest priority external interrupt vector currently in-service (if any)
and whose priority level is higher than the current priority masking level specified by the TPR
register (see “Task Priority Register (TPR – CR66)” on page 2:105). Masking conditions are
defined in Table 5-8. PSR.i does not affect masking of external interrupts.

Figure 5-4 shows how this terminology is applied to the handling of a PAL-based interrupt.
Similarly, Figure 5-5 shows the handing of a vectored external interrupt n. Both figures show the
different states and transitions interrupts go through.
Volume 2: Interruptions 2:99

Figure 5-4. PAL-based Interrupt States

Figure 5-5. External Interrupt States

INACTIVE

PENDING

CPU receives
interrupt

PAL firmware
completes

pending = 0

pending = 1

interrupt

INACTIVE

PENDING IN-SERVICE

pending[n] = 0
in-service[n] = 0

pending[n] = 0
in-service[n] = 1

pending[n] = 1
in-service[n] = 0

CPU receives
interrupt n

OS acquires interrupt n

level-sensitive interrupt
signal n is deasserted

(reads IVR)

OS completes interrupt
n (writes to EOI)

none pending

IN-SERVICE
one pending

CPU receives
interrupt n

level-sensitive interrupt
signal n is deasserted

pending[n] = 1
in-service[n] = 1

OS completes interrupt
n (writes to EOI)
2:100 Volume 2: Interruptions

5.8.1 Interrupt Vectors and Priorities

As indicated in Table 5-6 on page 2:92, INITs have higher priority than PMIs, which in turn have
higher priority than external interrupts. PMIs and external interrupts are further prioritized by
vector number.

PMIs have a separate vector space from external interrupts. PMI vectors 0-3 can be used by
platform firmware. PMI vectors 4 and above are reserved for use by processor firmware. Assertion
of the processor’s PMI pin results in PMI vector number 0. PMI vector priorities are described in
Chapter 11, “Processor Abstraction Layer.”

Each external interrupt (INT) in the system is distinguished from other external interrupts by a
unique vector number. There are 256 distinct vector numbers in the range 0 - 255. Vector numbers
1 and 3 through 14 are reserved for future use. Vector number 0 (ExtINT) is used to service Intel
8259A-compatible external interrupt controllers. Vector number 2 is used for the Non-Maskable
Interrupt (NMI). The remaining 240 external interrupt vector numbers (16 through 255) are
available for general operating system use. Table 5-8 summarizes the interrupt priority model.

NMI (vector 2) has higher interrupt priority than ExtINT (vector 0), which has higher priority than
external interrupt vectors 16 through 255.

Table 5-8. Interrupt Priorities, Enabling, and Masking

Priority
Priority
Class

Interrupt
Vector

Number

Interrupt
Delivery
Enabled

Interrupt Unmasked
Condition

Highest n/a INIT n/a if PSR.mc is 0 Always

PMI 0..3 if PSR.ic is 1 Always

INT 2 (NMI) if PSR.i is 1a

a. For Itanium®-based code execution external interrupt delivery is enabled if PSR.i is 1. For IA-32 code
execution external interrupt delivery is enabled if (PSR.i AND (!CFLAG.if OR EFLAG.if)) is true.

Interrupt is higher priority than
all in-service external interrupts

0 (ExtINT) TPR.mmi is 0, and interrupt is
higher priority than all in-service
external interrupts

15 240..255

TPR.mmi is 0, and interrupt is
higher priority than all in-service
external interrupts, and Vector
Number{7:4} > TPR.mic

14 224..239

13 208..223

12 192..207

11 176..191

10 160..175

9 144..159

8 128..143

7 112..127

6 96..111

5 80..95

4 64..79

3 48..63

2 32..47

Lowest 1 16..31
Volume 2: Interruptions 2:101

External interrupts vectors 16 through 255 are divided into 15 interrupt priority classes. Sixteen
different interrupt vectors share a single interrupt priority class, with class 1 being the lowest
priority and class 15 being the highest. For these external interrupts, higher number external
interrupts have priority over lower number external interrupts, including those within the same
priority class.

Vector number 15 is used to indicate that the highest priority pending interrupt in the processor is at
a priority level that is currently masked or there are no pending external interrupts. This encoding is
referred to as a “spurious” interrupt.

5.8.2 Interrupt Enabling and Masking

Upon receiving an interrupt, the processor holds the interrupt pending internally until interrupt
delivery is enabled and, in the case of external interrupts, the interrupt is unmasked. When all of the
interrupt enabling and unmasking conditions are satisfied (see Table 5-8), the processor accepts the
pending interrupt, interrupts the control flow of the processor, and transfers control to the External
Interrupt handler for external interrupts, or to PAL firmware for INITs and PMIs.

Note: The TPR controls the masking of external interrupts. TPR is described in “Task Priority
Register (TPR – CR66)” on page 2:105.

The processor provides nested interrupt priority support for external interrupt vectors 0, 2, and 16
through 255 by:

• Automatically masking external interrupts of equal or lower priority than the highest priority
external interrupt currently in-service. This raises the in-service external interrupt masking
level when each external interrupt begins service by an IVR read.

• Associating EOI writes with the highest priority in-service external interrupt, and removing the
in-service indication for this external interrupt. This lowers the in-service masking level to that
of the next highest priority currently in-service external interrupt (if any).

This mechanism allows software external interrupt handlers to be interrupted by higher priority
external interrupts.

For example, assume software acquires an external interrupt vector 45 by reading IVR. During the
service of this interrupt other external interrupts can still be received and are pended. If software
sets PSR.i to a 1, pending external interrupts of equal or lower priority than 45 are masked.
However, a higher priority pending external interrupt can be accepted by the processor (provided it
is not masked by TPR.mmi or TPR.mic). Assuming external interrupt vector 80 is received by the
processor, the processor will accept the interrupt by interrupting the control flow of the processor.
During the service of this interrupt, external interrupts of equal or lower priority than vector 80 are
masked. When EOI is issued by software, the processor will remove the in-service indication for
external interrupt vector 80. External interrupt masking will then revert back to the next highest
priority in-service external interrupt, vector 45. External interrupt vectors of equal or lower priority
than vector 45 would remain masked until EOI is issued by software. The in-service indication for
vector 45 is then removed by the write to EOI.
2:102 Volume 2: Interruptions

5.8.2.1 Re-enabling External Interrupt Delivery

When emerging from code in which external interrupt delivery is disabled and interruption state
collection is turned off, the following minimal code sequence describes the architectural method
with which to re-enable interruption collection and enable external interrupts:

ssm PSR.ic // enable interruption collection
;;
srlz.d // guarantee that interruption collection is enabled
ssm PSR.i // enable external interrupts

The processor does not ensure that enabling external interrupts is immediately observed after the
ssm PSR.i instruction. Software must perform a data serialization operation after ssm PSR.i to
ensure that external interrupt delivery is enabled prior to a given point in program execution.

5.8.2.2 External Interrupt Sampling

Assuming that external interrupt delivery is currently disabled (PSR.i is 0), the following minimal
code sequence describes the architectural method with which to briefly open the external interrupt
window for external interrupt sampling (typically PSR.ic is 1 to enable interruption collection):

ssm PSR.i
;;
srlz.d // external interrupts may be sampled anywhere here
;;
rsm PSR.i

The stop following the srlz.d instruction in the above code sequence is required to force the Reset
System Mask (rsm) instruction into a subsequent instruction group. The stop guarantees that the
srlz.d will open the external interrupt window for at least one cycle before the rsm instruction
closes it again.

Note: In the above code sequence, the effect of disabling interrupts due to the rsm instruction is
observed on the next instruction following the rsm.

5.8.2.3 Disabling of External Interrupt Delivery and rsm

When the current privilege level is zero, an rsm instruction whose mask includes PSR.i may cause
external interrupt delivery to be disabled for an implementation-dependent number of instructions,
even if the qualifying predicate for the rsm instruction is false. Architecturally, the extents of this
delivery disable “window” are defined as follows:

1. External interrupt delivery may be disabled for any instructions in the same instruction
group as the rsm, including those that precede the rsm in sequential program order,
regardless of the value of the qualifying predicate of the rsm instruction.

2. If the qualifying predicate of the rsm is true, then external interrupt delivery is disabled
immediately following the rsm instruction.

3. If the qualifying predicate of the rsm is false, then external interrupt delivery may be
disabled until the next data serialization operation that follows the rsm instruction.

The delivery disable window is guaranteed to be no larger than defined by the above criteria, but it
may be smaller, depending on the implementation.
Volume 2: Interruptions 2:103

When the current privilege level is non-zero, an rsm instruction whose mask includes PSR.i may
briefly disable external interrupt delivery, regardless of the value of the qualifying predicate of the
rsm instruction. However, the implementation guarantees that non-privileged code cannot lock out
external interrupts indefinitely (e.g., via an arbitrarily long sequence of rsm PSR.i instructions with
zero-valued qualifying predicates).

5.8.3 External Interrupt Control Registers

Software interacts with external interrupts by reading and writing the external interrupt control
registers (CR64-81). These registers are summarized in Table 5-9, and are used to prioritize and
deliver external interrupts, and to assign external interrupt vectors for processor-internal interrupt
sources such as interval timer, performance monitoring, and corrected machine check.

The external interrupt control registers can only be accessed at privilege level 0, otherwise a
Privileged Operation fault is raised.

5.8.3.1 Local ID (LID – CR64)

The LID register contains the processor’s local interrupt identifier. Two fields (id and eid) serve as
the processor’s physical name for all interrupt messages (external interrupts, INITs, and PMIs).
LID is loaded by firmware during platform initialization based on the processor’s physical location
within the system. Processors receiving an interrupt message on the system bus compare their id/
eid fields with the target address for the interrupt message. In case of a match, the processor
receives the interrupt and internally holds the interrupt pending.

LID is a read-write register. To ensure that future arriving interrupts see the updated LID value by a
given point in program execution, software must perform a data serialization operation after a LID
write and prior to that point. The Local ID fields are defined in Figure 5-6 and Table 5-10.

Table 5-9. External Interrupt Control Registers

Register Name Description

CR64 LID Local ID

CR65 IVR External Interrupt Vector Register (read only)

CR66 TPR Task Priority Register

CR67 EOI End Of External Interrupt

CR68 IRR0 External Interrupt Request Register 0 (read only)

CR69 IRR1 External Interrupt Request Register 1 (read only)

CR70 IRR2 External Interrupt Request Register 2 (read only)

CR71 IRR3 External Interrupt Request Register 3 (read only)

CR72 ITV Interval Timer Vector

CR73 PMV Performance Monitoring Vector

CR74 CMCV Corrected Machine Check Vector

CR80 LRR0 Local Redirection Register 0

CR81 LRR1 Local Redirection Register 1

Figure 5-6. Local ID (LID – CR64)
63 32 31 24 23 16 15 0

ignored id eid reserved
32 8 8 16
2:104 Volume 2: Interruptions

5.8.3.2 External Interrupt Vector Register (IVR – CR65)

A read of IVR returns the highest priority, pending, unmasked external interrupt vector,
independent of the value of PSR.i. The external interrupt vector is an 8-bit encoded number. If there
are no pending external interrupts or all external interrupts are currently masked, IVR returns the
“spurious” interrupt indication (vector 15). IVR fields are shown in Figure 5-7. See “Interrupt
Unmasked Condition” column in Table 5-8 on page 2:101 for masking conditions.

IVR reads also have two atomic side effects:

• The interrupt pending bit in IRR is cleared for the reported external interrupt vector.
Subsequent IVR reads will not report the interrupt as pending unless a new interrupt was
pended for the specified interrupt vector.

• The processor marks the interrupt vector as being in-service and masks all pending external
interrupts with equal or lower priority until software writes the end-of-interrupt (EOI) register
for the in-service interrupt.

To ensure IVR side effects are observed by a given point in program execution (e.g., before the next
IVR read, EOI write, or PSR.i write to enable external interrupt delivery), software must perform a
data serialization operation after an IVR read and prior to that point. To ensure that the reported
external interrupt vector is correctly masked before the next IVR read, software must perform a
data serialization operation after a TPR or EOI write and prior to that IVR read.

Software must be prepared to service any possible external interrupt if it reads IVR, since IVR
reads are destructive and removes the highest priority pending external interrupt (if any).

IVR is a read-only register; writes to IVR result in a Illegal Operation fault.

IVR reads do not issue an external INTA cycle. If the interrupt vector must be acquired from an
Intel 8259A-compatible external interrupt controller, software should perform a load from the
INTA byte. See “Interrupt Acknowledge (INTA) Cycle” on page 2:112 for details.

5.8.3.3 Task Priority Register (TPR – CR66)

The processor’s Task Priority Register (TPR) provides the ability to create additional masking of
external interrupts based on a “priority class.” The 240 external interrupt vectors (16 - 255) are
divided into 15 priority classes of 16 numerically contiguous interrupt vectors each. The value
written in TPR.mic masks all external interrupts of equal or lower priority classes.

Table 5-10. Local ID Fields

Field Bits Description

id/eid 31:16 The low order bits of id correspond to a unique, geographically significant address of
the processor on the local system bus. The high order bits of id and the eid field
correspond to a unique address of the local system bus within the entire system.
These fields are initialized by platform firmware to an implementation-dependent
value and should not be modified by software. The two fields corresponds to physical
address bits{19:4} of the inter-processor interrupt message.

Figure 5-7. External Interrupt Vector Register (IVR – CR65)
63 8 7 0

reserved vector
56 8
Volume 2: Interruptions 2:105

To ensure that new priority levels are established by a given point in program execution (e.g.,
before PSR.i is set to 1), software must perform a data serialization operation after a TPR write and
prior to that point. A data serialization operation must be performed after TPR is written and before
IVR is read to ensure that the reported IVR vector is correctly masked. The TPR fields are
described in Figure 5-8 and Table 5-11.

5.8.3.4 End of External Interrupt Register (EOI – CR67)

A write to the EOI (end-of-external interrupt) register, shown in Figure 5-9, indicates that software
has finished servicing the highest priority in-service external interrupt. The processor removes its
internal in-service indication for the highest priority currently in-service external interrupt vector.
Pending external interrupts are then masked by the next highest priority in-service external
interrupt (if any).

Writes to EOI affect the local processor only, and do not propagate to other processors or external
interrupt controllers. EOI is a read-write register. Reads return 0. Data associated with the EOI
writes is ignored.

To ensure that the previous in-service interrupt indication has been cleared by a given point in
program execution, software must perform a data serialization operation after an EOI write and
prior to that point. To ensure that the reported IVR vector is correctly masked before the next IVR
read, software must perform a data serialization operation after an EOI write and prior to that IVR
read.

5.8.3.5 External Interrupt Request Registers (IRR0-3 – CR68,69,70,71)

Four 64-bit read-only External Interrupt Request Registers (IRR0-3, see Figure 5-10) provide the
capability for software to determine the set of pending asynchronous external interrupts. IRR0
contains vectors <63:0> where vector 0 is in bit position 0, IRR1 contains vectors <127:64>, IRR2

Figure 5-8. Task Priority Register (TPR – CR66)
63 17 16 15 8 7 4 3 0

ignored mmi reserved mic ignored
47 1 8 4 4

Table 5-11. Task Priority Register Fields

Field Bits Description

mic 7:4 Mask Interrupt Class: all external interrupt vectors of equal or lower priority classes
then the TPR.mic field are masked. For example, if mic field is 4, interrupt priority
classes 1, 2, 3, and 4 are masked. A TPR.mic value of 0 has no masking effect; a
value of 15 will mask all external interrupt vectors in the range 16 - 255. TPR.mic has
no effect on external interrupt vectors 0 and 2, INITs and PMIs. See “Processor
Interrupt Block” on page 2:109.

mmi 16 Mask Maskable Interrupts: When 1, masks all external interrupts other than NMI
(vector 2). When 0, external interrupt vectors 16 - 255, are masked by the TPR.mic
field.

Figure 5-9. End of External Interrupt Register (EOI – CR67)
63 0

ignored
64
2:106 Volume 2: Interruptions

contains vectors <191:128>, and IRR3 contains vectors <255:192>. A bit in the IRR,
corresponding to the pending interrupt vector number, is set when the processor receives an
external interrupt. The IRR bit is cleared when software reads the IVR and the vector number
corresponding to the IRR bit value is returned in the IVR. The IRR bit is also cleared when a
level-sensitive external interrupt signal is deasserted, effectively removing the pending interrupt.

Since IRR0-3 are read-only registers, writes to these registers result in Illegal Operation faults.

5.8.3.6 Interval Timer Vector (ITV – CR72)

ITV specifies the external interrupt vector number for Interval Timer Interrupts. To ensure that
subsequent interval timer interrupts reflect the new state of the ITV by a given point in program
execution, software must perform a data serialization operation after an ITV write and prior to that
point. See Figure 5-11 and Table 5-12 for the definitions of the ITV fields.

5.8.3.7 Performance Monitoring Vector (PMV – CR73)

PMV specifies the external interrupt vector number for Performance Monitoring overflow
interrupts. To ensure that subsequent performance monitor interrupts reflect the new state of PMV
by a given point in program execution, software must perform a data serialization operation after a
PMV write and prior to that point. See Figure 5-12 and Table 5-13 for the definitions of the PMV
fields.

Figure 5-10. External Interrupt Request Register (IRR0-3 – CR68, 69, 70, 71)
63 16 15 3 2 1 0

IRR0 vectors < 63:16> 00000000 0

IRR1 vectors <127:64>

IRR2 vectors <191:128>

IRR3 vectors <255:192>
64

Figure 5-11. Interval Timer Vector (ITV – CR72)
63 17 16 15 13 12 11 8 7 0

ignored m rv ig rv vector
47 1 3 1 4 8

Table 5-12. Interval Timer Vector Fields

Field Bits Description

vector 7:0 External interrupt vector number to use when generating an Interval Timer interrupt.
Vector values can be 0, 2 or 16-255. All other vectors are ignored and reserved for future
use.

m 16 Mask: When 1, occurrences of Interval Timer interrupts are discarded and not pended.
When 0, occurrences of Interval Timer interrupts are pended.

Figure 5-12. Performance Monitor Vector (PMV – CR73)
63 17 16 15 13 12 11 8 7 0

ignored m rv ig rv vector
47 1 3 1 4 8
Volume 2: Interruptions 2:107

5.8.3.8 Corrected Machine Check Vector (CMCV – CR74)

CMCV specifies the external interrupt vector number for Corrected Machine Checks. To ensure
that subsequent corrected machine check interrupts reflect the new state of CMCV by a given point
in program execution, software must perform a data serialization operation after a CMCV write and
prior to that point. See Figure 5-13 and Table 5-14 for the CMCV field definitions.

5.8.3.9 Local Redirection Registers (LRR0-1 – CR80,81)

Local Redirection Registers (LRR0-1) steer external signal based interrupts that are directly
connected to the local processor to a specific external interrupt vector. All processors support two
direct external interrupt pins. These external interrupt signals (pins) are referred to as Local
Interrupt 0 (LINT0) and Local Interrupt 1 (LINT1).

To ensure that subsequent interrupts from LINT0 and LINT1 reflect the new state of LRR prior to a
given point in program execution, software must perform a data serialization operation after an
LRR write and prior to that point. The LRR fields are defined in Figure 5-14 and Table 5-15.

Table 5-13. Performance Monitor Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Performance Monitor interrupt. Vector values
can be 0, 2, or 16-255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Performance Monitor interrupts are discarded and not
pended. When 0, occurrences of Performance Monitor interrupts are pended.

Figure 5-13. Corrected Machine Check Vector (CMCV – CR74)
63 17 16 15 13 12 11 8 7 0

ignored m rv ig rv vector
47 1 3 1 4 8

Table 5-14. Corrected Machine Check Vector Fields

Field Bits Description

vector 7:0 Vector number to use when generating a Corrected Machine Check. Vector values can
be 0, 2, or 16 - 255. All other vectors are ignored and reserved for future use.

m 16 Mask: When 1, occurrences of Corrected Machine Check interrupts are discarded and
not pended. When 0, occurrences of Corrected Machine Check interrupts are pended.

Figure 5-14. Local Redirection Register (LRR – CR80,81)
63 17 16 15 14 13 12 11 10 8 7 0

ignored m tm rv ipp ig rv dm vector
47 1 1 1 1 1 1 3 8

Table 5-15. Local Redirection Register Fields

Field Bits Description

vector 7:0
External interrupt vector number to use when generating an interrupt for this entry. For
INT delivery mode, allowed vector values are 0, 2, or 16-255. All other vectors are
ignored and reserved for future use. For all other delivery modes this field is ignored.

dm 10:8
000 INT – pend an external interrupt for the vector number specified by the vector

field in LRR. Allowed vector values are 0, 2, or 16-255. All other vector numbers
are ignored and reserved for future use.

001 reserved
2:108 Volume 2: Interruptions

5.8.4 Processor Interrupt Block

Inter-Processor Interrupt (IPI) messages, Interrupt Acknowledge (INTA) cycles, and External Task
Priority (XTP) cycles on the processor system bus are initiated by software by accessing a special
physical memory range known as the “Processor Interrupt Block.” Figure 5-15 defines its memory
layout. The entire 2 MByte Processor Interrupt Block is relocatable by a PAL firmware call and
must be aligned on a 2 MByte boundary; by default, the block is located at physical address 0x0000
0000 FEE0 0000.

The Inter-Processor Interrupt region occupies the lower half of the Processor Interrupt Block; by
default its physical address range is 0x0000 0000 FEE0 0000 through 0x0000 0000 FEEF FFFF. A
processor generates Inter-Processor Interrupts by performing an aligned 8-byte store to this
memory region.

The Processor Interrupt Block does not support all forms of memory operations. Unsupported
memory accesses result in undefined processor operation.

• When targeted at the inter-processor interrupt delivery region (lower half of the Processor
Interrupt Block), the following memory operations are undefined: instruction fetch, RSE
accesses, or memory read references (only writes are permitted), references other than aligned
8-byte accesses, and references through any memory attribute other than UC.

• When targeted at the upper half of the Processor Interrupt Block, the following memory
operations are undefined: instruction fetches, references other than 1-byte accesses, and
references through any memory attribute other than UC.

dm
(cont’d)

10:8
(cont’d)

010 PMI – pend a Platform Management Interrupt Vector number 0 for system
firmware. The vector field is ignored.

011 reserved

100 NMI – pend a Non-Maskable Interrupt. This interrupt is pended at external
interrupt vector number 2. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for system firmware. The vector field is
ignored.

110 reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:112. The vector
field is ignored.

ipp 13 Interrupt Pin Polarity – specifies the polarity of the interrupt signal. When 0, the signal is
active high. When 1, the signal is active low.

tm 15 Trigger Mode – When 0, specifies edge sensitive interrupts. If the m field is 0, assertion
of the corresponding LINT pin pends an interrupt for the specified vector corresponding
to the dm field. The pending interrupt indication is cleared by software servicing the
interrupt. When 1, specifies level sensitive interrupts. If the m field is 0, assertion of the
corresponding LINT pin pends an external interrupt for the specified vector. Deassertion
of the corresponding LINT pin clears the pending interrupt indication. The processor has
undefined behavior if the dm and tm fields specify level sensitive PMIs or INITs.

m 16 Mask – When 1, edge or level occurrences of the local interrupt pins are discarded and
not pended. When 0, edge or level occurrences of local interrupt pins are pended.

Table 5-15. Local Redirection Register Fields (Continued)

Field Bits Description
Volume 2: Interruptions 2:109

5.8.4.1 Inter-Processor Interrupt Messages

A processor can interrupt any individual processor, including itself, by issuing an Inter-Processor
Interrupt message (IPI). A processor generates an IPI by storing an 8-byte interrupt command to an
8-byte aligned address in the interrupt delivery region of the Processor Interrupt Block defined in
“Processor Interrupt Block” on page 2:109. (If the address is not 8-byte aligned, the processor must
either generate an Unaligned Data Reference Fault, see “Memory Datum Alignment and
Atomicity” on page 2:77, or have undefined behavior). The address being stored to designates the
target processor to receive the interrupt. The store address and data format of the inter-processor
interrupt message are defined in Figure 5-16 and Figure 5-17. The data fields are defined in
Table 5-17. The address processor identifier fields specify the target processor and are defined in
Table 5-16.

Figure 5-15. Processor Interrupt Block Memory Layout

Figure 5-16. Address Format for Inter-Processor Interrupt Messages
63 20 19 12 11 4 3 2 0

ib_base id eid ir 0
8 8 1 3

Figure 5-17. Data Format for Inter-Processor Interrupt Messages
63 11 10 8 7 0

ignored, reserved for future use dm vector
53 3 8

+0x1FFFFF

Ignored, reserved for future use
......

Ignored, reserved for future use
XTP +0x1E0008

INTA +0x1E0000

Ignored, reserved for future use +0x100000

.................

IPI +0x000020

IPI +0x000018

IPI +0x000010

IPI +0x000008

IPI +0x000000

1
M

 B
y
te

2
 M

 B
y
te

ib_base
2:110 Volume 2: Interruptions

Table 5-16. Address Fields for Inter-Processor Interrupt Messages

Field Bits Description

ir 3 Interrupt Redirection bit. The processor propagates the Interrupt Redirection bit
along with the Inter-Processor Interrupt (IPI) message into the external system.

When this bit is 0, the external system must send the IPI to the processor specified
by the id/eid fields.

When this bit is 1 on platforms that support interrupt redirection, the external system
may perform interrupt load balancing and send the IPI to a processor with the lowest
External Task Priority level. Alternatively, the external system may ignore the
Interrupt Redirection bit and send the IPI message to the processor specified by the
eid/id fields. Software must always program a valid eid/id field since the external
system may or may not redirect the interrupt. If the eid/id field is not programmed
with the address of a valid destination processor the IPI message may be lost. See
“External Task Priority (XTP) Cycle” on page 2:112 for details on External Task
Priority levels.

On platforms that do not support interrupt redirection, software must not set the
Interrupt Redirection bit to 1. Doing so will result in undefined behavior.

Software can consult system specific firmware to determine if the Interrupt
Redirection feature is supported by the external system.

id/eid 19:4 Specify the target processor. See Table 5-10 on page 2:105 for a definition of these
fields.

ib_base 63:20 Physical Base address of Processor Interrupt Block. This is a PAL relocatable
physical address. The default is 0x0000 0000 FEE. See “Processor Interrupt Block”
on page 2:109. Based on the processor model some of the high order physical
address bits may be reserved.

Table 5-17. Data Fields for Inter-Processor Interrupt Messages

Field Bits Description

vector 7:0 Vector number for the interrupt. For INT delivery, allowed vector values are 0, 2, or
16-255. All other vectors are ignored and reserved for future use. For PMI delivery,
allowed PMI vector values are 0-3. All other PMI vector values are reserved for use by
processor firmware.

dm 10:8 000 INT – pend an external interrupt for the specified vector to the processor listed
in the destination. Allowed vector values are 0, 2, or 16-255. All other vector
numbers are ignored and reserved for future use.

001 Reserved

010 PMI – pend a PMI interrupt for the specified vector to the processor listed in the
destination. Allowed PMI vector values are 0-3. All other PMI vector values are
reserved for use by processor firmware.

011 Reserved

100 NMI – pend an external interrupt as an NMI (vector 2) to the processor listed in
the destination. The vector field is ignored.

101 INIT – pend an Initialization Interrupt for platform firmware on the processor
listed in the destination. The vector field is ignored.

110 Reserved

111 ExtINT – pend an Intel 8259A-compatible interrupt. This interrupt is delivered at
external interrupt vector number 0. For details on servicing ExtINT external
interrupts see “Interrupt Acknowledge (INTA) Cycle” on page 2:112. The vector
number field is ignored.

ignored 63:11 Ignored, reserved for future use
Volume 2: Interruptions 2:111

5.8.4.2 Interrupt and IPI Ordering

Interrupt messages from external device(s), or external interrupts routed to the processor’s LINT
pins, may arrive at one or more processors and become pending in any order. No ordering is
enforced by the processor or the platform.

As observed by a receiving processor, IPIs emitted from the same issuing processor may be pended
in any order, even when the receiving processor and the issuing processor are the same.

As observed by a receiving processor, IPIs are pended after all prior loads and stores emitted by the
same issuing processor are visible if and only if the IPI is issued with a st.rel (or proceeded by an
mf), even when the receiving processor and the issuing processor are the same. For all other cases,
no ordering is implied between IPI transactions and prior cacheable or uncached memory
references.

As observed by a receiving processor, no ordering is implied between IPIs and subsequent loads/
stores from the same issuing processor, even when the receiving processor and the issuing
processor are the same. Subsequent loads or stores may become visible before an IPI is seen as
pending. Data or instruction serialization operations, memory fences (mf or mf.a), or st.rel do
not ensure an IPI is pending at the target processor (including self) by a given point in program
execution on the local processor.

5.8.4.3 Interrupt Acknowledge (INTA) Cycle

Intel 8259A-compatible external interrupt controllers can not issue interrupt messages and
therefore do not specify an external interrupt vector number when the interrupt request is generated.
When accepting an external interrupt, software must inspect the vector number supplied by the IVR
register. If the vector matches the vector number assigned to the external controller (can be ExtINT,
or any other vector number based on software convention), software must acquire the actual
external interrupt vector number from the external interrupt controller by issuing a 1-byte load from
the INTA Byte.

The INTA Byte is located within the upper half of the Processor Interrupt Block, at offset
0x1E0000 from the base. A single byte load from the INTA address causes the processor to emit the
INTA cycle on the processor system bus. An Intel 8259A-compatible external interrupt controller
must respond with the actual interrupt vector number as the data to be loaded. If two INTA cycles
are required by the external interrupt controller, the platform must provide this functionality.

Software must issue an EOI to the local processor, to clear the interrupt in-service indication for the
vector associated with the external interrupt controller.

5.8.4.4 External Task Priority (XTP) Cycle

Some model-specific system configurations support an External Task Priority Register (XTPR) per
processor in external bus logic. A processor’s XTPR can be modified by storing one byte of data to
the processor’s XTP Byte address. This generates a special bus transaction required to change the
processor’s XTPR within the system. Please refer to system specific documentation for XTPR bit
format and field definitions. The processor does not interpret any data stored to the XTP Byte
address and all data bits are passed to the external system unmodified.
2:112 Volume 2: Interruptions

XTPR is written by operating system code to notify the system that the processor’s current task
priority has been changed. Based on this task priority information, system implementations can
steer interrupt messages from the I/O subsystems to the processors that have registered the lowest
task priority levels. The XTPR register is a system performance “hint”, and need not be updated by
operating system code nor be implemented in all system configurations. If the system does not
implement the XTPR, it must still accept a processor’s XTP cycle and discard it. Operating system
code can issue XTPR updates regardless of external system support.

5.8.5 Edge- and Level-sensitive Interrupts

The processor’s LINT pins directly support edge and level sensitive interrupts, however all other
interrupt sources are edge sensitive. A single external interrupt messages is issued only on the
assertion of an interrupt by external interrupt controllers or devices, deassertion of an external
interrupt sends no interrupt message to the processor. Since the processor removes the pending
interrupt when the interrupt is serviced, the processor guarantees exactly-one interrupt acceptance
for each external interrupt message. By definition external interrupt messages are edge sensitive.

Level sensitive external interrupts can be supported using edge sensitive interrupt messages as
follows:

• Software services the external interrupt generated by an edge interrupt message.

• Software removes the external interrupt request from the requesting device, the device should
then deassert its interrupt request line.

• To avoid spurious external interrupts, it is highly recommended that software issue a dummy
read from the device to ensure that the interrupt request has been actually been removed before
the interrupt is resampled in the next step.

• Software issues a command to the external interrupt controller to resample the interrupt
(typically an external interrupt controller end-of-interrupt command). The external interrupt
controller must issue another interrupt message back to the processor if service is still required
by the processor for a given vector number. For example, if there are other devices still
requiring service that are attached to the same level sensitive interrupt request line.
Volume 2: Interruptions 2:113

2:114 Volume 2: Interruptions

2

Register Stack Engine 6

The register stack engine (RSE) moves registers between the register stack and the backing store in
memory without explicit program intervention. The RSE operates concurrently with the processor
and can take advantage of unused memory bandwidth to dynamically issue register spill and fill
operations. In this manner, the latency of register spill/fill operations can be overlapped with useful
program work. The basic principles of the register stack are discussed in Section 4.1. This chapter
presents the internal state, the programming model and the interruption behavior of the register
stack engine.

6.1 RSE and Backing Store Overview

The register stack frames are mapped onto a set of physical registers which operate as a circular
buffer containing the most recently created frames. The RSE spills and fills these physical registers
to/from a backing store in memory. The RSE moves registers between the physical register stack
and the backing store without explicit program intervention. As indicated in Figure 6-1, the RSE
operates on the physical stacked registers outside of the currently active frame (as defined by
CFM). These registers contain the frames of the parent procedures of the current procedure.

As shown in Figure 6-1, the backing store is organized as a stack in memory that grows from lower
to higher addresses. The Backing Store Pointer (BSP) application register contains the address of
the first (lowest) memory location reserved for the current frame (i.e., the location at which GR32
of the current frame will be spilled). RSE spill/fill activity occurs at addresses below what is
contained in the BSP since the RSE spills/fills the frames of the current procedure’s parents. The
BSPSTORE application register contains the address at which the next RSE spill will occur. The
address register which corresponds to the next RSE fill operation, the BSP load pointer, is not
architecturally visible. The addresses contained in BSP and BSPSTORE are always aligned to an
8-byte boundary. The backing store contains the local area of each frame. The output area is not
spilled to the backing store (unless it later becomes part of a callee’s local area). Within each stack
frame, lower-addressed registers are stored at lower memory addresses. RSE spills of NaTed
stacked general registers are subject to the same memory update constraints as software spills
(st8.spill) of NaTed static general registers (see “Register Spill and Fill” on page 1:53).

The RSE also spills/fills the NaT bits corresponding to the stacked registers. The NaT bits
corresponding to the static subset must be spilled/filled as necessary by software. The NaT bits are
the 65th bit of each general register. The NaT bits for the stacked subset are spilled/filled in groups
of 63 corresponding to 63 consecutive physical stacked registers. When the RSE spills a register to
the backing store the corresponding NaT bit is copied to the RSE NaT collection (RNAT)
application register. Whenever bits 8:3 of BSPSTORE are all ones, the RSE stores RNAT to the
backing store. As shown in Figure 6-2, this results in a backing store memory image in which every
63 register values are followed by a collection of NaT bits. Bit 0 of the NaT collection corresponds
to the first (lowest addressed) of the 63 register values; bit 62 corresponds to the 63rd register
value. Bit 63 of the NaT collection is always written as zero. When the RSE fills a stacked register
from the backing store it also fills the register’s NaT bit. Whenever bits 8:3 of the RSE backing
store load pointer are all ones, the RSE reloads a NaT collection from the backing store. Bit 63 of
the NaT collection is ignored when read from the backing store.
Volume 2: Register Stack Engine 2:115

The RSE operates concurrently and asynchronously with respect to instruction execution by taking
advantage of unused memory bandwidth to dynamically perform register spill and fill operations.
The algorithm employed by the RSE to determine whether and when to spill/fill is implementation
dependent. Software can not depend on the spill/fill algorithm. To ensure that the processor and
RSE activities do not interfere with each other, software should not access stacked registers outside
of the current stack frame. The architecture guarantees register stack integrity by faulting on writes
to out-of-frame registers. Reads from out-of-frame registers may interact with RSE operations and
return undefined data values. However, out-of-frame reads are required to propagate NaT bits.

Figure 6-1. Relationship Between Physical Registers and Backing Store

Figure 6-2. Backing Store Memory Format

procA

procB

procC

sola

sofc

solb

unallocated

unallocated

higher
memory
addresses

higher
register

addresses

call

return

AR[BSP]

RSE
loads/stores

procA

procB

currently
active frame

procA’s
ancestors

Backing StorePhysical Stacked Registers

procA calls procB calls procC

AR[BSPSTORE]

00 111111

01 000000

01 111110

01 111111

10 000000

10 111110

10 111111

11 000000

NaT collection

63 stacked
general registers

63 stacked
general registers

NaT collection

8 bytes

BSPSTORE{10:3}
2:116 Volume 2: Register Stack Engine

The operation of the RSE is controlled by the Register Stack Configuration (RSC) application
register. Activity between the processor and the RSE is synchronized only when alloc, flushrs,
loadrs, br.ret, or rfi instructions actually require registers to be spilled or filled, or when
software explicitly requests RSE synchronization by executing a mov to/from RSC, BSPSTORE or
RNAT application register instruction.

6.2 RSE Internal State

Table 6-1 describes architectural state that is maintained by the register stack engine. The RSE
internal state elements described here are not directly exposed to the programmer as architecturally
visible registers. As a consequence, RSE internal state does not need to be preserved across context
switches or interruptions. Instead, it is modified as the side-effect of register stack-related
instructions. To describe the effects of these instructions a complete definition of the RSE internal
state is essential. To distinguish them from architecturally visible resources, all RSE internal state
elements are prefixed with “RSE”. Other RSE related resources are architecturally visible and are
exposed to software as application registers: RSC, BSP, BSPSTORE, and RNAT.

6.3 Register Stack Partitions

The processor’s physical register file provides at least 96 stacked registers. The actual number of
stacked registers (RSE.N_STACKED_PHYS) is implementation dependent and must be an even
multiple of 16. Figure 6-3 illustrates the circular nature of the physical register file, and shows the

Table 6-1. RSE Internal State

Name Description Corresponds to:

RSE.N_STACKED_PHYS Number of Stacked Physical registers:
Implementation dependent size of the stacked
physical register file.

RSE.BOF Bottom-of-frame register number: Physical
register number of GR32.

AR[BSP]

RSE.StoreReg RSE Store Register number: Physical register
number of next register to be stored by RSE.

AR[BSPSTORE]

RSE.LoadReg RSE Load Register number: Physical register
number one greater than the next register to
load (modulo the number of stacked physical
registers).

RSE.BspLoad

RSE.BspLoad Backing Store Pointer for memory loads: 64-bit
Backing Store Address 8 bytes greater than the
next address to be loaded by the RSE.

RSE.BspLoad

RSE.RNATBitIndex RSE NaT Collection Bit Index: 6-bit wide RNAT
Collection Bit Index (defines which RNAT
collection bit gets updated)

AR[BSPSTORE]{8:3}

RSE.CFLE RSE Current FrameLoad Enable: Control bit
that permits the RSE to load registers in the
current frame after a br.ret or rfi.

RSE.ndirty Number of dirty registers on the register stack

RSE.ndirty_words Number of dirty words on the register stack plus
corresponding number of NaT collection
registers

AR[BSP] -
AR[BSPSTORE]
Volume 2: Register Stack Engine 2:117

correspondence of the registers to the backing store. Figure 6-3 also shows the four partitions of the
stacked register file:

Clean partition (lightly-shaded): registers that contain values from parent procedure frames.
The registers in this partition have been successfully spilled to the backing store by the RSE
and their contents have not been modified since they were written to the backing store.

Dirty partition (medium-shaded): registers that contain values from parent procedure frames.
The registers in this partition have not yet been spilled to the backing store by the RSE. The
number of registers contained in the dirty partition (distance between RSE.StoreReg and
RSE.BOF) is referred to as RSE.ndirty.

Current frame (shaded dark): stacked registers allocated for computation. The position of the
current frame in the physical stacked register file is defined by the Bottom-of-frame register
(RSE.BOF). The number of registers in the current frame is defined by the size of frame field
in the current frame marker (CFM.sof).

Invalid partition (diagonally striped): registers outside the current frame that do not contain
values from parent procedure frames. They are immediately available for allocation into the
current frame or for RSE load operations.

The boundaries between the four register stack partitions are defined by the current frame marker
(CFM) and three physical register numbers: a load, store and bottom-of-frame register number. As
described in Table 6-1 each of these physical register numbers has a corresponding 64-bit backing
store memory address pointer. (For example, AR[BSP] always contains the address where GR[32]
of the current frame will be stored.)

Figure 6-3 also shows the effects of various instructions on the partition boundaries. RSE loads use
invalid registers. RSE stores use dirty registers. Eager RSE loads and stores grow the clean
partition. A br.call, brl.call, or cover instruction can increase the bottom-of-frame pointer
(RSE.BOF) which moves registers from the current frame to the dirty partition. An alloc may
shrink or grow the current frame by updating CFM.sof. A br.ret or rfi instruction may shrink or
grow the current frame by updating both the bottom-of-frame pointer (RSE.BOF) and CFM.sof.

Figure 6-3. Four Partitions of the Register Stack

Physical Stacked Registers

Backing Store

RSE.BOF

currentdirtyclean

invalid

AR[BSP]RSE.BspLoad AR[BSPSTORE]

RSE store

RSE.LoadReg RSE.StoreReg

call, cover

Higher Addresses

return, rfiRSE load return, rfi, alloc

CFM.sof
2:118 Volume 2: Register Stack Engine

6.4 RSE Operation

The register stack backing store is organized as a stack in memory that grows from lower addresses
towards higher addresses. The top of the backing store stack is defined by the Backing Store
Pointer (BSP) application register, which points to the first memory location reserved for the
current frame. The RSE load and store activities take place at lower addresses, defined relative to
BSP by the sizes of the clean and dirty partitions. Although the stack is conceptually infinite in both
directions, the effective base of the stack is expected to be the first memory location of the first
page allocated to the backing store.

To allow the highest possible degree of concurrent execution, the processor and the RSE operate
independently of each other during normal program execution. The RSE distinguishes between
mandatory and eager load/store operations. Mandatory load/store operations occur as the result of
alloc, flushrs, loadrs, br.ret or rfi instructions. Eager operations occur when the RSE is
speculatively working ahead of program execution, and it is not known whether this register spill/
fill is actually required by the program.

When the RSE works in the background, it issues eager RSE spill and fill operations to extend the
size of the clean partition in both directions—by decreasing the RSE load pointer and loading
values from the backing store into invalid registers (eager RSE load), and by saving dirty registers
to the backing store and increasing the RSE store pointer (eager RSE store). Allocation of a
sufficiently large frame (using alloc) or execution of a flushrs instruction may cause the RSE to
suspend program execution and issue mandatory RSE stores until the required number of registers
have been spilled to the backing store. Similarly a br.ret or rfi back to a sufficiently large frame
or execution of a loadrs instruction may cause the RSE to suspend program execution and issue
mandatory RSE loads until the required number of registers have been restored from the backing
store. The RSE only operates in the foreground and suspends program execution whenever forward
progress of the program actually requires registers to be spilled or filled.

Table 6-2 describes the RSE operation instructions and state modifications.

Table 6-2. RSE Operation Instructions and State Modification

Affected State

Instruction

alloc
r1=ar.pfs,i,l,
o,ra

br.calla, brl.calla br.reta rfi
when CR[IFS].v = 1

AR[BSP]{63:3} unchanged AR[BSP]{63:3} + CFM.sol +
(AR[BSP]{8:3} + CFM.sol)/63

AR[BSP]{63:3} –
AR[PFS].pfm.sol –
(62-AR[BSP]{8:3}+
AR[PFS].pfm.sol)/63

AR[BSP]{63:3} –
CR[IFS].ifm.sof –
(62-AR[BSP]{8:3}+
CR[IFS].ifm.sof)/63

AR[PFS] unchanged AR[PFS].pfm = CFM
AR[PFS].pec = AR[EC]
AR[PFS].ppl = PSR.cpl

unchanged unchanged

GR[r1] AR[PFS] N/A N/A N/A

CFM CFM.sof = i+l+o
CFM.sol = i+l
CFM.sor = r >> 3

CFM.sof -= CFM.sol
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

AR[PFS].pfm
or b

CFM.sof = 0
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

CR[IFS].ifm
Volume 2: Register Stack Engine 2:119

6.5 RSE Control

The RSE can be controlled at all privilege levels by means of three instructions (cover, flushrs,
and loadrs) and by accessing four application registers (mov to/from RSC, BSP, BSPSTORE and
RNAT). This section first presents each of the RSE application registers, and then discusses the
three RSE control instructions.

6.5.1 Register Stack Configuration Register

The layout of the Register Stack Configuration application register (RSC) is defined in
Section 3.1.8.2. This section describes the semantics of the mode, the privilege level and the byte
order fields of the RSC. The loadrs field is described as part of the loadrs instruction in
Section 6.5.4.

RSE Mode: Two mode bits in the RSC register determine when the RSE generates register spill or
fill operations. When both mode bits are zero (enforced lazy mode) the RSE issues only mandatory
loads and stores (when an alloc, br.ret, flushrs or rfi instruction requires registers to be
spilled or filled). Bit 0 of the RSC.mode field enables eager RSE stores and bit 1 enables eager RSE
loads. Table 6-3 defines all four possible RSE modes. Please see the processor specific
documentation for further information on the RSE modes implemented by the Itanium processor.

The algorithm that decides whether and when to speculatively perform eager register spill or fill
operations is implementation dependent. Software may not make any assumptions about the RSE
load/store behavior when the RSC.mode is non-zero. Furthermore, access to the BSPSTORE and
RNAT application registers and the execution of the loadrs instructions require RSC.mode to be
zero (enforced lazy mode). If loadrs, move to/from BSPSTORE or move to/from RNAT are
executed when RSC.mode is non-zero an Illegal operation fault is raised. Eager spill/fill of the
RNAT register to/from the backing store is only permitted if the RSE is in store/load intensive or
eager mode. In enforced lazy mode, the RSE may spill/fill the RNAT register only if a subsequent
mandatory register spill/fill is required.

RSE Privilege Level: When address translation is enabled (PSR.rt is one), the RSE operates at a
privilege level defined by two privilege level bits in the Register Stack Configuration register
(RSC.pl). All privilege level checks for RSE virtual accesses are performed using the privilege
level in RSC.pl. When the RSC is written, the privilege level bits are clipped to the current

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete Register
Frame” on page 2:127.

b. Normal br.ret instructions restore CFM with AR[PFS].pfm. However, if a bad PFS value is read by the br.ret
instruction, all CFM fields are set to zero. See “Bad PFS Used by Branch Return” on page 2:124.

Table 6-3. RSE Modes (RSC.mode)

Mode RSE Loads RSE Stores RSC.mode

Enforced Lazy Mandatory only Mandatory only 00

Store Intensive Mandatory only Eager and Mandatory 01

Load Intensive Eager and Mandatory Mandatory only 10

Eager Eager and Mandatory Eager and Mandatory 11
2:120 Volume 2: Register Stack Engine

privilege level of the process, i.e., the numerical maximum of the current privilege level and the
privilege level in the source register is written to RSC.pl.

Protection is also checked based on the current entries in the data TLB. The RSE always remains
coherent with respect to the data TLB. If a translation that is being used by the RSE is changed or
purged, the RSE will immediately begin using the new translation or suffer a TLB miss. Only
mandatory loads and stores can cause RSE memory related faults. Details on RSE fault delivery are
described in “RSE Interruptions.” Although eager RSE loads and stores do not cause interruptions
they can, under certain conditions, cause a VHPT walk and TLB insert. Details on when RSE loads
and stores can cause a VHPT walk are described in “VHPT Environment” on page 2:56.

The RSE expects its backing store to be mapped to cacheable speculative memory. If RSE spill/fill
transactions are performed to non-speculative memory that may contain I/O devices, system
behavior is unpredictable.

RSE Byte Order: Because the RSE runs asynchronously with the processor, it may be running on
behalf of a context with a different byte order from the current one. Consequently, the RSE defines
its own byte ordering bit: RSC.be. When RSC.be is zero, registers are stored in little-endian byte
order (least significant bytes to lower addresses). When RSC.be is one, registers are stored in
big-endian byte order (most significant bytes to lower addresses). RSC.be also determines the byte
order of NaT collections spilled/filled by the RSE. RSC.be may be written by code at any privilege
level. Changes to RSC.be should only be made by software when RSC.mode is zero. Failure to do
so results in undefined backing store contents.

6.5.2 Register Stack NaT Collection Register

As described in Section 6.1, the RSE is responsible for saving and restoring NaT bits associated
with the stacked registers to and from the backing store. The RSE writes its NaT collection register
(the RNAT application register) to the backing store whenever BSPSTORE{8:3} = 0x3F (1 NaT
collection for every 63 registers). The RNAT acts as a temporary holding area for up to 63 unsaved
NaT bits. The RSE NaT collection bit index (RSE.RNATBitIndex) determines which bit of the
RNAT register receives the NaT bit of a spilled register as the result of an RSE store. The six-bit
wide RSE.RNATBitIndex is always equal to BSPSTORE{8:3}. As a result, RNAT{x} corresponds
to the register saved at

concatenate(BSPSTORE{63:9},x{5:0},0{2:0}).

The RSE never saves partial NaT collections to the backing store, so software must save and restore
the RNAT application register when switching the backing store pointer. RSE.RNATBitIndex
determines which RNAT bits are valid. Bits RNAT{RSE.RNATBitIndex:0} contain defined values,
and bits RNAT{62:RSE.RNATBitIndex+1} contain undefined values. Bit 63 of the RNAT
application register always reads as zero. Writes to bit 63 of the RNAT application register are
ignored. The execution of RSE control instructions mov to BSPSTORE and loadrs as well as an
RSE spill of the RNAT register cause the contents of the RNAT register to become undefined. The
RNAT application register can only be accessed when RSC.mode is zero. If RSC.mode is non-zero,
accessing the RNAT application register results in an Illegal Operation fault.
Volume 2: Register Stack Engine 2:121

6.5.3 Backing Store Pointer Application Registers

The RSE defines two Backing Store Pointer application registers: BSPSTORE and BSP. Since the
RSE backing store pointers are always 8-byte aligned, bits {2:0} of the backing store pointers
always read as zero. When writing the BSPSTORE application register, bits {2:0} in the presented
address are ignored.

The RSE Backing Store Pointer for memory stores (BSPSTORE) is a 64-bit application register
that provides the main interface to the three RSE backing store memory pointers: BSP, BSPSTORE
and RSE.BspLoad. The BSPSTORE application register can only be accessed when RSC.mode is
zero. If RSC.mode is non-zero, accessing BSPSTORE results in an Illegal Operation fault.

Reading BSPSTORE (mov from BSPSTORE application register) returns the address of the next
RSE store.

Writing BSPSTORE (mov to BSPSTORE application register) has side-effects on all three RSE
pointers and the NaT collection process. The operation is defined as follows: the BSPSTORE and
RSE.BspLoad pointers are both set to the address presented, which forces the size of the clean
partition to zero. Writes to the BSPSTORE application register do not change the size of the dirty
partition: the BSP pointer is set to the address presented plus the size of the dirty partition plus the
size of any intervening NaT collections. The dirty partition is preserved to allow software to change
the backing store pointer without having to flush the register stack. Writing BSPSTORE causes the
contents of the RNAT register to become undefined. Therefore software must preserve the contents
of RNAT prior to writing BSPSTORE. After writing to BSPSTORE, the NaT collection bit index
(RSE.RNATBitIndex) is set to bits {8:3} of the presented address. If an unimplemented address in
BSPSTORE is used by a mandatory RSE spill or fill, an Unimplemented Data Address fault is
raised.

The RSE Backing Store Pointer (BSP) is a 64-bit read-only application register. Writing BSP (mov
to BSP application register) results in an Illegal Operation fault. Reads from BSP (mov from BSP
application register) return the address of the top of the register stack in memory. This location is
the backing store address to which the current GR32 would be written. Reading BSP does not have
any side-effect on any of the internal RSE pointers or the NaT collection process. Therefore, BSP
can be read regardless of the RSE mode, i.e., even when RSC.mode is non-zero. Since BSP is
determined by BSPSTORE and the size of the dirty partition, it is possible for BSPSTORE to
contain an implemented address and for BSP to contain an unimplemented address. BSP reads
always return a full 64-bit (possibly unimplemented) address; only a subsequent data memory
reference with an unimplemented address will cause an Unimplemented Data Address fault.

Table 6-4 summarizes the effects of the three instructions that access the backing store pointer
application registers.

Table 6-4. Backing Store Pointer Application Registers

Affected State

Instruction

Read BSP
mov r1=AR[BSP]

Read BSPSTORE
mov r1=AR[BSPSTORE]

Write BSPSTOREa

mov AR[BSPSTORE]=r2

GR[r1] AR[BSP] AR[BSPSTORE] N/A

AR[BSP]{63:3} Unchanged Unchanged (GR[r2]{63:3} + RSE.ndirty) +
((GR[r2]{8:3} + RSE.ndirty)/63)

AR[BSPSTORE]{63:3} Unchanged Unchanged GR[r2]{63:3}

RSE.BspLoad {63:3} Unchanged Unchanged GR[r2]{63:3}
2:122 Volume 2: Register Stack Engine

6.5.4 RSE Control Instructions

This section describes the RSE control instructions: cover, flushrs and loadrs. The effects of
the three RSE control instructions on the RSE state are summarized in Table 6-5.

The cover instruction adds all registers in the current frame to the dirty partition, and allocates a
zero-size current frame. As a result AR[BSP] is updated. cover clears the register rename base
fields in the current frame marker CFM. If PSR.ic is zero, the original value of CFM is copied into
CR[IFS].ifm and CR[IFS].v is set to one. The cover instruction must be specified as the last
instruction in a bundle group otherwise an Illegal Operation fault is taken.

The flushrs instruction spills all dirty registers to the backing store. When it completes,
RSE.ndirty is defined to be zero, and BSPSTORE equals BSP. Since flushrs may cause RSE
stores, the RNAT application register is updated. A flushrs instruction must be the first
instruction in an instruction group otherwise the results are undefined.

AR[RNAT] Unchanged Unchanged UNDEFINED

RSE.RNATBitIndex Unchanged Unchanged GR[r2]{8:3}

a. Writing to AR[BSPSTORE] has undefined behavior with an incomplete frame. See “RSE Behavior with an
Incomplete Register Frame” on page 2:127.

Table 6-5. RSE Control Instructions

Affected State
Instruction

cover flushrsa

a. These instructions have undefined behavior with an incomplete frame. See “RSE Behavior with an Incomplete
Register Frame” on page 2:127.

loadrsa

AR[BSP]{63:3} AR[BSP]{63:3}+ CFM.sof +
(AR[BSP]{8:3} + CFM.sof)/63

Unchanged Unchanged

AR[BSPSTORE]{63:3} Unchanged AR[BSP]{63:3} AR[BSP]{63:3} –
AR[RSC].loadrs{13:3}

RSE.BspLoad{63:3} Unchanged Model specificb

b. In general, eager RSE implementations will preserve RSE.BspLoad during a flushrs. Lazy RSE
implementations may set RSE.BspLoad to AR[BSPSTORE] after flushrs completes or faults.

AR[BSP]{63:3} –
AR[RSC].loadrs{13:3}

AR[RNAT] Unchanged Updated UNDEFINED

RSE.RNATBitIndex Unchanged AR[BSPSTORE]{8:3} AR[BSPSTORE]{8:3}

CR[IFS] if (PSR.ic == 0) {
CR[IFS].ifm = CFM
CR[IFS].v = 1}

Unchanged Unchanged

CFM CFM.sof = 0
CFM.sol = 0
CFM.sor = 0
CFM.rrb.gr = 0
CFM.rrb.fr = 0
CFM.rrb.pr = 0

Unchanged Unchanged

Table 6-4. Backing Store Pointer Application Registers (Continued)

Affected State

Instruction

Read BSP
mov r1=AR[BSP]

Read BSPSTORE
mov r1=AR[BSPSTORE]

Write BSPSTOREa

mov AR[BSPSTORE]=r2
Volume 2: Register Stack Engine 2:123

The loadrs instruction ensures that a specified portion of the backing store below the current BSP
is present in the physical stacked registers. The size of the backing store section is specified in the
loadrs field of the RSC application register (AR[RSC].loadrs). After loadrs completes, all
registers and NaT collections between the current BSP and the tear-point (BSP-(RSC.loadrs{13:3}
<< 3)), and no more than that, are guaranteed to be present and marked as dirty in the stacked
physical registers. When loadrs completes BSPSTORE and RSE.BspLoad are defined to be equal
to the backing store tear-point address. All other physical stacked registers are marked invalid.

• If the tear-point specifies an address below RSE.BspLoad, the RSE issues mandatory loads to
restore registers and NaT collections. All registers between the current BSP and the tear-point
are marked dirty.

• If the RSE has already loaded registers beyond the tear-point when the loadrs instruction
executes, the RSE marks clean registers below the tear-point as invalid and marks clean
registers above the tear-point as dirty.

• If the tear-point specifies an address greater than BSPSTORE, the RSE marks clean and dirty
registers below the tear-point as invalid (in this case dirty registers are lost).

By specifying a zero RSC.loadrs value loadrs can be used to invalidate all stacked registers
outside the current frame. loadrs causes the contents of the RNAT register to become undefined.
The NaT collection index is set to bits {8:3} of the new BSPSTORE. A loadrs instruction must be
the first instruction in an instruction group otherwise the results are undefined. The following
conditions cause loadrs to raise an Illegal Operation fault:

• If RSC.mode is non-zero.

• If both CFM.sof and RSC.loadrs are non-zero.

• If RSC.loadrs specifies more words to be loaded than will fit in the stacked physical register
file (RSE.N_STACKED_PHYS).

6.5.5 Bad PFS Used by Branch Return

On a br.ret, if the PFS application register defines an output area which is larger than the number
of implemented stacked registers minus the size of dirty partition ((AR[PFS].sof – AR[PFS].sol) >
(RSE.N_STACKED_PHYS – RSE.ndirty)), the return will not restore CFM with AR[PFS].pfm
(normal behavior); instead, the return sets all fields in the CFM (of the procedure being returned to)
to zero.

Typical procedure call and return sequences that preserve PFS values and that do not use cover or
loadrs instructions will not encounter this situation.

The RSE will detect the above condition on a br.ret, and update its state as follows:

• The register rename base (RSE.BOF), AR[BSP], and AR[BSPSTORE] are updated as required
by the return.

• The CFM (after the return) is forced to zero; i.e., all CFM fields (including CFM.sof and
CFM.sol) are set to zero.

• The registers from the returned-from frame and the preserved registers from the returned-to
frame are added to the invalid partition of the register stack.

• The dirty partition of the register stack is shrunk by AR[PFS].pfm.sol.

• The clean partition of the register stack remains unchanged. RSE.BspLoad and RSE.LoadReg
remain unchanged.

• No other indication is given to software.
2:124 Volume 2: Register Stack Engine

Since the size of the current frame is set to zero, the contents of some (possibly all) stacked GRs
may be overwritten by subsequent eager RSE operations or by subsequent instructions allocating a
new stack frame and then targeting a stacked GR. Therefore, explicit register stack management
sequences that manipulate PFS, use the cover instruction, or use the loadrs instruction must
avoid this situation by executing one of the two following code sequences prior to a br.ret:

• Use a flushrs instruction prior to the br.ret. This preserves all dirty registers to memory,
and sets RSE.ndirty to zero, which avoids the condition.

• Use a loadrs instruction with an AR[RSC].loadrs value in the following range:

AR[RSC].loadrs <= 8*(ndirty_max + ((62 – AR[BSP]{8:3} + ndirty_max) / 63)),
where ndirty_max = (RSE.N_STACKED_PHYS – (AR[PFS].sof – AR[PFS].sol))

This adjusts the size of the dirty partition appropriately to avoid the condition. A loadrs with
RSC.loadrs=0 works on all processor models, regardless of the number of implemented stacked
physical registers. Note that loadrs may cause registers in the dirty partition to be lost.

6.6 RSE Interruptions

Although the RSE runs asynchronously to processor execution, RSE related interruptions are
delivered synchronously with the instruction stream. These RSE interruptions are a direct
consequence of register stack-related instructions such as: alloc, br.ret, rfi, flushrs, loadrs,
or mov to/from BSP, BSPSTORE, RSC, PFS, IFS, or RNAT. Register spills and fills that are
executed by the RSE in the background (eager RSE loads or stores) do not raise interruptions. If a
faulting/trapping register spill or fill operation is required for software to make forward progress
(mandatory RSE load or store) then the RSE will raise an interruption.

Mandatory RSE stores occur in the context of alloc and flushrs instructions only. Any faults
raised by these instructions are delivered on the issuing instruction. Faults raised by mandatory
RSE loads caused by a loadrs are delivered on the issuing instruction. Mandatory RSE loads
which fault while restoring the frame for a br.ret or rfi deliver the fault on the target
instruction, and the ISR.ir (incomplete register frame) bit is set. When a mandatory RSE load
faults, AR[BSPSTORE] points to a backing store location above the faulting address reported in
CR[IFA]. This allows handlers that service RSE load faults to use the backing store switch routine
described in “Switch from Interrupted Context” on page 2:129.

The br.ret and the rfi instructions set the RSE Current Frame Load Enable bit (RSE.CFLE) to
one if the register stack frame being returned to is not entirely contained in the stacked register file.
This enables the RSE to restore registers for the current frame of the target instruction. When
RSE.CFLE is set, instruction execution is stalled until the RSE has completely restored the current
frame or an interruption occurs. This is the only time that the RSE issues any memory traffic for the
current frame. Interruption delivery clears RSE.CFLE which allows an interruption handler to
execute in the presence of an incomplete frame (e.g., to handle the fault raised by the mandatory
RSE load). The RSE.CFLE bit is RSE internal state and is not architecturally visible.

Table 6-6 summarizes RSE raised interruptions.
Volume 2: Register Stack Engine 2:125

6.7 RSE Behavior on Interruptions

When the processor raises an interruption, the current register stack frame remains unchanged. If
PSR.ic is one, the valid bit in the Interruption Function State register (IFS.v) is cleared. When the
IFS.v bit is clear, the contents of the interruption frame marker field (IFS.ifm) are undefined.

Table 6-6. RSE Interruption Summary

Instruction Interruption Description

alloc Illegal Operation fault Malformed alloc immediate.

alloc Reserved Register/Field fault alloc instruction which attempted to change the size
of the rotating region when one or more of the RRB
values in CFM were non-zero.

alloc,
flushrs,
loadrs

Unimplemented Data Address fault AR[BSPSTORE] contains an unimplemented address.

Data Nested TLB fault

Alternate Data TLB fault

VHPT Data fault

Data TLB fault

Data Page Not Present fault

Data NaT Page Consumption fault AR[BSPSTORE] pointed to a NaTVal data page.

Data Key Miss fault

Data Key Permission fault

Data Access Rights fault

Data Dirty Bit fault

Data Access Bit fault

Data Debug fault

br.call,
brl.call

No RSE related interruptions

br.ret No RSE load related faults RSE load related faults are delivered on target
instruction.

rfi No RSE related interruptions RSE load related faults are delivered on target
instruction.

Target of
br.ret or
rfi

IR Unimplemented Data Address
fault

Mandatory RSE load targeted an unimplemented
address.

IR Data Nested TLB fault br.ret with PSR.ic = 0 or rfi executed when
IPSR.ic = 0.

IR Alternate Data TLB fault

IR VHPT Data TLB fault

IR Data TLB fault

IR Data Page Not Present fault

IR Data NaT Page Consumption fault RSE.BspLoad pointed at a NaTPage.

IR Data Key Miss fault

IR Data Key Permission fault

IR Data Access Rights fault

IR Data Access Bit fault

IR Data Debug fault
2:126 Volume 2: Register Stack Engine

While an interruption handler is running and the RSE is in store/load intensive or eager mode, the
RSE continues spilling/filling registers to/from the backing store on behalf of the interrupted
context as long as the registers are not part of the current frame as defined by CFM.

A sequence of mandatory RSE loads or stores (from alloc, br.ret, flushrs, loadrs and rfi)
can be interrupted by an external interrupt.

When PSR.ic is 0, faults taken on mandatory RSE operations may not be recoverable.

6.8 RSE Behavior with an Incomplete Register Frame

The current register frame is considered incomplete when one of the mandatory RSE loads after a
br.ret or a rfi faults, leaving BSPSTORE pointing to a location above BSP (i.e., RSE.ndirty_words
is negative). The frame becomes complete when RSE.ndirty_words becomes non-negative, either
by executing a cover instruction, or by handling the fault and completing the original sequence of
mandatory RSE loads.

When the current frame is incomplete the following instructions have undefined behavior: alloc,
br.call, brl.call, br.ret, flushrs, loadrs, and move to BSPSTORE. Software must
guarantee that the current frame is complete before executing these instructions.

6.9 RSE and ALAT Interaction

The ALAT (see “Data Speculation” on page 1:55) uses physical register addresses to track
advanced loads. RSE.BOF may only change as the result of a br.call (by CFM.sol), cover (by
CFM.sof), br.ret (by AR[PFM].sol) or rfi (by CR[IFS].ifm.sof when CR[IFS].v =1). This
ensures, for ALAT invalidation purposes, that hardware does not update virtual to physical register
address mapping, unless explicitly instructed to do so by software.

When software performs backing store switches that could cause program values to be placed in
different physical registers, then the ALAT must be explicitly invalidated with the invala
instruction. Typically this happens as part of a process or thread context switch, longjmp or call
stack unwind, when software re-writes AR[BSPSTORE], but cannot guarantee that RSE.BOF was
preserved.

A stacked register is said to be deallocated when an alloc, br.ret, or rfi instruction changes the
top of the current frame such that the register is no longer part of the current frame. Once a stacked
register is deallocated, its value, its corresponding NaT bit, and its ALAT state are undefined. If that
register is subsequently made part of the current frame again (either via another alloc instruction,
or via a br.ret or rfi to a previous frame that contained that register), the value stored in the
register, the NaT bit for the register, and the corresponding ALAT entry for the register remain
undefined.

RSE stores do not invalidate ALAT entries. Therefore, software cannot use the ALAT to trace RSE
stores to the backing store.

Note: While an implementation is allowed to remove entries from the ALAT at any time, perfor-
mance considerations strongly encourage not invalidating ALAT entries due to RSE
stores.
Volume 2: Register Stack Engine 2:127

6.10 Backing Store Coherence and Memory Ordering

RSE loads and stores are coherent with respect to the processor’s data cache at all times. The
backing store below BSPSTORE is defined to be consistent with the register stack (the memory
image contains consecutive register values and NaT collections). Addresses below BSPSTORE are
not modified by the RSE until br.ret, rfi or a move to BSPSTORE causes BSP to drop below
the original BSPSTORE value. The RSE never writes to a memory address greater than or equal to
BSP.

In order for software to modify a value in the backing store and guarantee that it be loaded by the
RSE, software must first place the RSE into enforced lazy mode (RSC.mode=0), and read BSP and
BSPSTORE to determine the location of the RSE store pointer. If the location to be modified lies
between BSPSTORE and BSP, software must issue a flushrs, update the backing store location in
memory, and issue a loadrs instruction with the RSC.loadrs set to zero (this invalidates the
current contents of the physical stacked registers, except the current frame, which forces the RSE to
reload registers from the backing store). If the location to be modified lies below BSPSTORE,
unnecessary memory traffic can be avoided as follows: software must read the RNAT application
register, update the backing store location in memory, rewrite BSPSTORE with the original value,
and then rewrite RNAT.

RSE loads and stores are weakly ordered. The flushrs and loadrs instructions do not include an
implicit memory fence. Turning on and off the RSE does not affect memory ordering. To ensure
ordering of RSE loads and stores on a multiprocessor system, software is required to issue explicit
memory fence (mf) instructions.

6.11 RSE Backing Store Switches

The implementation of system calls, operating system context switches, user-level thread packages,
debugging software, and certain types of exception handling (e.g., setjmp/longjmp, structured
exception handling and call stack unwinding) require explicit user-level control of the RSE and/or
knowledge of the backing store format in memory. Therefore, the RSE and the backing store can be
controlled at all privilege levels.

Three RSE backing store switches are described here:

1. Switching from an interrupted context (as part of exception handler or interrupt bubble-up
code)

2. Returning to a previously interrupted context

3. Non-preemptive, synchronous backing store switch (covers system calls, user-level thread
and operating system context switches)

Failure to follow these sequences may result in undefined RSE and processor behavior.
2:128 Volume 2: Register Stack Engine

6.11.1 Switch from Interrupted Context

To switch from the backing store of an interrupted context to a new backing store:

1. Read and save the RSC and PFS application registers.

2. Issue a cover instruction for the interrupted frame.

3. Read and save the IFS control register.

4. Place RSE in enforced lazy mode by clearing both RSC.mode bits.

5. Read and save the BSPSTORE and RNAT application registers.

6. Write BSPSTORE with the new backing store address.

7. Read and save the new BSP to calculate the number of dirty registers.

8. Select the desired RSE setting (mode, privilege level and byte order).

6.11.2 Return to Interrupted Context

To return to the backing store of an interrupted context:

1. Allocate a zero-sized frame.

2. Subtract the BSPSTORE value written in step 6 of Section 6.11.1 from the BSP value read in
step 7 of Section 6.11.1, and deposit the difference into RSC.loadrs along with a zero into
RSC.mode (to place the RSE into enforced lazy mode).

3. Issue a loadrs instruction to insure that any registers from the interrupted context which
were saved on the new stack have been loaded into the stacked registers.

4. Restore BSPSTORE from the interrupted context (saved in step 5 of Section 6.11.1).

5. Restore RNAT from the interrupted context (saved in step 5 of Section 6.11.1).

6. Restore PFS and IFS from the interrupted context (saved in steps 1 and 3 of Section 6.11.1).

7. Restore RSC from the interrupted context (saved in step 1 of Section 6.11.1). This restores
the setting of the RSE mode bits as well as privilege level and byte order.

8. Issue an rfi instruction (IFS.ifm will become CFM).

6.11.3 Synchronous Backing Store Switch

A non-preemptive, synchronous backing store switch at any privilege level can be accomplished as
follows:

1. Read and save the RSC, BSP and PFS application registers.

2. Issue a flushrs instruction to flush the dirty registers to the backing store.

3. Place RSE in enforced lazy mode by clearing both RSC.mode bits.

4. Read and save the RNAT application register.

5. Invalidate the ALAT using the invala instruction when switching from code that does not
restore RSE.BOF to its original setting. A different RSE.BOF will cause program values in
the new context to be placed in different physical registers. See “RSE and ALAT
Interaction” on page 2:127 for details.
Volume 2: Register Stack Engine 2:129

6. Write the new context’s BSPSTORE (was BSP after flushrs when switching out).

7. Write the new context’s PFS and RNAT.

8. Write the new context’s RSC which will set the RSE mode, privilege level and byte order.

6.12 RSE Initialization

At processor reset the RSE is defined to be in enforced lazy mode, i.e., the RSC.mode bits are both
zero. The RSE privilege level (RSC.pl) is defined to be zero. RSE.BOF points to physical register
32. The values of AR[PFS].pfm and CR[IFS].ifm are undefined. The current frame marker (CFM)
is set as follows: sof=96, sol=0, sor=0, rrb.gr=0, rrb.fr=0, and rrb.pr=0. This gives the processor
access to 96 stacked registers.

The RSE performs no spill/fill operations until either an alloc, br.ret, rfi, flushrs or loadrs
require a mandatory RSE operation, or software explicitly enables eager RSE operations. Software
must provide the RSE with a valid backing store address in the BSPSTORE application register
prior to causing any RSE spill/fill operations. Failure to initialize BSPSTORE results in undefined
behavior.
2:130 Volume 2: Register Stack Engine

2

Debugging and Performance
Monitoring 7

Processors based on the Itanium architecture provide comprehensive debugging and performance
monitoring facilities for both IA-32 and Itanium instructions. This chapter describes the debug
registers, performance monitoring registers and their programming models. The debugging
facilities include several data and instruction break point registers, single step trap, breakpoint
instruction fault, taken branch trap, lower privilege transfer trap, instruction and data debug faults.
The performance monitoring facilities include two sets of registers to configure and collect various
performance-related statistics.

7.1 Debugging

Several Data Breakpoint Registers (DBR) and Instruction Breakpoint Registers (IBR) are defined
to hold address breakpoint values for data and instruction references. In addition the following
debugging facilities are supported:

• Single Step trap – When PSR.ss is 1, successful execution of each Itanium instruction results
in a Single Step trap. When PSR.ss is 1 or EFLAG.tf is 1, successful execution of each IA-32
instruction results in an IA_32_Exception(Debug) single step trap. After the trap, IIP and
IPSR.ri point to the next instruction to be executed. IIPA and ISR.ei point to the trapped
instruction. See “Single Stepping” for complete single stepping behavior.

• Break Instruction fault – execution of a break instruction results in a Break Instruction fault.
IIM is loaded with the immediate operand from the instruction. IIM values are defined by
software convention. break can be used for profiling, debugging and entry into the operating
system (although Enter Privileged Code (epc) is recommended since it has lower overhead).
Execution of the IA-32 INT 3 (break) instruction results in a IA_32_Exception(Debug) trap.

• Taken Branch trap – When PSR.tb is 1, a Taken Branch trap occurs on every taken Itanium
branch instruction. When PSR.tb is 1, a IA_32_Exception(Debug) taken branch trap occurs on
every taken IA-32 branch instruction (CALL, Jcc, JMP, RET, LOOP). This trap is useful for
debugging and profiling. After the trap, IIP and IPSR.ri point to the branch target instruction
and IIPA and ISR.ei point to the trapping branch instruction.

• Lower Privilege Transfer trap – When PSR.lp bit is 1, and an Itanium branch demotes the
privilege level (numerically higher), a Lower Privilege Transfer trap occurs. This trap allows
for auditing of privilege demotions, for example to remove permissions which were granted to
higher privilege code. After the trap, IIP and IPSR.ri point to the branch target and IIPA and
ISR.ei point to the trapping branch instruction. IA-32 instructions can not raise this trap.

• Instruction Debug faults – When PSR.db is 1, any Itanium instruction memory reference that
matches the parameters specified by the IBR registers results in an Instruction Debug fault.
Instruction Debug faults are reported even if Itanium instructions are nullified due to a false
predicate. If PSR.id is 1, Itanium Instruction Debug faults are disabled for one instruction. The
successful execution of an Itanium instruction clears PSR.id. When PSR.db is 1, any IA-32
instruction memory reference that matches the parameters specified by the IBR registers
results in an IA_32_Exception(Debug) fault. If PSR.id is 1 or EFLAG.rf is 1, IA-32 Instruction
Volume 2: Debugging and Performance Monitoring 2:131

Debug faults are disabled for one instruction. The successful execution of an IA-32 instruction
clears the PSR.id and EFLAG.rf bits.

• Data Debug faults – When PSR.db is 1, any Itanium data memory reference that matches the
parameters specified by the DBR registers results in a Data Debug fault. Data Debug faults are
only reported if the qualifying predicate is true. Data Debug faults can be deferred on
speculative loads by setting DCR.dd to 1. If PSR.dd is 1, Data Debug faults are disabled for
one instruction or one mandatory RSE memory reference. When PSR.db is 1, any IA-32 data
memory reference that matches the parameters specified by the DBR registers results in a
IA_32_Exception(Debug) trap. IA-32 data debug events are traps, not faults as defined for the
Itanium instruction set. The reported trap code returns the match status of the first 4 DBR
registers that matched during the execution of the IA-32 instruction. See “IA-32 Trap Code” on
page 2:187 for trap code details. Zero, one or more DBR registers may be reported as
matching.

7.1.1 Data and Instruction Breakpoint Registers

Instruction or data memory addresses that match the Instruction or Data Breakpoint Registers (IBR/
DBR) shown in Figure 7-1 and Figure 7-2 and Table 7-1 result in an Instruction or Data Debug
fault. IA-32 Instruction or data memory addresses that match the Instruction or Data Breakpoint
Registers (IBR/DBR) result in an IA-32_Exception(Debug) fault or trap. Even numbered registers
contain breakpoint addresses, odd registers contain breakpoint mask conditions. At least 4 data and
4 instruction register pairs are implemented on all processor models. Implemented registers are
contiguous starting with register 0.

Figure 7-1. Data Breakpoint Registers (DBR)
63 62 61 60 59 56 55 0

DBR0,2,4.. addr

DBR1,3,5.. r w ig plm mask
1 1 2 4 56

Figure 7-2. Instruction Breakpoint Registers (IBR)
63 62 61 60 59 56 55 0

IBR0,2,4.. addr

IBR1,3,5.. x ig plm mask
1 3 4 56

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR)

Field Bits Description

addr 63:0 Match Address – 64-bit virtual or physical breakpoint address. Addresses are interpreted as
either virtual or physical based on PSR.dt, PSR.it or PSR.rt. Data breakpoint addresses trap
on load, store, semaphore, and mandatory RSE memory references. For Intel® Itanium®
instruction set references, IBR.addr{3:0} is ignored in the address match. For IA-32
instruction references, IBR.addr{31:0} are used in the match and IBR.addr{63:32} must be
zero to match. All 64 bits are implemented on all processors regardless of the number of
implemented address bits.

mask 55:0 Address Mask – determines which address bits in the corresponding address register are
compared in determining a breakpoint match. Address bits whose corresponding mask bits
are 1, must match for the breakpoint to be signaled, otherwise the address bit is ignored.
Address bits{63:56} for which there are no corresponding mask bits are always compared.
For IA-32 instruction references, IBR.mask{55:32} are ignored. All 56 bits are implemented
on all processors regardless of the number of implemented address bits.
2:132 Volume 2: Debugging and Performance Monitoring

When executing Itanium instructions, instruction and data memory addresses presented for
matching are always in the implemented address space. Programming an unimplemented physical
address into an IBR/DBR guarantees that physical addresses presented to the IBR/DBR will never
match. Similarly, programming an unimplemented virtual address into an IBR/DBR guarantees that
virtual addresses presented to the IBR/DBR will never match.

Four privileged instructions, defined in Table 7-2, allow access to the debug registers. Register
access is indirect, where the debug register number is determined by the contents of a general
register. DBR/IBR registers can only be accessed at privilege level 0, otherwise a Privileged
Operation fault is raised.

Changes to debug registers and PSR are not necessarily observed by following instructions.
Software should issue a data serialization operation to ensure modifications to DBR, PSR.db,
PSR.tb and PSR.lp are observed before a dependent instruction is executed. For register changes to
IBR and PSR.db that affect fetching of subsequent instructions, software must issue an instruction
serialization operation.

plm 59:56 Privilege Level Mask – enables data breakpoint matching at the specified privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 56 corresponding to privilege
level 0, bit 57 with privilege level 1, etc. A value of 1 indicates that the debug match is
enabled at that privilege level.

w 62 Write match enable – When DBR.w is 1, any non-nullified mandatory RSE store, IA-32 or
Intel® Itanium® store, semaphore, probe.w.fault or probe.rw.fault to an address matching the
corresponding address register causes a breakpoint.

r 63 Read match enable – When DBR.r is 1, any non-nullified IA-32 or Intel® Itanium® load,
mandatory RSE load, semaphore, lfetch.fault, probe.r.fault or probe.rw.fault to an address
matching the corresponding address register causes a breakpoint. When DBR.r is 1, a VHPT
access that matches the DBR (except those for a tak instruction) will cause an Instruction/
Data TLB Miss fault. If DBR.r and DBR.w are both 0, that data breakpoint register is disabled.

x 63 Execute match enable – When IBR.x is 1, execution of an IA-32 instruction or Intel® Itanium®
instruction in a bundle at an address matching the corresponding address register causes a
breakpoint. If IBR.x is 0, that instruction breakpoint register is disabled. Instruction
breakpoints are reported even if the qualifying predicate is false.

ig 62:60 Ignored

Table 7-2. Debug Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov dbr[r3] = r2 Move to data breakpoint
register

DBR[GR[r3]] ← GR[r2] M data

mov r1 = dbr[r3] Move from data breakpoint
register

GR[r1] ← DBR[GR[r3]] M none

mov ibr[r3] = r2 Move to instruction
breakpoint register

IBR[GR[r3]] ← GR[r2] M inst

mov r1 = ibr[r3] Move from instruction
breakpoint register

GR[r1] ← IBR[GR[r3]] M none

break imm Breakpoint Instruction fault if (PSR.ic) IIM ← imm
fault(Breakpoint_Instruction)

B/I/M none

Table 7-1. Debug Breakpoint Register Fields (DBR/IBR) (Continued)

Field Bits Description
Volume 2: Debugging and Performance Monitoring 2:133

On some implementations, a hardware debugger may use two or more of these registers pairs for its
own use. When a hardware debugger is attached, as few as 2 DBR pairs and as few as 2 IBR pairs
may be available for software use. Software should be prepared to run with fewer than the
implemented number of IBRs and/or DBRs if the software is expected to be debuggable with a
hardware debugger. When a hardware debugger is not attached, at least 4 IBR pairs and 4 DBR
pairs are available for software use.

Any debug registers used by an attached hardware debugger are allocated from the highest register
numbers first (e.g. if only 2 DBR pairs are available to software, the available registers are
DBR[0-3]).

Note: When a hardware debugger is attached and is using two or more debug registers pairs, the
processor does not forcibly partition the registers between software and hardware debug-
ger use; that is, the processor does not prevent software from reading or modifying any of
the debug registers being used by the hardware debugger. However, if software modifies
any of the registers being used by the hardware debugger, processor and/or hardware
debugger operation may become undefined, or the processor and/or hardware debugger
may crash.

7.1.2 Debug Address Breakpoint Match Conditions

For virtual memory accesses, breakpoint address registers contain the virtual addresses of the
debug breakpoint. For physical accesses, the addresses in these registers are treated as a physical
address. Software should be aware that debug registers configured to fault on virtual references,
may also fault on a physical reference if translations are disabled. Likewise a debug register
configured for physical references can fault on virtual references that match the debug breakpoint
registers.

The range of addresses detected by the DBR and IBR registers for memory references by Itanium
instructions is defined as:

• Instruction and single or multi-byte aligned data memory references that access any memory
byte specified by the IBR/DBR address and mask fields results in an Instruction/Data Debug
fault regardless of datum size. Implementations must only report a Debug fault if the specified
aligned byte(s) are referenced.

• Floating-point load double/integer pair, floating-point spill/fill and 10-byte operands are
treated as 16-byte datums for breakpoint matching, if the accesses are aligned. Floating-point
load single pair operands are treated as 8-byte datums for breakpoint matching, if the accesses
are aligned.

• If data memory references are unaligned, multi-byte memory references that access any
memory byte specified by DBR address and mask fields result in a breakpoint Data Debug
fault regardless of datum size. Processor implementations may also report additional
breakpoint Data Debug faults for addresses not specifically specified by the DBR registers.
Debugging software should perform a byte by byte breakpoint analysis of each address
accessed by multi-byte unaligned datums to detect true breakpoint conditions.

Address breakpoint Data Debug faults are not reported for the Flush Cache (fc, fc.i),
non-faulting probe, non-faulting lfetch, insert TLB (itc, itr), purge TLB (ptc, ptr), or
translation access (thash, ttag, tak, tpa) instructions. Accesses by the RSE to a debug region
are checked, but the Data Debug fault is not reported until a subsequent alloc, br.ret, rfi,
loadrs, or flushrs which requires that the faulting load or store actually occur.
2:134 Volume 2: Debugging and Performance Monitoring

The range of addresses detected by the DBR and IBR registers for IA-32 memory references is
defined as:

• Instruction memory references where the first byte of the IA-32 instruction match the IBR
address and mask fields results in an IA-32_Exception(Debug) fault. Subsequent bytes of a
multiple byte IA-32 instruction are not compared against the IBR registers for breakpoints.
The upper 32-bits of the IBR addr field must be zero to detect IA-32 instruction memory
references.

• IA-32 single or multi-byte data memory references that access any memory byte specified by
the DBR address and mask fields results in an IA-32_Exception(Debug) trap regardless of
datum size and alignment. The processor ensures that all data breakpoint traps are precisely
reported. Data breakpoint traps are reported if and only if any byte in the IA-32 data memory
reference matches the DBR address and mask fields. No spurious data breakpoint events are
generated for IA-32 data memory operands that are unaligned, nor are breakpoints reported if
no bytes of the operand lie within the address range specified by the DBR address and mask
fields.

7.2 Performance Monitoring

Performance monitors allow processor events to be monitored by programmable counters or give
an external notification (such as a pin or transaction) on the occurrence of an event. Monitors are
useful for tuning application, operating system and system performance. Two sets of performance
monitor registers are defined. Performance Monitor Configuration (PMC) registers are used to
control the monitors. Performance Monitor Data (PMD) registers provide data values from the
monitors. The performance monitors can record performance values from either the IA-32 or
Itanium instruction set.

As shown in Figure 7-3, all processor implementations provide at least four performance counters
(PMC/PMD[4]..PMC/PMD[7] pairs), and four performance counter overflow status registers
(PMC[0]..PMC[3]). Performance monitors are also controlled by bits in the processor status
register (PSR), the default control register (DCR) and the performance monitor vector register
(PMV). Processor implementations may provide additional implementation-dependent PMC and
PMD registers to increase the number of “generic” performance counters (PMC/PMD pairs). The
remainder of the PMC and PMD register set is implementation dependent.

Event collection for implementation-dependent performance monitors is not specified by the
architecture. Enabling and disabling functions are implementation dependent. For details, consult
processor specific documentation.

Processor implementations may not populate the entire PMC/PMD register space. Reading of an
unimplemented PMC or PMD register returns zero. Writes to unimplemented PMC or PMD
registers are ignored; i.e., the written value is discarded.

Writes to PMD and PMC and reads from PMC are privileged operations. At non-zero privilege
levels, these operations result in a Privileged Operation fault, regardless of the register address.

Reading of PMD registers by non-zero privilege level code is controlled by PSR.sp. When PSR.sp
is one, PMD register reads by non-zero privilege level code return zero.
Volume 2: Debugging and Performance Monitoring 2:135

7.2.1 Generic Performance Counter Registers

Generic performance counter registers are PMC/PMD pairs that contiguously populate the PMC/
PMD name space starting at index 4. At least 4 performance counter register pairs (PMC/
PMD[4]..PMC/PMD[7]) are implemented in all processor models. Each counter can be configured
to monitor events for any combination of privilege levels and one of several event metrics. The
number of performance counters is implementation specific. The figures and tables use the symbol
“p” to represent the index of the last implemented generic PMC/PMD pair. The bit-width W of the
counters is also implementation specific. A counter overflow interrupt occurs when the counter
wraps; i.e., a carry out from bit W-1 is detected. Figure 7-4 and Figure 7-5 show the fields in PMD
and PMC respectively, while Table 7-3 and Table 7-4 describe the fields in PMD and PMC
respectively.

Figure 7-3. Performance Monitor Register Set

Figure 7-4. Generic Performance Counter Data Registers (PMD[4]..PMD[p])
63 W W-1 0

PMD[4]..PMD[p] sxt count
64-W W

Generic Performance Monitoring Register Set

 PSR

processor status register
63 0

pmc0
pmc1

pmc3

performance counter
overflow status registers

 PMV
63 0

performance monitor
vector register

cr73

cr0 DCR
63 0

default control register

pmc2

63 0

performance counter
configuration registers

63 0

pmd4
pmd5

performance counter
data registers

63 0
pmdp+1
pmdp+2

pmd255

Implementation-dependent Performance Monitoring Register Set

63 0

pmdp

pmc4
pmc5

63 0

pmcp

63 0
pmcp+1
pmcp+2

pmc255

pmd0
pmd1

pmd3

pmd2
2:136 Volume 2: Debugging and Performance Monitoring

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the
performance monitor freeze bit (PMC[0].fr) affect the behavior of all generic performance monitor
registers. Finer, per monitor, control of generic performance monitors is provided by two PMC
register fields (PMC[i].plm, PMC[i].pm). Event collection for a generic monitor is enabled under
the following constraints:

• Generic Monitor Enable[i] =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and
((not (PMC[i].pm) and PSR.up) or (PMC[i].pm and PSR.pp))

Table 7-3. Generic Performance Counter Data Register Fields

Field Bits Description

sxt 63:W Writes are ignored.
Reads return the value of bit W-1, so count values appear as sign extended.

count W-1:0 Event Count. The counter is defined to overflow when the count field wraps (carry out
from bit W-1).

Figure 7-5. Generic Performance Counter Configuration Register (PMC[4]..PMC[p])
63 16 15 8 7 6 5 4 3 0

PMC[4]..PMC[p] implementation specific es ig pm oi ev plm
48 8 1 1 1 1 4

Table 7-4. Generic Performance Counter Configuration Register Fields (PMC[4]..PMC[p])

Field Bits Description

plm 3:0 Privilege Level Mask – controls performance monitor operation for a specific privilege
level. Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to
privilege level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor
is enabled at that privilege level. Writing zeros to all plm bits effectively disables the
monitor. In this state, the corresponding PMD register(s) do not preserve values, and
the processor may choose to power down the monitor.

ev 4 External visibility – When 1, an external notification (such as a pin or transaction) is
provided whenever the monitor overflows. Overflow occurs when a carry out from bit
W-1 is detected.

oi 5 Overflow interrupt – If 1, when the monitor overflows, a Performance Monitor Interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) is set. If 0, no interrupt is
raised and the performance monitor freeze bit (PMC[0].fr) remains unchanged.
Overflow occurs when a carry out from bit W-1 is detected. See “Performance Monitor
Overflow Status Registers (PMC[0]..PMC[3])” for details on configuring interrupt
vectors.

pm 6 Privileged monitor – When 0, the performance monitor is configured as a user monitor,
and enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as
a privileged monitor, enabled by PSR.pp, and the corresponding PMD can only be read
by privileged software.

ig 7 ignored

es 15:8 Event select – selects the performance event to be monitored. Actual event encodings
are implementation dependent. Some processor models may not implement all event
select (es) bits. At least one bit of es must be implemented on all processors.
Unimplemented es bits are ignored.

implem.
specific

63:16 Implementation specific bits – Reads from implemented bits return
implementation-dependent values. For portability, software should write what was read;
i.e., software may not use these bits as storage. Hardware will ignore writes to
unimplemented bits.
Volume 2: Debugging and Performance Monitoring 2:137

Generic performance monitor data registers (PMD[i]) can be configured to be user readable (useful
for user level sampling and tracing user level processes) by setting the PMC[i].pm bit to 0. All
user-configured monitors can be started and stopped synchronously by the user mask instructions
(rum and sum) by altering PSR.up. User-configured monitors can be secured by setting PSR.sp to 1.
A user-configured secured monitor continues to collect performance values; however, reads of
PMD, by non-privileged code, return zeros until the monitor is unsecured.

Monitors configured as privileged (PMC[i].pm is 1) are accessible only at privilege level 0;
otherwise, reads return zeros. All privileged monitors can be started and stopped synchronously by
the system mask instructions (rsm and ssm) by altering PSR.pp. Table 7-5 summarizes the effects
of PSR.sp, PMC[i].pm, and PSR.cpl on reading PMD registers.

Updates to generic PMC registers and PSR bits (up, pp, is, sp, cpl) require implicit or explicit data
serialization prior to accessing an affected PMD register. The data serialization ensures that all
prior PMD reads and writes as well as all prior PMC writes have completed.

Generic PMD counter registers may be read by software without stopping the counters. The
processor guarantees that software will see monotonically increasing counter values. Software must
accept a level of sampling error when reading the counters due to various machine stall conditions,
interruptions, and bus contention effects, etc. The level of sampling error is implementation
specific. More accurate measurements can be obtained by disabling the counters and performing an
instruction serialize operation for instruction events or data serialize operation for data events
before reading the monitors. Other (non-counter) implementation-dependent PMD registers can
only be read reliably when event monitoring is frozen (PMC[0].fr is one).

For accurate PMD reads of disabled counters, data serialization (implicit or explicit) is required
between any PMD read and a subsequent ssm or sum (that could toggle PSR.up or PSR.pp from 0
to 1), or a subsequent epc, demoting br.ret or branch to IA-32 (br.ia) (that could affect PSR.cpl
or PSR.is). Note that implicit post-serialization semantics of sum do not meet this requirement.

Table 7-6 defines the instructions used to access the PMC and PMD registers.

Table 7-5. Reading Performance Monitor Data Registers

PSR.sp PMC[i].pm PSR.cpl PMD Reads Return

0 0 0 PMD value

0 1 0 PMD value

1 0 0 PMD value

1 1 0 PMD value

0 0 >0 PMD value

0 1 >0 0

1 0 >0 0

1 1 >0 0

Table 7-6. Performance Monitor Instructions

Mnemonic Description Operation
Instr
Type

Serialization
Required

mov pmd[r3] = r2 Move to performance monitor
data register

PMD[GR[r3]] ← GR[r2] M data/inst

mov r1 = pmd[r3] Move from performance monitor
data register

GR[r1] ← PMD[GR[r3]] M none
2:138 Volume 2: Debugging and Performance Monitoring

7.2.2 Performance Monitor Overflow Status Registers
(PMC[0]..PMC[3])

Performance monitor interrupts may be caused by an overflow from a generic performance monitor
or an implementation-dependent event from a model-specific monitor. The four performance
monitor overflow registers (PMC[0]..PMC[3]) shown in Figure 7-6 indicate which monitor caused
the interruption.

Each of the 252 overflow bits in the performance monitoring overflow status registers
(PMC[0]..PMC[3]) corresponds to a generic performance counter pair or to an
implementation-dependent monitor. For generic performance counter pairs, overflow status bit
PMC[i/64]{i%64} corresponds to generic counter pair PMC/PMD[i], where 4<=i<=p, and p is the
index of the last implemented generic PMC/PMD pair.

When a generic performance counter pair (PMC/PMD[n]) overflows and its overflow interrupt bit
(PMC[n].oi) is 1, or an implementation-dependent monitor wants to report an event with an
interruption, then the processor:

• Sets the corresponding overflow status bit in PMC[0]..PMC[3] to one,

• Raises a Performance Monitor Interrupt, and

• Sets the freeze bit in PMC[0] which suspends event monitoring.

When a generic performance counter pair (PMC/PMD[n]) overflows, and its overflow interrupt bit
(PMC[n].oi) is 0, the corresponding overflow status register bit is set to one. However, in this case
of counter wrap without interrupt, the freeze bit in the PMC[0] is left unchanged, and event
monitoring continues.

If control register bit PMV.m is one, a performance monitoring overflow interrupt is disabled from
being pended. When PMV.m is zero, the interruption is received and held pending. (Further
masking by the PSR.i, TPR and in-service masking can keep the interrupt from being raised.)
Figure 7-6 shows the Performance Monitor Overflow Status registers.

mov pmc[r3] = r2 Move to performance monitor
configure register

PMC[GR[r3]] ← GR[r2] M data/inst

mov r1 = pmc[r3] Move from performance monitor
configure register

GR[r1] ← PMC[GR[r3]] M none

Figure 7-6. Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])
63 4 3 1 0

overflow ig fr
60 3 1

overflow

overflow

overflow

Table 7-6. Performance Monitor Instructions (Continued)

Mnemonic Description Operation
Instr
Type

Serialization
Required
Volume 2: Debugging and Performance Monitoring 2:139

Implementation-dependent PMD registers 0-3 cannot report events in the overflow registers; those
4 bit positions are used for other purposes.

If the PMC[0] freeze bit is set (either by a performance counter overflow or an explicit software
write), the processor suspends all event monitoring, i.e., counters do not increment, and overflow
bits as well as model-specific monitoring are frozen. Writing a zero to the freeze bit resumes event
monitoring.

Multiple overflow bits may be set, if counters overflow concurrently. The overflow bits and the
freeze bit are sticky; i.e., the processor sets them to one but never resets them to zero. It is
software’s responsibility to reset the overflow and freeze bits.

The overflow status bits are populated only for implemented counters. Overflow bits of
unimplemented counters read as zero and writes are ignored.

7.2.3 Performance Monitor Events

The set of monitored events is implementation-specific. All processor models are required to
provide at least two events:

1. The number of retired instructions. These are defined as all instructions which execute
without a fault, including nops and those which were predicated off.

2. The number of processor clock cycles the CPU is in either the NORMAL or LOW-POWER
state (see Figure 11-18 on page 2:281).

Events may be monitorable only by a subset of the available counters. PAL calls provide an
implementation-independent interface that provides information on the number of implemented
counters, their bit-width, the number and location of other (non-counter) monitors, etc.

Table 7-7. Performance Monitor Overflow Register Fields (PMC[0]..PMC[3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit. This bit is volatile
state, i.e., it is set by the processor whenever:

• a generic performance monitor overflow occurs
and its overflow interrupt bit (PMC[n].oi) is set
to one.

• a model-specific performance monitor signals
an interrupt.

The freeze bit can also be set by software to enable or
disable all event monitoring.

If the freeze bit is one, event monitoring is disabled.

If the freeze bit is zero, event monitoring is enabled.

PMC[0] ig 3:1 Ignored

PMC[0]..PMC[3] overflow implemented
monitors

Bit vector indicating which performance monitor
overflowed. Overflow status bits are sticky, they are set
to 1 by the processor if the corresponding PMD
overflows; otherwise they are left unchanged. Multiple
overflow status bits may be set, independent of
whether counter overflow causes an interrupt or not.

unimplemented
monitors

Ignored
2:140 Volume 2: Debugging and Performance Monitoring

7.2.4 Implementation-independent Performance Monitor Code
Sequences

This section describes implementation-independent code sequences for servicing overflow
interrupts and context switches of the performance monitors. For forward compatibility, the code
sequences outlined in Section 7.2.4.1 and Section 7.2.4.2 use PAL-provided
implementation-specific information to collect/preserve data values for all implemented counters.

7.2.4.1 Performance Monitor Interrupt Service Routine

When a generic performance counter pair (PMC/PMD[n]) overflows and its overflow interrupt bit
(PMC[n].oi) is 1, or an implementation-dependent monitor wants to report an event with an
interruption, then the processor:

• Sets the corresponding overflow status bit in PMC[0]..PMC[3] to one,

• Raises a Performance Monitor Interrupt, and

• Sets the freeze bit in PMC[0] which suspends event monitoring.

Event monitoring remains frozen until software clears the freeze bit. Performance monitor
interrupts may be caused by an overflow of any of the counters. The processor indicates which
performance monitor overflowed in the performance monitor overflow status registers
(PMC[0]..PMC[3]). If multiple counters overflow concurrently, multiple overflow bits will be set
to one. For forward compatibility, event collection interrupt handlers must follow the
implementation-independent overflow interrupt service routine outlined in Figure 7-7. Use of
alternate context-switch sequences may be incompatible with future implementations.

Figure 7-7. Performance Monitor Interrupt Service Routine (Implementation Independent)

//Assumes PSR.up and PSR.pp are switched to zero together
if ((PMC[0].fr==1) && (PSR.up == 1) || (PSR.pp == 1)){

// freeze bit is set. Search for interrupt.
for (i=0; i< 4; i++) {

if (PMC[i] != 0) {
startbit = (i==0) ? 4 : 0;
for (j=startbit; j < 64 ; j++) {

if (PMC[i]{j}) {
counter_id = 64*i + j;
if (counter_id > PAL_GENERIC_PMCPMD_PAIRS) {

Implementation_Specific_Update(counter_id);
}
else { // Generic PMC/PMD counter

if (PMC[counter_id].oi)
ovflcount[counter_id] += 1;

}
}

} // scan overflow bits
}

}
}
// Either ignore bogus interrupt or clear PMC[3]..PMC[1]
// and PMC[0] last (clears freeze bit)
for (i=3; i>=0; i--) { PMC[i] = 0; }
rfi
Volume 2: Debugging and Performance Monitoring 2:141

After a context switch from a context which had performance monitoring enabled to an
unmonitored context, the freeze bit will be set (see Section 7.2.4.2). A pending overflow interrupt
which was targeted at a monitored process may not be delivered until a non-monitored process is
running. A bogus interrupt is one where the freeze bit is zero or performance monitoring is disabled
in the PSR.

7.2.4.2 Performance Monitor Context Switch

The context switch routine described in Figure 7-8 defines the implementation-independent context
switching of Itanium performance monitors. Using bit masks provided by PAL (PALPMCmask,
PALPMDmask) the routine can generically save/restore the contents of all implementation-specific
performance monitoring registers. If the outgoing context is monitored (PSR.pp or PSR.up are set),
then all PMC and PMD registers whose mask bit is set are preserved by software. But if the
outgoing context is monitored and the context switch routine determines that the outgoing context
has a pending performance monitor interrupt (by reading the freeze bit with the knowledge that it
was not generated by software) then software also preserves the outgoing context’s overflow status
registers (PMC[0]..PMC[3]) before all PMC and PMD registers whose mask bit is set. Here, it is
explicitly assumed that software tracks monitored processes and can determine whether a process is
monitored prior to reading the freeze bit. The context switch handler then restores the performance
monitor freeze bit which resets event collection for the new context. Sometime into the incoming
(possibly unmonitored) context, the performance overflow interrupt service routine will run, but by
looking at the status of the freeze bit software can determine whether this interrupt can be ignored
(for details refer to Section 7.2.4.1).

When switching back to the original context (that originally caused the counter overflow), the
previously saved freeze bit can be inspected. If it was set (meaning there was a pending
performance monitor interrupt), then the context switch routine posts an interrupt message to the
incoming context’s processor at the performance monitor vector specified by the PMV register (see
Section 10.5.7, “Inter-processor Interrupts Layout and Example” on page 2:475). This will result in
a new performance monitor overflow interrupt in the correct context. Essentially, the interrupt
message is “replaying” the overflow interrupt that was missed because of the context switch.
2:142 Volume 2: Debugging and Performance Monitoring

Figure 7-8. Performance Monitor Overflow Context Switch Routine

// in context or thread switch

if (outgoing process is monitored (PSR.up or PSR.pp are set)) {
1. Turn-off counting and ignore interrupts for context switch

of counters.
1a) if not already done, raise interrupt priority above

perf. mon overflow vector
1b) read and preserve PSR.up, PSR.pp, PSR.sp
1c) clear PSR.up, clear PSR.pp
1d) srlz.d

2. Check for pending interrupt: Preserve Interrupt State
2a) read and preserve PMC[0]..PMC[3]

3. Set freeze bit
This ensures that PMD registers remain stable for context
switch. Also, for restoration of incoming context, if PSR
of the incoming process enables PSR.up or PSR.pp, the
counters won’t start up, until they have been completely
restored.
3a) write one to freeze bit (PMC[0].fr=1)
3b) srlz.d

4. Preserve PMC/PMD contents
4a) For each PMC whose PALPMCmask bit is set, preserve PMC.
4b) For each PMD whose PALPMDmask bit is set, preserve PMD.

}

.... continue context switch

// Now in incoming process/thread
if (incoming process is monitored (PSR.up or PSR.pp are set)) {

// Note that the context switch itself already restored PSR
// with the original values of PSR.pp, PSR.up and PSR.sp
// (inverse of step 1b above). Event counting is disabled,
// because PMC[0].fr is one (step 3a above).

5. Restore PMC/PMD contents (inverse of step 4 above)
5a) For each PMC whose PALPMCmask bit is set, reload PMC.
5b) For each PMD whose PALPMDmask bit is set, reload PMD.

6. Restore Interrupt State (inverse of step 2 and 1a above)
6a) if (preserved freeze bit was set) {

send myself a performance monitor interrupt
(store to interrupt address)

}
6b) Restore PMC[3], PMC[2], PMC[1], and finally PMC[0].

Write PMC[0] last, which restores the state of the
performance monitor freeze bit.

6c) srlz.d
6d) lower interrupt priority below perf. mon overflow

vector
}

Volume 2: Debugging and Performance Monitoring 2:143

2:144 Volume 2: Debugging and Performance Monitoring

2

Interruption Vector Descriptions 8

Chapter 5 describes the interruption mechanism and programming model for the Itanium
architecture. This chapter describes the IVA-based interruption handlers. “Interruption Vector
Descriptions” describes all the Itanium IVA-based interruption vectors and “IA-32 Interruption
Vector Definitions” describes all of the IA-32 interrupt vectors. PAL-based interruptions are
described in Chapter 11, “Processor Abstraction Layer.” Note that unless otherwise noted,
references to “interruption” in this chapter refer to IVA-based interruptions. See “Interruption
Definitions” on page 2:79.

8.1 Interruption Vector Descriptions

The section lists all the Itanium interruption vectors. It describes the interruption vectors and the
parameters that are defined when the vector is entered.

If an interruption is independent of the executing instruction set (including IA-32), such as an
external interrupt or TLB fault, common Itanium interruption vectors are used. For exceptions and
intercept conditions that are specific to the IA-32 instruction set three IA-32 specific vectors are
used; IA-32_Exception, IA-32_Interrupt, and IA-32_Intercept.

Table 8-1 defines which interruption resources are written, are left unmodified, or are undefined for
each interruption vector. The individual vector descriptions below list interruption specific
resources for each vector.

See “IVA-based Interruption Handling” on page 2:85 for details on how the processor handles an
interruption. See “Interruption Control Registers” on page 2:29 for the definition of bit fields
within the interruption resources.

8.2 ISR Settings

For each of the interruption vectors, a figure depicts the ISR setting. These figures show the value
that hardware writes into the ISR for the corresponding interruption.

Table 8-2 provides an overview of ISR settings for all of the interruption vectors.

For some of the vectors, certain bits will always be 0 (or 1) simply because no instruction that
would set that bit differently can ever end up on that vector. For example, ISR.sp is always 0 in the
Break Instruction vector because ISR.sp is only set by speculative loads, and speculative loads can
never take a Break Instruction fault.

After interruption from the IA-32 instruction set, the following ISR bits will always be zero –
ISR.ni, ISR.na, ISR.sp, ISR.rs, ISR.ir, ISR.ei, and ISR.ed.

ISR.code settings for non-access instructions are described in “Non-access Instructions and
Interruptions” on page 2:87.

Table 8-3 on page 2:149 provides an overview of ISR.code field on all Itanium traps.
Volume 2: Interruption Vector Descriptions 2:145

8.3 Interruption Vector Definition

Table 8-1. Writing of Interruption Resources by Vector

Interruption Resource
IIP, IPSR,

IIPA, IFS.v
IFA ITIR IHA IIM ISR

PSR.ic at time of interruption 0 1 0 1 0 1 0 1 0 1 0 1

Interruption Vector

Alternate Data TLB vector n/aa

a. “n/a” indicates that this cannot happen.

Wb

b. “W” indicates that the resource is written with a new value.

n/a W n/a W n/a xc

c. “x” indicates that the resource may or may not be written; whether it is written and with what value is
implementation specific.

n/a x n/a W

Alternate Instruction TLB vector -d

d. “-” indicates that the resource is not written.

W - W - W x x x x W W

Break Instruction vector - W x x x x x x - W W W

Data Access Rights vector - W - W - W x x x x W W

Data Access-Bit vector - W - W - W x x x x W W

Data Key Miss vector - W - W - W x x x x W W

Data Nested TLB vector - n/a - n/a - n/a - n/a x n/a - n/a

Data TLB vector n/a W n/a W n/a W n/a W n/a x n/a W

Debug vector - W - W x x x x x x W W

Dirty-Bit vector - W - W - W x x x x W W

Disabled FP-Register vector - W x x x x x x x x W W

External Interrupt vector - W x x x x x x x x W W

Floating-point Fault vector - W x x x x x x x x W W

Floating-point Trap vector - W x x x x x x x x W W

General Exception vector - W x x x x x x x x W W

IA-32 Exception Vector n/a W n/a x n/a x n/a x n/a x n/a W

IA-32 Intercept Vector n/a W n/a x n/a x n/a x n/a W n/a W

IA-32 Interrupt Vector n/a W n/a x n/a x n/a x n/a x n/a W

Instruction Access Rights vector - W - W - W x x x x W W

Instruction Access-Bit vector - W - W - W x x x x W W

Instruction Key Miss vector - W - W - W x x x x W W

Instruction TLB vector - W - W - W - W x x W W

Key Permission vector - W - W - W x x x x W W

Lower-Privilege Transfer Trap vector - W x x x x x x x x W W

NaT Consumption vector

- reg - W - x x x x x x x W W

- data/instr - W - W x x x x x x W W

Page Not Present vector - W - W - W x x x x W W

Single Step Trap vector - W x x x x x x x x W W

Speculation vector - W x x x x x x - W W W

Taken Branch Trap vector - W x x x x x x x x W W

Unaligned Reference vector - W - W x x x x x x W W

Unsupported Data Reference vector - W - W x x x x x x W W

VHPT Translation vector n/a W n/a W n/a W n/a W n/a x n/a W
2:146 Volume 2: Interruption Vector Descriptions

Table 8-2. ISR Values on Interruption

Vector / Interruption ed eia so nib irc rsd spe naf r w x

Alternate Data TLB vector

Alternate Data TLB fault edk ri so nil 0 rs sp na r w 0

IR Alternate Data TLB fault 0 ri 0 nil 1 1 0 0 1 0 0

Alternate Instruction TLB vector

Alternate Instruction TLB fault 0 ri 0 ni 0 0 0 0 0 0 1

Break Instruction vector

Break Instruction fault 0 ri 0 ni 0 0 0 0 0 0 0

Data Access Rights vector

Data Access Rights fault edk ri so ni 0 rs sp na r w 0

IR Data Access Rights fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Access-Bit vector

Data Access Bit fault edk ri so ni 0 rs sp na r w 0

IR Data Access Bit fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Key Miss vector

Data Key Miss fault edk ri so ni 0 rs sp na r w 0

IR Data Key Miss fault 0 ri 0 ni 1 1 0 0 1 0 0

Data Nested TLB vectorg

Data Nested TLB fault - - - - - - - - - - -

IR Data Nested TLB fault - - - - - - - - - - -

Data TLB vector

Data TLB fault edk ri so nil 0 rs sp na r w 0

IR Data TLB fault 0 ri 0 nil 1 1 0 0 1 0 0

Debug vector

Data Debug fault edk ri 0 ni 0 rs sp na r w 0

Instruction Debug fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Debug fault 0 ri 0 ni 1 1 0 0 1 0 0

Dirty-Bit vector

Data Dirty Bit fault edk ri so ni 0 rs 0 nah r 1 0

Disabled FP-Register vector

Disabled Floating-Point Register fault 0 ri 0 ni 0 0 sp 0 r w 0

External Interrupt vector

External Interrupt 0 ri 0 ni iri 0 0 0 0 0 0

Floating-point Fault vector

Floating-Point Exception fault 0 ri 0 ni 0 0 0 0 0 0 0

Floating-point Trap vector

Floating-Point Exception trap 0 ei 0 ni 0 0 0 0 0 0 0

General Exception vector

Disabled ISA Transition fault 0 ri 0 ni 0 0 0 0 0 0 0

Illegal Dependency fault 0 ri 0 ni 0 0 0 0 0 0 0

Illegal Operation fault 0 ri 0 ni 0 0 0 0 0 0 0

IR Unimplemented Data Address fault 0 ri 0 ni 1 1 0 0 1 0 0

Privileged Operation fault 0 ri 0 ni 0 0 0 na 0 0 0

Privileged Register fault 0 ri 0 ni 0 0 0 0 0 0 0

Reserved Register/Field fault 0 ri 0 ni 0 0 0 0 0 0 0

Unimplemented Data Address fault 0 ri 0 ni 0 rs 0 naj r w 0
Volume 2: Interruption Vector Descriptions 2:147

IA-32 Exception vector 0 0 0 0 0 0 0 0 0 0 x

IA-32 Intercept vector 0 0 0 0 0 0 0 0 r w 0

IA-32 Interrupt vector 0 0 0 0 0 0 0 0 0 0 0

Instruction Access Rights vector

Instruction Access Rights fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction Access-Bit vector

Instruction Access Bit fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction Key Miss vector

Instruction Key Miss fault 0 ri 0 ni 0 0 0 0 0 0 1

Instruction TLB vector

Instruction TLB fault 0 ri 0 ni 0 0 0 0 0 0 1

Key Permission vector

Data Key Permission fault edk ri so ni 0 rs sp na r w 0

Instruction Key Permission fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Key Permission fault 0 ri 0 ni 1 1 0 0 1 0 0

Lower-Privilege Transfer Trap vector

Lower-Privilege Transfer trap 0 ei 0 ni ir 0 0 0 0 0 0

Unimplemented Instruction Address trap 0 ei 0 ni ir 0 0 0 0 0 0

NaT Consumption vector

Data NaT Page Consumption fault 0 ri so ni 0 rs 0 na r w 0

Instruction NaT Page Consumption fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data NaT Page Consumption fault 0 ri 0 ni 1 1 0 0 1 0 0

Register NaT Consumption fault 0 ri 0 ni 0 0 0 na r w 0

Page Not Present vector

Data Page Not Present fault edk ri so ni 0 rs sp na r w 0

Instruction Page Not Present fault 0 ri 0 ni 0 0 0 0 0 0 1

IR Data Page Not Present fault 0 ri 0 ni 1 1 0 0 1 0 0

Single Step Trap vector

Single Step trap 0 ei 0 ni ir 0 0 0 0 0 0

Speculation vector

Speculative Operation fault 0 ri 0 ni 0 0 0 0 0 0 0

Taken Branch Trap vector

Taken Branch trap 0 ei 0 ni ir 0 0 0 0 0 0

Unaligned Reference vector

Unaligned Data Reference fault ed ri 0 ni 0 0 sp 0 r w 0

Unsupported Data Reference vector

Unsupported Data Reference fault ed ri 0 ni 0 0 0 0 r w 0

VHPT Translation vector

IR VHPT Data fault 0 ri 0 nil 1 1 0 0 1 0 0

VHPT Data fault edk ri so nil 0 rs sp na r w 0

VHPT Instruction fault 0 ri 0 ni 0 0 0 0 0 0 1

a. ISR.ei is equal to IPSR.ri for all faults and external interrupts (1 for faults and interrupts on the L+X instruction
of an MLX). For traps, ISR.ei points at the excepting instruction (2 for traps on the L+X instruction of an MLX).

b. If ISR.ni is 1, the interruption occurred either when PSR.ic was 0 or was in-flight.
c. ISR.ri captures the value of RSE.CFLE at the time of an interruption.
d. ISR.rs is 1 for interruptions caused by mandatory RSE fills/spills and 0 for all others.

Table 8-2. ISR Values on Interruption (Continued)

Vector / Interruption ed eia so nib irc rsd spe naf r w x
2:148 Volume 2: Interruption Vector Descriptions

Table 8-3 provides the definition for the ISR.code field on all Itanium traps. Hardware will always
deliver the highest priority enabled trap. Software must look at the ISR.code bit vector to determine
if any lower priority trap occurred at the same time as the trap being processed.

e. ISR.sp is 1 for interruptions caused by speculative loads and zero for all others.
f. ISR.na is 1 for interruptions caused by non-access instructions and zero for all others.
g. ISR is not written.
h. A faulting probe.w.fault or probe.rw.fault can cause a Dirty Bit fault on a non-access instruction.
i. ISR.ir is 1 if an external interrupt was taken when mandatory RSE fills caused by a br.ret or rfi were

re-loading the current register stack frame.
j. A faulting lfetch.fault or probe.fault to an unimplemented address will set ISR.na to 1.
k. ISR.ed is 0 if the interruption was caused by a mandatory RSE fill or spill.
l. If PSR.ic was 0 when the interruption was taken, these faults do not occur, but a Data Nested TLB fault is

taken.

Table 8-3. ISR.code Fields on Intel® Itanium® Traps

Field Bit Range Description

fp 0 Floating-Point Exception trap

lp 1 Lower-Privilege Transfer trap

tb 2 Taken Branch trap

ss 3 Single Step trap

ui 4 Unimplemented Instruction Address trap

fp trap code 7 IEEE O (overflow) exception (Parallel FP-LO)

fp trap code 8 IEEE U (underflow) exception (Parallel FP-LO)

fp trap code 9 IEEE I (inexact) exception (Parallel FP-LO)

fp trap code 10 FPA, Added one to significand when rounding (Parallel FP-LO)

fp trap code 11 IEEE O (overflow) exception (Normal or Parallel FP-HI)

fp trap code 12 IEEE U (underflow) exception (Normal or Parallel FP-HI)

fp trap code 13 IEEE I (inexact) exception (Normal or Parallel FP-HI)

fp trap code 14 FPA, Added one to significand when rounding (Normal or Parallel FP-HI).

Table 8-4. Interruption Vectors Sorted Alphabetically

Vector Name Offset Page

Alternate Data TLB vector 0x1000 156

Alternate Instruction TLB vector 0x0c00 155

Break Instruction vector 0x2c00 163

Data Access Rights vector 0x5300 168

Data Access-Bit vector 0x2800 162

Data Key Miss vector 0x1c00 159

Data Nested TLB vector 0x1400 157

Data TLB vector 0x0800 154

Debug vector 0x5900 175

Dirty-Bit vector 0x2000 160

Disabled FP-Register vector 0x5500 171

External Interrupt vector 0x3000 164

Floating-Point Fault vector 0x5c00 178

Floating-Point Trap vector 0x5d00 179

General Exception vector 0x5400 169

IA-32 Exception vector 0x6900 183

IA-32 Intercept vector 0x6a00 184
Volume 2: Interruption Vector Descriptions 2:149

IA-32 Interrupt vector 0x6b00 185

Instruction Access Rights vector 0x5200 167

Instruction Access-Bit vector 0x2400 161

Instruction Key Miss vector 0x1800 158

Instruction TLB vector 0x0400 153

Key Permission vector 0x5100 166

Lower-Privilege Transfer Trap vector 0x5e00 180

NaT Consumption vector 0x5600 172

Page Not Present vector 0x5000 165

Single Step Trap vector 0x6000 182

Speculation vector 0x5700 174

Taken Branch Trap vector 0x5f00 181

Unaligned Reference vector 0x5a00 176

Unsupported Data Reference vector 0x5b00 177

VHPT Translation vector 0x0000 151

Table 8-4. Interruption Vectors Sorted Alphabetically (Continued)

Vector Name Offset Page
2:150 Volume 2: Interruption Vector Descriptions

Name VHPT Translation vector (0x0000)

Cause The hardware VHPT walker encountered a TLB miss while attempting to reference the virtually
addressed hashed page table for a memory reference (including IA-32).

Interruptions on this vector:

IR VHPT Data fault
VHPT Instruction fault
VHPT Data fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IHA – The virtual address in the hashed page table which the hardware VHPT walker was
attempting to reference.

ITIR – The ITIR contains default translation information for the virtual address contained in the
IHA. The access key field within this register is set to the region id value from the region register
selected by the virtual address in the IHA. The ITIR.ps field is set to the RR.ps field from the
selected region register. All other fields are set to 0.

If the fault is due to a VHPT data fault for both original instruction and data references:

• IFA – The faulting address that the hardware VHPT walker was attempting to resolve.

• ISR – The ISR bits are set to reflect the original access on whose behalf the VHPT walker was
operating. If the original operation was a non-access instruction then the ISR.code bits {3:0}
are set to indicate the type of the non-access instruction; otherwise they are set to 0. For
mandatory RSE fill or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if PSR.ic was 1
when the interruption was taken, and is 1 if PSR.ic was in-flight. For IA-32 memory references
the ISR.code, ni, ed, ei, ir, rs, sp, and na bits are always 0. The defined ISR bits are specified
below.

If the fault is due to a VHPT instruction fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits or, if the hardware VHPT walker was attempting to resolve a TLB miss, the
virtual address of the translation.

• ISR – The ISR bits are set based on the original instruction fetch that the VHPT walker was
attempting to resolve. The defined ISR bits are specified below. The ISR.ni bit is 0 if PSR.ic
was 1 when the interruption was taken, and is 1 if PSR.ic was in-flight. For IA-32 memory
references the ei and ni bits are always 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:151

Notes This fault can only occur when PSR.ic is 1 or in-flight, and the VHPT walker is enabled for the
referenced region. Refer to “VHPT Environment” on page 2:56 for details on VHPT enabling.

The original IFA address will be needed by the operating system page fault handler in the case
where the page containing the VHPT entry has not yet been allocated. When the translation for the
VHPT is available the handler must first move the address contained in the IHA to the IFA prior to
the TLB insert.
2:152 Volume 2: Interruption Vector Descriptions

Name Instruction TLB vector (0x0400)

Cause The instruction TLB entry needed by an instruction fetch (including IA-32) is absent, and the
hardware VHPT walker could not find the translation in the VHPT, or the hardware VHPT walker is
enabled but not implemented on this processor.

Interruptions on this vector:

Instruction TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IHA – The virtual address of the hashed page table entry which corresponds to the reference that
raised this fault.

ITIR – The ITIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was taken, and is
1 if PSR.ic was in-flight. The ISR.ei and ni bits are always 0 for IA-32 memory references.

Notes This fault can only occur when PSR.ic is 1 or in-flight, the VHPT hardware walker is enabled for
the referenced region, the PSR.it bit is 1, and the fetched instruction bundle is to be executed. Refer
to “VHPT Environment” on page 2:56 for details on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag mismatch,
illegal entry, or it may have terminated before reading the data. Software must be able to handle the
case where the VHPT walker fails.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:153

Name Data TLB vector (0x0800)

Cause For memory references (including IA-32), the data TLB entry needed by the data access is absent,
and the hardware VHPT walker could not find the translation in the VHPT, or the hardware VHPT
walker is not implemented on this processor.

Interruptions on this vector:

IR Data TLB fault
Data TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IHA – The virtual address of the hashed page table entry which corresponds to the reference that
raised this fault.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The address of the data being referenced.

ISR – If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was
taken, and is 1 if PSR.ic was in-flight. The ISR.code, ed, ei, ir, rs, sp and na bits are always 0 for
IA-32 memory references. The defined ISR bits are specified below.

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access operation
when PSR.dt is 1, and the VHPT hardware walker is enabled for the referenced region. This fault
can only occur on a mandatory RSE load/store operation if PSR.rt is 1, and the VHPT hardware
walker is enabled for the referenced region. Refer to “VHPT Environment” on page 2:56 for details
on VHPT enabling.

The hardware VHPT walker may have failed due to an unimplemented page size, tag mismatch,
illegal entry, or it may have terminated before reading the data. Software must be able to handle the
case where the VHPT walker fails. The Data TLB fault is only taken if PSR.ic is 1 or in-flight,
otherwise a Data Nested TLB fault is taken.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
2:154 Volume 2: Interruption Vector Descriptions

Name Alternate Instruction TLB vector (0x0c00)

Cause The instruction TLB entry needed by an instruction fetch (including IA-32) is absent, and the
hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

Alternate Instruction TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR – For Itanium memory references, the ISR.ei bits are set to indicate which instruction caused
the exception and ISR.ni is set to 0 if PSR.ic was 1 when the interruption was taken, and set to 1 if
PSR.ic was 0 or in-flight. For IA-32 memory references the ISR.ei and ni bits are 0. The defined
ISR bits are specified below.

The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR bits are
specified below.

Notes This fault can only occur when the VHPT walker is disabled for the referenced region, and the
fetched instruction bundle is to be executed. Refer to “VHPT Environment” on page 2:56 for
details on VHPT enabling.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:155

Name Alternate Data TLB vector (0x1000)

Cause For memory references (including IA-32), the data TLB entry needed by data access is absent, and
the hardware VHPT walker was not enabled for this address.

Interruptions on this vector:

IR Alternate Data TLB fault
Alternate Data TLB fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The address of the data being referenced.

ISR – If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed is always 0. The ISR.ni bit is 0 if PSR.ic was 1 when the interruption was
taken, and is 1 if PSR.ic was in-flight. For IA-32 memory references the ISR.code, ed, ei, ir, rs, sp
and na bits are 0. The defined ISR bits are specified below.

Notes The fault can only occur on an IA-32 or Itanium load, store, semaphore, or non-access operation
when PSR.dt is 1, and the VHPT hardware walker is disabled for the referenced region. This fault
can only occur on a mandatory RSE load/store operation if PSR.rt is 1, and the VHPT hardware
walker is disabled for the referenced region. The Alternate Data TLB fault is only taken if PSR.ic is
1 or in-flight, otherwise a Data Nested TLB fault is taken. Refer to “VHPT Environment” on
page 2:56 for details on VHPT enabling.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
2:156 Volume 2: Interruption Vector Descriptions

Name Data Nested TLB vector (0x1400)

Cause For memory references, the data TLB entry needed for a data reference is absent and PSR.ic is 0.
Note: Data Nested TLB faults cannot occur during IA-32 instruction set execution, since PSR.ic
must be 1.

Interruptions on this vector:

IR Data Nested TLB fault
Data Nested TLB fault

Parameters IIP, IPSR, IIPA, IFS, ISR are unchanged from their previous values; they contain information
relating to the original interruption.

ITIR – is unchanged from the previous value.

IFA – is unchanged from the previous value and contains the original address of the data being
referenced.

Notes This fault can only occur when PSR.dt is 1 and PSR.ic is 0 on a load, store, semaphore, or
non-access instruction, or when PSR.rt is 1 and PSR.ic is 0 on a RSE mandatory load/store
operation. Since the operating system is in control of the code executing at the time of the nested
fault, it can by convention know which register contains the address that raised the nested event. As
the PSR.ic bit is 0 on a nested fault, the IFA contains the original data address if the original
interruption was caused by a data TLB fault. If the translation table entry required by the nested
miss handler has not yet been allocated, then the address in the IFA will be passed to the operating
system page fault handler. If the translation for the entry is available then the general register
containing the nested fault address must be moved to the IFA prior to the insert. The ISR contains
the ISR for the original faulting instruction, and not the ISR for the instruction that caused the
nested fault.
Volume 2: Interruption Vector Descriptions 2:157

Name Instruction Key Miss vector (0x1800)

Cause For instruction fetches (including IA-32), the PSR.it bit is 1, the PSR.pk bit is 1, and the access key
from the TLB entry for the address of the executing instruction bundle does not match any of the
valid protection keys.

Interruptions on this vector:

Instruction Key Miss fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the original instruction address. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For IA-32 memory
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
2:158 Volume 2: Interruption Vector Descriptions

Name Data Key Miss vector (0x1c00)

Cause For memory references (including IA-32), the PSR.dt bit is 1, the PSR.pk bit is 1, and the access
key from the TLB entry for the address referenced by a load, store, probe, or semaphore operation
does not match any of the valid protection keys. The RSE may cause this fault if PSR.rt is 1, the
PSR.pk bit is 1, and the access key from the TLB entry for the address referenced by an RSE
mandatory load or store operation does not match any of the valid protection keys.

Interruptions on this vector:

IR Data Key Miss fault
Data Key Miss fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – Faulting data address.

ISR – If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. For mandatory RSE fill
or spill references, ISR.ed is always 0. For IA-32 memory references, the ISR.code, ed, ei, ni, ir, rs,
sp, and na bits are 0. The value for the ISR bits depend on the type of access performed and are
specified below.

Notes Probe and the faulting variant of lfetch are the only non-access instructions that will cause a data
key miss fault.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
Volume 2: Interruption Vector Descriptions 2:159

Name Dirty-Bit vector (0x2000)

Cause IA-32 or Itanium store or semaphore operations to a page with the dirty-bit (TLB.d) equal to 0 in
the data TLB.

Interruptions on this vector:

Data Dirty Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – Faulting data address.

ISR – The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE spill references, ISR.ed is always 0. For IA-32 memory references, ISR.ed, ei,
ni, and rs are 0.

Notes Dirty Bit fault can only occur in these situations:

• When PSR.dt is 1 on an IA-32 or Itanium store or semaphore operation

• When PSR.dt is 1 on a probe.w.fault or probe.rw.fault

• When PSR.rt is 1 on an RSE mandatory store operation

For probe.w.fault or probe.rw.fault the ISR.na bit is set.

Only an IA-32 or Itanium semaphore, or probe.rw.fault operation would set ISR.r on a dirty bit
fault.

Software is invoked to update the dirty bit in the data TLB entry and the Page table. The PSR.da bit
can be used to suppress this fault for one executed instruction or one mandatory RSE store
operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni 0 rs 0 na r 1 0
2:160 Volume 2: Interruption Vector Descriptions

Name Instruction Access-Bit vector (0x2400)

Cause For instruction fetches (including IA-32), the access bit (TLB.a) in the TLB entry for this page is 0,
and an instruction on the page is referenced.

Interruptions on this vector:

Instruction Access Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For IA-32 memory
references the ISR.ei and ni bits are 0. The defined ISR bits are specified below.

Notes The fault can only occur when PSR.it is 1 on an instruction reference (including IA-32). Software
uses this fault for memory management page replacement algorithms. The PSR.ia bit can be used to
suppress this fault for one executed instruction.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:161

Name Data Access-Bit vector (0x2800)

Cause For data memory references (including IA-32), the access bit (TLB.a) in the TLB entry for this
page is 0, and the page is referenced.

Interruptions on this vector:

IR Data Access Bit fault
Data Access Bit fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – Faulting data address.

ISR – The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory references,
ISR.code, ed, ei, ni, ir, rs, na and sp are 0.

Notes These faults can only occur in these situations:

• When PSR.dt is 1 on an IA-32 or Itanium load, store, or semaphore operation

• When PSR.dt is 1 on a probe.fault

• When PSR.dt is 1 on an lfetch.fault

• When PSR.rt is 1 on an RSE mandatory load/store operation

For probe.fault or lfetch.fault the ISR.na bit is set.

Software uses this fault for memory management page replacement algorithms. The PSR.da bit can
be used to suppress this fault for one executed instruction or one mandatory RSE memory
reference.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
2:162 Volume 2: Interruption Vector Descriptions

Name Break Instruction vector (0x2c00)

Cause An attempt is made to execute an Itanium break instruction.

Interruptions on this vector:

Break Instruction fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IIM – Is updated with the break instruction immediate value.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below.

Notes This fault cannot be raised by IA-32 instructions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
Volume 2: Interruption Vector Descriptions 2:163

Name External Interrupt vector (0x3000)

Cause There are unmasked external interrupts pending from external devices, other processors, or internal
processor events and:

• PSR.i is 1, while executing Itanium instructions

• PSR.i is 1 and (CFLAG.if is 0 or EFLAG.if is 1), while executing IA-32 instructions

IPSR.is indicates which instruction set was executing at the time of the interruption.

Interruptions on this vector:

External Interrupt

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IVR – Highest priority unmasked pending external interrupt vector number. If there are no
unmasked pending interrupts the “spurious” interrupt vector (15) is reported.

ISR – The ISR.ei bits are set to indicate which instruction was to be executed when the external
interrupt event was taken. The defined ISR bits are specified below. For external interrupts taken in
the IA-32 instruction set, ISR.ei, ni and ir bits are 0.

Notes: Software is expected to avoid situations which could cause ISR.ni to be 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
2:164 Volume 2: Interruption Vector Descriptions

Name Page Not Present vector (0x5000)

Cause The bundle or IA-32 instruction being executed resides on a page for which the P-bit (TLB.p) in the
instruction TLB entry is 0, or the data being referenced resides on a page for which the P-bit in the
data TLB entry is 0.

Interruptions on this vector:

IR Data Page Not Present fault
Instruction Page Not Present fault
Data Page Not Present fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

If the fault is due to a data page not present fault for both instruction and data original references:

• IFA – The virtual address of the data being referenced.

• ISR – If the interruption was due to a non-access operation then the ISR.code bits {3:0} are set to
indicate the type of the non-access instruction; otherwise they are set to 0. The value for the ISR
bits depend on the type of access performed and are specified below. For mandatory RSE fill or
spill references, ISR.ed is always 0. For IA-32 memory references, ISR.code, ed, ei, ni, ir, rs, sp
and na bits are 0.

If the fault is due to an instruction page not present fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. For IA-32 memory references the ISR.ei and ni bits are 0.

Notes This fault can only occur when PSR.it is 1 on an instruction reference, when PSR.dt is 1 on a load,
store, semaphore, or non-access operation, or when PSR.rt is 1 on a RSE mandatory load/store
operation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:165

Name Key Permission vector (0x5100)

Cause Data access (including IA-32): The PSR.dt bit is 1, the PSR.pk bit is 1 and read or write permission
is disabled by the matching protection register on a load, store, or semaphore operation. The RSE
may cause this fault if PSR.rt is 1, the PSR.pk bit is 1 and read or write permission is disabled by
the matching protection register on an RSE mandatory load/store operation. Instruction access
(including IA-32): The PSR.it bit is 1, the PSR.pk bit is 1 and execute permission is disabled by the
matching protection register.

Interruptions on this vector:

IR Data Key Permission fault
Instruction Key Permission fault
Data Key Permission fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region
register.The ITIR.ps field is set to the RR.ps field from the referenced region register. All other
fields are set to 0.

If the fault is due to a data key permission fault:

• IFA – Faulting data address.

• ISR – The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory references, the
ISR.code, ed, ei, ni, ir, rs, sp bits are 0.

If the fault is due to an instruction key permission fault:

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. For IA-32 memory references, ISR.ei and ni are set to 0.

Notes For probe.fault or lfetch.fault the ISR.na bit is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
2:166 Volume 2: Interruption Vector Descriptions

Name Instruction Access Rights vector (0x5200)

Cause For instruction fetches (including IA-32), the PSR.it bit is 1, and the access rights for this page do
not allow execution or do not allow execution at the current privilege level.

Interruptions on this vector:

Instruction Access Rights fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The defined ISR
bits are specified below. For IA-32 memory references, ISR.ei and ni bits are 0.

Notes This fault does not occur if PSR.it is 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:167

Name Data Access Rights vector (0x5300)

Cause For memory references (including IA-32), the PSR.dt bit is 1, and the access rights for this page do
not allow read access or do not allow read access at the current privilege level for load and
semaphore operations. The PSR.dt bit is 1, and the access rights for this page do not allow write
access or do not allow write access at the current privilege level for store and semaphore
operations.

The PSR.rt bit is 1, and the access rights for this page do not allow read access or do not allow read
access at the current privilege level for the RSE mandatory load operation. The PSR.rt bit is 1, and
the access rights for this page do not allow write access or do not allow write access at the current
privilege level for the RSE mandatory store operation.

Interruptions on this vector:

IR Data Access Rights fault
Data Access Rights fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ITIR – The ITIR contains default translation information for the address contained in the IFA. The
access key field within this register is set to the region id value from the referenced region register.
The ITIR.ps field is set to the RR.ps field from the referenced region register. All other fields are
set to 0.

IFA – Faulting data address.

ISR – The value for the ISR bits depend on the type of access performed and are specified below.
For mandatory RSE fill or spill references, ISR.ed is always 0. For IA-32 memory references,
ISR.code, ed, ei, ni, ir, rs, and sp bits are 0.

Notes For probe.fault or lfetch.fault the ISR.na bit is set.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei so ni ir rs sp na r w 0
2:168 Volume 2: Interruption Vector Descriptions

Name General Exception vector (0x5400)

Cause An attempt is being made to execute an illegal operation, privileged instruction, access a privileged
register, unimplemented field, unimplemented register, unimplemented address, or take an
inter-instruction set branch when disabled.

Interruptions on this vector:

IR Unimplemented Data Address fault
Illegal Operation fault
Illegal Dependency fault
Privileged Operation fault
Disabled Instruction Set Transition fault
Reserved Register/Field fault
Unimplemented Data Address fault
Privileged Register fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. For IA-32
instruction set faults, ISR.ei, ni, na, sp, rs, ir, ed bits are always 0.

• If the fault was caused by a non-access instruction, ISR.code{3:0} specifies which non-access
instruction. See “Non-access Instructions and Interruptions” on page 2:87.

• ISR.code{7:4} = 0: Illegal Operation fault. Cannot be raised by IA-32 instructions.

• An attempt is being made to execute an illegal operation. Illegal operations include:

• Attempts to execute instructions containing reserved major opcodes, reserved
sub-opcodes, or reserved instruction fields, writing GR 0, FR 0 or FR 1, writing a
read-only register, or accessing a reserved register.

• Attempts to execute a reserved template encoding. An rfi to a reserved template
encoding preserves IPSR.ri and will set ISR.ei to IPSR.ri.

• Attempts to execute a bundle of template MLX when PSR.ri == 2. This can only be
caused by doing an rfi with an improper setting of IPSR.ri. In this case, IPSR.ri and
ISR.ei will both be 2.

• Attempts to write outside the current register stack frame.

• Attempts to specify the same GR, when the instruction has two GR targets (e.g.,
post-increment).

• If the instruction has two PR targets, and specifies the same PR for both. Predicated
off unconditional compares, fclass, tbit, and tnat instructions take this fault, even
when their qualifying predicate is zero.

• Register bank conflict on a floating-point load pair instruction.

• An access to BSPSTORE or RNAT is performed with a non-zero RSC.mode, or a
loadrs is performed with a non-zero RSC.mode.

• A loadrs is performed with a non-zero CFM.sof and a non-zero RSC.loadrs, or a
loadrs causes more registers to be loaded from memory than can fit in the physical
stacked register file.

• Attempts to predicate a br.ia instruction or to execute br.ia when
AR[BSPSTORE] != AR[BSP].

• Attempts to execute epc if PFS.ppl is less than PSR.cpl.
Volume 2: Interruption Vector Descriptions 2:169

• Attempts to access interruption registers if PSR.ic is 1.

• Attempts to execute an itc or itr instruction if PSR.ic is 1.

• ISR.code{7:4} = 1: Privileged Operation fault. Cannot be raised by IA-32 instructions.

• ISR.code{7:4} = 2: Privileged Register fault. Cannot be raised by IA-32 instructions.

• ISR.code{7:4} = 3: Reserved Register/Field fault, Unimplemented Data Address fault or IR
Unimplemented Data Address fault. Cannot be raised by IA-32 instructions. For
Unimplemented Data Address fault:

• If ISR.rs = 0: A data memory reference to an unimplemented address has occurred.

• If ISR.rs = 1: A mandatory RSE reference to an unimplemented address has occurred.

For details, refer to “Reserved and Ignored Registers and Fields” on page 1:19 and
“Unimplemented Address Bits” on page 2:61.

• ISR.code{7:4} = 4: Disabled Instruction Set Transition fault. An instruction set transition was
attempted while PSR.di was 1. This fault can be raised by either the Itanium br.ia instruction
or the IA-32 jmpe instruction. IPSR.is indicates the faulting instruction set.

• ISR.code{7:4} = 8: Illegal Dependency fault. Cannot be raised by IA-32 instructions. The
processor has detected a resource dependency violation.

If the fault is due to an Illegal Operation fault or Illegal Dependency fault:

Otherwise:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:4} 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:4} code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir rs 0 na r w 0
2:170 Volume 2: Interruption Vector Descriptions

Name Disabled FP-Register vector (0x5500)

Cause An attempt is made to reference a floating-point register set that is disabled.

When PSR.dfl is 1, execution of any IA-32 FP, SSE or MMX instructions raises a Disabled FP
Register Low Fault (regardless of whether FR2 - FR31 are actually referenced).

When PSR.dfh is 1, execution of the first IA-32 instruction following a br.ia or rfi raises a
Disabled FP Register High fault.

If concurrent IA-32 Disabled FP Register High and Low faults are generated, the Disabled FP
Register High fault takes precedence and is reported in the ISR code, the Disabled FP Register Low
fault is discarded and not reported in the ISR code.

Interruptions on this vector:

Disabled Floating-Point Register fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ISR – The defined ISR bits are specified below.

• ISR.code{0} = 1: FR2 - FR31 disabled and access attempted.

• ISR.code{1} = 1: FR32 - FR127 disabled and access attempted.

For IA-32 references, ISR.ei, ni, sp, r, and w bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 sp 0 r w 0
Volume 2: Interruption Vector Descriptions 2:171

Name NaT Consumption vector (0x5600)

Cause A non-speculative operation (including IA-32) (e.g., load, store, control register access, instruction
fetch etc.) read a NaT source register, NaTVal source register, or referenced a NaTPage.

Interruptions on this vector:

IR Data NaT Page Consumption fault
Instruction NaT Page Consumption fault
Register NaT Consumption fault
Data NaT Page Consumption fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

If the fault is due to a Data NaT Page Consumption fault or an IR Data NaT Page Consumption
fault:

A non-speculative Itanium integer/FP instruction or instruction fetch or IA-32 data memory
reference accessed a page with the NaTPage memory attribute.

• IFA – faulting data address.

• ISR – The value for the ISR bits depend on the type of access performed and are specified
below. For mandatory RSE fill or spill references, ISR.ed is always 0. For the IA-32 instruction
set, ISR.ed, ei, ni, ir, rs and na bits are 0. For probe.fault or lfetch.fault the ISR.na bit is
set.

If the fault is due to an Instruction NaT Page Consumption fault:

A non-speculative Itanium integer/FP instruction or instruction fetch accessed a page with the
NaTPage memory attribute.

• IFA – The virtual address of the bundle or the 16 byte aligned IA-32 instruction address zero
extended to 64-bits.

• ISR – The value for the ISR bits depend on the type of access performed and are specified
below. For the IA-32 instruction set, ISR.ni and ei bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 2 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei so ni ir rs 0 na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 2 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
2:172 Volume 2: Interruption Vector Descriptions

If the fault is due to an Register NaT Consumption fault:

A non-speculative Itanium instruction reads a NaT’ed GR or an FR containing NaTVal. An
IA-32 integer instruction reads a NaT’ed GR. For IA-32 instructions behavior of NaT and
NaTVal values is model specific, see Section 6.4.3, “NaT/NaTVal Response for IA-32
Instructions” on page 1:122 for details.

• ISR – The value for the ISR bits depend on the type of access performed and are specified
below. For the IA-32 instruction set, ISR.ed, ei, ni, ir, rs, r, w, and na bits are 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 na r w 0
Volume 2: Interruption Vector Descriptions 2:173

Name Speculation vector (0x5700)

Cause A chk.a, chk.s, or fchkf instruction needs to branch to recovery code, and the branching
behavior is unimplemented by the processor. This fault cannot be raised by IA-32 instructions.

Interruptions on this vector:

Speculative Operation fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IIM – contains the immediate value from the chk.s, chk.a, or fchkf instruction.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The type of
instruction which caused the fault is encoded in the lower four bits of the ISR.code field.

• If ISR.code{3:0} = 0: chk.a general register speculation fault.

• If ISR.code{3:0} = 1: chk.s general register speculation fault.

• If ISR.code{3:0} = 2: chk.a floating-point speculation fault.

• If ISR.code{3:0} = 3: chk.s floating-point speculation fault.

• If ISR.code{3:0} = 4: fchkf fault.

The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
2:174 Volume 2: Interruption Vector Descriptions

Name Debug vector (0x5900)

Cause A debug fault has occurred. Either the instruction address matches the parameters set up in the
instruction debug registers, or the data address of a load, store, semaphore, or mandatory RSE fill
or spill matches the parameters set up in the data debug registers. All IA-32 instruction set debug
events are delivered on the IA_32_Exception(Debug) vector; see Chapter 9, "IA-32 Interruption
Vector Descriptions". IA-32 instructions can not raise this fault, IA-32 debug events are delivered
on the IA-32_Exception(Debug) vector.

Interruptions on this vector:

IR Data Debug fault
Instruction Debug fault
Data Debug fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

If the fault is due to a data debug fault or an IR Data Debug fault:

• IFA – The address of the data being referenced.

• ISR – The value for the ISR bits depend on the type of access performed and are specified
below. For mandatory RSE fill or spill references, ISR.ed is always 0.

If the fault is due to an instruction debug fault:

• IFA – Faulting instruction fetch address.

• ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The defined
ISR bits are specified below.

Notes On an instruction reference this fault is suppressed if the PSR.db bit is 0 or if the PSR.id bit is 1. On
a data reference this fault is suppressed if the PSR.db bit is 0 or if the PSR.dd bit is 1. The only
non-access data operations which can cause a debug fault are the faulting variants of lfetch and
probe.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{3:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni ir rs sp na r w 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 1
Volume 2: Interruption Vector Descriptions 2:175

Name Unaligned Reference vector (0x5a00)

Cause If PSR.ac is 1, and the data address being referenced by an Itanium instruction is not aligned to the
natural size of the load, store, or semaphore operation, or a data reference is made to a misaligned
datum not supported by the implementation. See “Memory Access Instructions” on page 1:48. For
IA-32 data memory references, an IA_32_Exception(Alignment Check) fault is raised; see Chapter
9, "IA-32 Interruption Vector Descriptions". IA-32 instructions can not raise this fault, IA-32
unaligned events are delivered on the IA-32_Exception(Alignment_Check) vector.

If the data reference specified is both unaligned to the natural datum size and unsupported, then an
Unaligned Data Reference fault is taken.

Interruptions on this vector:

Unaligned Data Reference fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IFA – The address of the data being referenced.

ISR – The value for the ISR bits depend on the type of access performed and are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni 0 0 sp 0 r w 0
2:176 Volume 2: Interruption Vector Descriptions

Name Unsupported Data Reference vector (0x5b00)

Cause An attempt was made to:

• Execute a fetchadd, cmpxchg, xchg, or unsupported ld16, st16 or 10-byte memory
reference (ldfe or stfe) instruction to a page that is neither cacheable with write-back write
policy nor a NaTPage.

• Execute a fetchadd instruction to a page that is an uncacheable exported (UCE) page and the
processor model does not support exporting of fetchadd instructions.

 See “Effects of Memory Attributes on Memory Reference Instructions” on page 2:73 for details.
IA-32 instructions can not raise this fault, IA-32 locked faults are delivered on the
IA-32_Intercept(Lock) vector.

If the data reference specified is both unaligned to the natural datum size and unsupported, then an
Unaligned Data Reference fault is taken.

IA-32 data memory references that require an external atomic lock when DCR.lc is 1, raise an
IA_32_Intercept(Lock) fault; see Chapter 9, "IA-32 Interruption Vector Descriptions".

Interruptions on this vector:

Unsupported Data Reference fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IFA – The address of the data being referenced.

ISR – The value for the ISR bits depend on the type of access performed and are specified below.

For ldfe and stfe instructions, the processor may optionally set both ISR.r and ISR.w to 1,
although this is not recommended.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 ed ei 0 ni 0 0 0 0 r w 0
Volume 2: Interruption Vector Descriptions 2:177

Name Floating-point Fault vector (0x5c00)

Cause A floating-point exception fault has occurred. IA-32 numeric instructions can not raise this fault,
IA-32 floating point faults are delivered on the IA-32_Exception(Floating-Point) vector.

Interruptions on this vector:

Floating-Point Exception fault

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the FP exception fault. The ISR.code field has eight bits
defined. See Chapter 5 for details.

• ISR.code{0} = 1: IEEE V (invalid) exception (Normal or Parallel FP-HI)

• ISR.code{1} = 1: Denormal/Unnormal operand exception (Normal or Parallel FP-HI)

• ISR.code{2} = 1: IEEE Z (divide by zero) exception (Normal or Parallel FP-HI)

• ISR.code{3} = 1: Software assist (Normal or Parallel FP-HI)

• ISR.code{4} = 1: IEEE V (invalid) exception (Parallel FP-LO)

• ISR.code{5} = 1: Denormal/Unnormal operand exception (Parallel FP-LO)

• ISR.code{6} = 1: IEEE Z (divide by zero) exception (Parallel FP-LO)

• ISR.code{7} = 1: Software assist (Parallel FP-LO)

The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 code{7:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
2:178 Volume 2: Interruption Vector Descriptions

Name Floating-point Trap vector (0x5d00)

Cause A floating-point exception trap has occurred. IA-32 numeric instructions can not raise this trap.

Interruptions on this vector:

Floating-point Exception trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception.

ISR.code contains information about the type of FP exception and IEEE information. The ISR code
field contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the
just-executed instruction. The defined ISR bits are specified below:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 fp trap code 0 0 0 ss 0 0 1

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni 0 0 0 0 0 0 0
Volume 2: Interruption Vector Descriptions 2:179

Name Lower-Privilege Transfer Trap vector (0x5e00)

Cause Two trapping conditions transfer control to this vector:

• An attempt is made to transfer control to an unimplemented address, resulting in an
Unimplemented Instruction Address trap. See “Unimplemented Address Bits” on page 2:61.

• The PSR.lp bit is 1, and a branch lowers the privilege level.

IA-32 instructions can not raise this trap.

Interruptions on this vector:

Unimplemented Instruction Address trap
Lower-Privilege Transfer trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP – CR19)” on page 2:31 for a fur-
ther clarification of the IIP value for an unimplemented instruction address trap.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The ISR.code
contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

If the trap is due to an Unimplemented Instruction Address trap:

If the trap is due to a Lower-Privilege Transfer trap:

Notes The Unimplemented Instruction Address trap can be the result of a taken branch, a taken chk, an
rfi, or the execution of a slot 2 instruction in a bundle at the last implemented address. The lower
privilege transfer trap is only taken on a branch demotion, and not an rfi return.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 fp trap code 0 0 1 ss tb lp fp

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ss tb 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
2:180 Volume 2: Interruption Vector Descriptions

Name Taken Branch Trap vector (0x5f00)

Cause A taken branch was executed, and the PSR.tb bit is 1. IA-32 instructions can not raise this trap,
IA-32 taken branch traps are delivered on the IA-32_Exception(Debug) vector.

The Taken Branch trap is not taken on an rfi instruction.

Interruptions on this vector:

Taken Branch trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

Note: Please see “Interruption Instruction Bundle Pointer (IIP – CR19)” on page 2:31 for a fur-
ther clarification of the IIP value for an unimplemented instruction address trap.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The ISR.code
contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 ss 1 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
Volume 2: Interruption Vector Descriptions 2:181

Name Single Step Trap vector (0x6000)

Cause An instruction was successfully executed, and the PSR.ss bit is 1. For IA-32 instruction set, this
condition is delivered on the IA_32_Exception(Debug) vector; see Chapter 9, "IA-32 Interruption
Vector Descriptions". IA-32 instructions can not raise this trap, IA-32 single step events are
delivered on the IA-32_Exception(Debug) vector.

The Single Step trap is not taken on an rfi instruction.

Interruptions on this vector:

Single Step trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ISR – The ISR.ei bits are set to indicate which instruction caused the exception. The ISR.code
contains a bit vector (see Table 8-3 on page 2:149) for all traps which occurred in the just-executed
instruction. The defined ISR bits are specified below.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 ei 0 ni ir 0 0 0 0 0 0
2:182 Volume 2: Interruption Vector Descriptions

Name IA-32 Exception vector (0x6900)

Cause A fault or trap was raised while executing from the IA-32 instruction set.

Interruptions on this vector:

IA-32 Instruction Debug fault
IA-32 Code Fetch fault
IA-32 Instruction Length > 15 bytes fault
IA-32 Device Not Available fault
IA-32 FP Error fault
IA-32 Segment Not Present fault
IA-32 Stack Exception fault
IA-32 General Protection fault
IA-32 Divide by Zero fault
IA-32 Alignment Check fault
IA-32 Bound fault
IA-32 INTO trap
IA-32 Breakpoint (INT 3) trap
IA-32 Data Breakpoint trap
IA-32 Taken Branch trap
IA-32 Single Step trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IFA – is undefined. The faulting IA-32 address is contained in IIPA.

ISR – ISR.vector contains the IA-32 exception vector number. ISR.code contains the IA-32 error
code for faults or a trap code listing concurrent trap events for traps.

Notes See Chapter 9, "IA-32 Interruption Vector Descriptions" for complete details on each IA-32
Exception and for error code and trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 vector error_code/trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 x
Volume 2: Interruption Vector Descriptions 2:183

Name IA-32 Intercept vector (0x6a00)

Cause An intercept fault or trap was raised while executing from the IA-32 instruction set. This vector
handles all the IA-32 intercepts described in Chapter 9, "IA-32 Interruption Vector Descriptions".

Interruptions on this vector:

IA-32 Invalid Opcode fault
IA-32 Instruction Intercept fault
IA-32 Locked Data Reference fault
IA-32 System Flag Intercept trap
IA-32 Gate Intercept trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

IIM – 64-bit information describing the cause of the intercept.

ISR – ISR.vector contains a number specifying the type of intercept. ISR.code contains the IA-32
specific intercept information or a trap code listing concurrent trap events for traps.

Notes See Chapter 9, "IA-32 Interruption Vector Descriptions" for complete details on each IA-32
Intercept and for the intercept code and trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 intercept_number intercept_code/trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 r w 0
2:184 Volume 2: Interruption Vector Descriptions

Name IA-32 Interrupt vector (0x6b00)

Cause An IA-32 software interrupt trap was executed. This vector handles all the IA-32 software
interrupts described in Chapter 9, "IA-32 Interruption Vector Descriptions".

Interruptions on this vector:

IA-32 Software Interrupt (INT) trap

Parameters IIP, IPSR, IIPA, IFS – are defined; refer to page 2:145 for a detailed description.

ISR – ISR.vector contains the IA-32 defined interruption vector number. ISR.code contains a trap
code listing concurrent trap events.

Notes See Chapter 9, "IA-32 Interruption Vector Descriptions" for complete details on this vector and the
trap code definition.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 vector trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

0 0 0 0 0 0 0 0 0 0 0 0
Volume 2: Interruption Vector Descriptions 2:185

2:186 Volume 2: Interruption Vector Descriptions

2

IA-32 Interruption Vector Descriptions 9

This section gives detailed description of all possible IA-32 exceptions, interrupts and intercepts
that can occur during IA-32 instruction set execution in the Itanium System Environment.
Interruption resources not noted below are undefined after the interruption. For all cases where an
interruption is taken out of the IA-32 instruction set, IPSR.is is set to 1.

9.1 IA-32 Trap Code

The following trap code is defined for concurrent traps reported during IA-32 instruction set
execution. There is a bit for every possible concurrent trap condition.

9.2 IA-32 Interruption Vector Definitions

Following are the definitions of IA-32 exceptions, interrupts and intercepts that can occur during
IA-32 instruction set execution in the Itanium system environment.

Figure 9-1. IA-32 Trap Code
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 b3 b2 b1 b0 ss tb 0

Figure 9-2. IA-32 Trap Code

Bit Name Description

2 tb taken branch trap, set if an IA-32 branch is taken and branch traps are enabled
(PSR.tb is 1).

3 ss single step trap, set after the successful execution of every IA-32 instruction if PSR.ss
or EFLAG.tf is 1.

4-7 b0 to b3 Data breakpoint trap due to a match with the corresponding Intel® Itanium® data
breakpoint registers. Each bit indicates a match with the corresponding DBR
registers; b0=DBR0/1, b1=DBR2/3, b2=DBR4/5, b3=DBR6/7. Zero, one or more bits
may be set. These bits accumulate data breakpoint register matches that occurred
during the duration of executing one IA-32 instruction. In order to be reported, the
DBR register address and mask registers must precisely match the IA-32 data
memory reference address, and the DBR read, write bits match the type of memory
transaction, and the DBR privilege level mask match the value in PSR.cpl.
Volume 2: IA-32 Interruption Vector Descriptions 2:187

Name IA_32_Exception (Divide) – Divide Fault

Cause IA-32 IDIV or DIV instruction attempted a divide by zero operation. Refer to the IA-32 Intel®
Architecture Software Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 0 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:188 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (Debug) – Code Breakpoint Fault

Cause The Itanium architecture debug facilities triggered an IA-32 code breakpoint fault on a IA-32
instruction fetch and PSR.id and EFLAG.rf are 0. Refer to the IA-32 Intel® Architecture Software
Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 1

ISR.x – 1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 1
Volume 2: IA-32 Interruption Vector Descriptions 2:189

Name IA_32_Exception (Debug) – Data Breakpoint, Single Step, Taken Branch Trap

Cause The Itanium architecture debug facilities triggered an IA-32 data breakpoint, single-step or branch
trap. In the Itanium System Environment, IA-32 Mov SS or Pop SS single step and data breakpoint
traps are NOT deferred to the next instruction. Refer to the IA-32 Intel® Architecture Software
Developer’s Manual for a complete definition of this trap.

Parameters IIPA – virtual address of the trapping IA-32 instruction (zero extended to 64-bits) if there was a
taken branch trap. Otherwise, if there was no taken branch trap (data breakpoint and/or single step)
IIPA is set to the same value as IIP.

IIP – next Itanium instruction address or the virtual IA-32 instruction address zero extended to
64-bits.

ISR.vector – 1

ISR.code – Trap Code, indicates Concurrent Single Step, Taken Branch, Data Breakpoint Trap
events

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:190 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (Break) – INT 3 Trap

Cause IA-32 breakpoint instruction (INT 3) triggered a trap. Refer to the IA-32 Intel® Architecture
Software Developer’s Manual for a complete definition of this trap.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits

IIP – next virtual IA-32 instruction address zero extended to 64-bits

ISR.vector – 3

ISR.code –Trap Code, indicates Concurrent Single Step condition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 3 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:191

Name IA_32_Exception (Overflow) – Overflow Trap

Cause IA-32 INTO instruction execution when EFLAG.of is set to one. Refer to the IA-32 Intel®
Architecture Software Developer’s Manual for a complete definition of this trap.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits

IIP – next virtual IA-32 instruction address zero extended to 64-bits

ISR.vector – 4

ISR.code – Trap Code, indicates Concurrent Single Step

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 4 trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:192 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (Bound) – Bounds Fault

Cause Failed IA-32 Bound check instruction. Refer to the IA-32 Intel® Architecture Software Developer’s
Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 5

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 5 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:193

Name IA_32_Exception (InvalidOpcode) – Invalid Opcode Fault

Cause All IA-32 invalid opcode faults are delivered to the IA-32_Intercept(Instruction) handler, including
IA-32 illegal, unimplemented opcodes, MMX technology and Streaming SIMD Extension
instructions if CR0.EM is 1, and Streaming SIMD Extension instructions if CR4.fxsr is 0. All
illegal IA-32 floating-point opcodes result in an IA-32_Intercept(Instruction) regardless of the state
of CR0.em.
2:194 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (DNA) – Device Not Available Fault

Cause The processor executed an IA-32 ESC or floating-point instruction with CR0.em is 1. Or an IA-32
WAIT, ESC, floating-point instruction, MMX technology or Streaming SIMD Extension
instruction is executed and CR0.ts bit is 1.

Refer to the IA-32 Intel® Architecture Software Developer’s Manual for a complete definition of
this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 7 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:195

Name Double Fault

Cause IA-32 Double Faults (IA-32 vector 8) are not generated by the processor in the Itanium System
Environment.
2:196 Volume 2: IA-32 Interruption Vector Descriptions

Name Invalid TSS Fault

Cause IA-32 Invalid TSS Faults (IA-32 vector 10) are not generated in the Itanium System Environment.
Volume 2: IA-32 Interruption Vector Descriptions 2:197

Name IA_32_Exception (NotPresent) – Segment Not Present Fault

Cause Generated when the processor detects the Present-bit of the memory segment descriptor is zero
during an IA-32 segment load or far control transfer instructions. Refer to the IA-32 Intel®
Architecture Software Developer’s Manual for a complete definition of this fault and error codes.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 11

ISR.code – IA-32 defined error code. See IA-32 Intel® Architecture Software Developer’s Manual.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 11 error_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:198 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (StackFault) – Stack Fault

Cause IA-32 defined set of stack segment fault conditions detected during stack segment load operations
or memory references relative to the stack segment, refer to the IA-32 Intel® Architecture Software
Developer’s Manual for a complete list of all IA-32 faulting conditions. Stack faults can also be
generated when the processor detects an inconsistent stack segment register descriptor value during
an IA-32 stack reference instruction (e.g. PUSH, POP, CALL, RET,). See section “Segment
Descriptor and Environment Integrity” for a list of possible inconsistent register descriptor
conditions.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 12

ISR.code – IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is detected during a
memory reference relative to the stack segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 12 error_code or zero

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:199

Name IA_32_Exception (GPFault) – General Protection Fault

Cause IA-32 defined set of data and code segment fault conditions detected during data or code segment
load operations or memory references relative to code or data segments, refer to the IA-32 Intel®
Architecture Software Developer’s Manual for a complete list of all IA-32 General Protection Fault
conditions. General Protection faults can also be generated when the processor detects an
inconsistent code or data segment register descriptor value during an IA-32 code fetch or data
memory reference. See section “Segment Descriptor and Environment Integrity” for a list of
possible inconsistent register descriptor conditions.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 13

ISR.code – IA-32 defined ErrorCode. Zero if an inconsistent register descriptor is detected during a
memory reference relative to a code or data segment.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 13 error_code or zero

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:200 Volume 2: IA-32 Interruption Vector Descriptions

Name Page Fault

Cause IA-32 defined page faults (IA-32 vector 14) can not be generated in the Itanium System
Environment.
Volume 2: IA-32 Interruption Vector Descriptions 2:201

Name IA_32_Exception (FPError) – Pending Floating-point Error

Cause An unmasked IA-32 floating-point exception is delivered on the next non-control IA-32
floating-point, MMX technology, WAIT, or jmpe instruction trigger delivery of this exception.
Floating-point errors are delivered regardless of the state of CR0.ne in the Itanium System
Environment. IA-32 numeric exception delivery is not triggered by Itanium numeric exceptions or
the execution of Itanium numeric instructions. Refer to the IA-32 Intel® Architecture Software
Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

FSR, FIR, FDR and FCR contain the IA-32 floating-point environment and exception information

ISR.vector – 16

. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 16 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:202 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (AlignmentCheck) – Alignment Check Fault

Cause An IA-32 instruction performed an unaligned data memory reference while PSR.ac is 1, or
EFLAG.ac is 1 and CR0.am is 1 and the effective privilege level is 3. Refer to the IA-32 Intel®
Architecture Software Developer’s Manual for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IFA – referenced virtual data address (byte granular) zero extended to 64-bits

ISR.vector – 17

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 17 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:203

Name Machine Check

Cause IA-32 Machine Check (IA-32 vector 18) is not generated in the Itanium System Environment.
2:204 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Exception (StreamingSIMD) – Streaming SIMD Extension Numeric Error Fault

Cause An unmasked IA-32 Streaming SIMD Extension numeric error occurred. Numeric faults generated
on Streaming SIMD Extension instructions are reported precisely on the faulting Streaming SIMD
Extension instruction. Streaming SIMD Extension instructions do NOT trigger the report of any
pending IA-32 floating-point exceptions. Streaming SIMD Extension instructions always ignore
CR0.ne and the IGNNE pin. Refer to the IA-32 Intel® Architecture Software Developer’s Manual
for a complete definition of this fault.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

ISR.vector – 19

. 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 19 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:205

Name IA_32_Interrupt (Vector #N) – Software Trap

Cause The IA-32 INT n instruction forces an IA-32 interrupt trap. The IA-32 IDT is not consulted nor are
any values pushed onto a memory stack.

Parameters IIPA – trapping virtual IA-32 instruction address (points to the INT instruction) zero extended to
64-bits

IIP – next virtual IA-32 instruction address zero extended to 64-bits

ISR.vector – vector number

ISR.code – TrapCode, Indicates Concurrent Single Step Trap condition

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv vector trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:206 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Intercept (Instruction) – Instruction Intercept Fault

Cause Execution of unimplemented IA-32 opcodes, illegal opcodes or sensitive privileged IA-32
operating system instructions results in an instruction intercept. Intercepted opcodes include (but
are not limited to); CLTS, HLT, INVD, INVLPG, IRET, LIDT, LGDT, LLDT, LMSW, LTR, MOV
to CRs, MOV to/from DRs, RDMSR, RSM, SIDT, SGDT, SLDT, SMSW, WBINVD, WRMSR,
and all other unimplemented and illegal opcode patterns. If CR0.em is 1, execution of all IA-32
MMX technology and IA-32 Streaming SIMD Extension instructions results in this intercept. If
CR4.FXSR is 0, execution of all IA-32 Streaming SIMD Extension instructions results in this
intercept. All illegal IA-32 floating-point opcodes result in an IA-32_Intercept(Instruction)
regardless of the state of CR0.em. Intercepted opcodes are nullified and alter no architectural state.

Parameters IIP – virtual IA-32 instruction address zero extended to 64-bits, points to the first byte of the
intercepted IA-32 opcode (including prefixes).

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits.

IIM – Opcode bytes, contains the first 8-bytes of the IA-32 instruction following all prefix bytes.
All prefix bytes are decoded and presented as a bitmask in the Intercept Code along with the prefix
length in bytes. Opcode bytes are loaded into IIM in the same format as encountered in memory
and as defined in the IA-32 Intel® Architecture Software Developer’s Manual. The lowest memory
address byte is placed in byte 0 of IIM, higher memory address bytes are placed in increasingly
higher numbered bytes within IIM.

The 8-byte opcode loaded into IIM is stripped of the following prefixes; lock, repeat, address size,
operand size, and segment override prefixes (opcode bytes 0xF3, 0xF2, 0xF0, 0x2E, 0x36, 0x3E,
0x26, 0x64, 0x65, 0x66, and 0x67). The 0x0F opcode series prefix is not stripped from the opcode
bytes loaded into IIM. The opcode loaded into IIM includes all IA-32 opcode components,
including 1 to 3 bytes of opcode, mod r/m bytes, sib bytes and any possible immediates and/or
displacements.

If the opcode loaded in IIM is less than 8-bytes, the remainder higher order numbered bytes are set
to 0. If the opcode is larger than 8-bytes, bytes after the 8th byte (following all stripped prefixes)
are not reported. If required, emulation code must retrieve the extra opcode bytes by reading from
the memory locations specified by IIP.

ISR.vector – 0, indicates instruction intercept.

ISR.code – Intercept Code indicates prefixes and prefix lengths.

Figure 9-3 defines intercept codes for IA-32 instruction set intercepts. Intercept code fields are
defined by Table 9-1 and Table 9-2 on page 2:208.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

byte3 byte2 byte1 byte0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

byte7 byte6 byte5 byte4

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 0 intercept_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:207

 Figure 9-3. IA-32 Intercept Code
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

len 0 seg sp np rp lp as os 0

Table 9-1. Intercept Code Definition

Bit Name Description

1 os Operand Size – (OperandSize Prefix XOR CSD.d bit). When 1, indicates the
effective operand size is 32-bits, when 0, 16-bits.

2 as Address Size – (AddressSize Prefix XOR CSD.d bit). When 1, indicates the effective
address size is 32-bits, when 0, 16-bits.

3 lp Lock Prefix – If 1, indicates a lock prefix is present.

4 rp REP or REPE/REPZ Prefix – If 1, indicates a REP/REPE/REPZ prefix is in effect.

5 np REPNE/REPNZ Prefix – If 1, indicates a REPNE/REPNZ prefix is in effect.

6 sp Segment Prefix – If 1, indicates a Segment Override prefix is present.

7:9 seg Segment Value – Segment Prefix Override value, see Figure 9-2 for encodings. If
there is no segment prefixes this field is undefined.

12:15 len Length of Prefixes – Length of all prefix (in bytes) stripped from IIM. If there are no
prefixes this field has a value of zero.

Table 9-2. Segment Prefix Override Encodings

Seg Value Segment Prefix

0 ES Segment Override

1 CS Segment Override

2 SS Segment Override

3 DS Segment Override

4 FS Segment Override

5 GS Segment Override

6 reserved

7 reserved
2:208 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Intercept (Gate) – Gate Intercept Trap

Cause If an IA-32 control transfer is initiated through a GDT/LDT descriptor that transfers control
through a Call Gate, Task Gate or Task Segment this interception trap is generated.

Parameters IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits

IIP – next sequential virtual IA-32 instruction address zero extended to 64-bits

IFA – Gate Selector. The gate selector is loaded in IFA{15:0}.

IIM – Gate, Task Gate or Task Segment Descriptor. The descriptor loaded in IIM adheres to the
IA-32 GDT/LDT memory format, where byte 0 of the descriptor is in IIM{7:0}.

ISR.vector – 1, indicates gate interception.

ISR.code – TrapCode, Indicates Concurrent Data Debug, taken Branch, and Single Step Events

ISR.code{15:14} – indicates whether CALL or JMP generated the trap. See Table 9-3 for details.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved gate selector

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gate_descriptor{31:0}

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

gate_descriptor{63:32}

Table 9-3. Gate Intercept Trap Code Identifier

Instruction ISR.code{15:14}

CALL 00

JMP 01

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 1 ident trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
Volume 2: IA-32 Interruption Vector Descriptions 2:209

Name IA_32_Intercept (SystemFlag) – System Flag Trap

Parameters System Flag Intercept Traps are generated for the following conditions:

CLI, STI, POPF, POPFD instructions. If the EFLAG.if bit changes state and CFLG.ii is 1, or
EFLAG.tf or EFLAG.ac change state, a System Flag intercept notification trap is delivered after the
instruction completes. IIM contains the previous value of EFLAG before the trapping instruction
executed. If IA-32 code does not have IOPL or CPL permission to modify the EFLAG bits, no
intercept is generated. This intercept trap condition can be used to provide virtual interrupt services,
and delay enabling of interrupts after the STI instruction.

MOV SS, POP SS instructions. After these instructions complete execution, a System Flag
intercept notification trap is delivered. This intercept trap condition can be used to inhibit
interrupts, and code breakpoints between Mov/Pop SS and the next instruction and to inhibit Single
Step and Data Breakpoint traps on the Mov, or Pop SS instruction.

IIP – next virtual IA-32 instruction address zero extended to 64-bits

IIPA – trapping virtual IA-32 instruction address zero extended to 64-bits

IIM – contains the previous EFLAG value before the trapping instruction

ISR.vector – 2

ISR.code – Trap Code, indicates Concurrent Single Step Trap, Debug trap condition.

ISR.code{15:14} indicates which instruction generated the trap.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

old EFLAG

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 9-4. System Flag Intercept Instruction Trap Code Instruction Identifier

Instruction ISR.code{15:14}

CLI 00

STI 01

POPF, POPFD 10

MOV/POP SS 11

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 2 ident trap_code

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 0 0 0
2:210 Volume 2: IA-32 Interruption Vector Descriptions

Name IA_32_Intercept (Lock) – Locked Data Reference Fault

Cause For IA-32 locked operations, if the DCR.lc bit is 1, and an atomic operation to made to
non-write-back memory or to unaligned write-back memory that would result in a
read-modify-write sequence being performed externally under an external bus lock, the processor
raises a Locked Data Reference fault.

Parameters IIP – faulting virtual IA-32 instruction address zero extended to 64-bits

IIPA – virtual address of the faulting IA-32 instruction zero extended to 64-bits

IFA – faulting virtual data address (byte granular) zero extended to 64-bits

ISR.vector – 4

ISR.code – 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv 4 0

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv 0 0 0 0 0 0 0 0 1 1 0
Volume 2: IA-32 Interruption Vector Descriptions 2:211

2:212 Volume 2: IA-32 Interruption Vector Descriptions

2

Itanium®-based Operating System
Interaction Model with IA-32
Applications 10

This section describes the IA-32 system execution model from the perspective of an Itanium-based
operating system interfacing with IA-32 code, while operating in the Itanium System Environment.
The main features covered are:

• IA-32 system and control register behavior

• IA-32 virtual memory support

• IA-32 fault and trap handling

• IA-32 instruction behavior

10.1 Instruction Set Transitions

Instruction set transitions are defined in “Instruction Set Modes.” Operating systems can disable
instruction set transitions (jmpe and br.ia) by setting PSR.di to one. If PSR.di is one, execution of
jmpe or br.ia to IA-32 target results in a Disabled Instruction Set Transition Fault, and the
operation is nullified.

The processor also transitions into an Itanium-based operating system when IA-32 privileged
system resources are accessed, on an interruption, or when the following conditions are detected:

• Instruction Interception – IA-32 system level privileged instructions are executed

• System Flag Interception – Various EFLAG system flags are modified, (e.g. AC, TF and
IF-bits)

• Gate Interception – control transfers are made through call gate, or transfers through a task
switch (TSS segment or Task Gate).

All software interrupts, external interrupts, faults, traps and machine checks transition the processor
to the Itanium instruction set, regardless of the state of PSR.di. IA-32 defined exceptions and
software interrupts are delivered to Itanium-based interruption handlers.

10.2 System Register Model

Registers are assigned the following conventions during transitions between IA-32 and Itanium
instruction sets.

• IA-32 State: The register contains an IA-32 register during IA-32 instruction set execution.
Expected IA-32 values should be loaded before switching to the IA-32 instruction set. After
completion of IA-32 instructions, these registers contain the results of the execution of IA-32
instructions. These registers may contain any value during Itanium instruction execution
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:213

according to Itanium software conventions. Software should follow IA-32 and Itanium
software calling conventions for these registers.

• Shared: Shared registers contain values that have similar functionality in either instruction set.
For example, all Itanium control registers, debug registers are used for memory references
(including IA-32). The stack pointer (ESP) and instruction pointer (IP) are also shared.

• Unmodified: These registers are not altered by IA-32 execution. Itanium-based code can rely
on these values not being modified during IA-32 instruction set execution. The register will
have the have the same contents when entering the IA-32 instruction set and when exiting the
IA-32 instruction set.

• Undefined: Registers marked as undefined may be used as scratch areas for execution of IA-32
instructions. Software can not rely on the value of these registers across an instruction set
transition.

Table 10-1. IA-32 System Register Mapping

Intel®
Itanium®

Reg
IA-32 Reg Convention Size Description

Application Registers

EFLAG EFLAG

IA-32 state

32 IA-32 System/Arithmetic flags,

writes of some bits are conditioned by PSR.cpl and
EFLAG.iopl.

CSD CSD 64 IA-32 code segment (register format)

SSD SSD IA-32 stack segment (register format)

CFLG CR0/CR4 64 IA-32 control flags, CR0=CFLG{31:0},
CR4=CFLG{63:32}a, writable at PSR.cpl=0 only.

Kernel Registers

KR0 IOBASEb

IA-32 state 64

IA-32 virtual I/O port Base register

KR1 TSSDc IA-32 TSS descriptor (register format)

KR2 CR3/CR2d IA-32 CR2=KR2{63:32}, CR3=KR2{31:0}

KR3-7 unmodified Intel® Itanium® preserved registers

Banked General Registers

GR16-31 unmodified Preserved for operating system use

Control Registers

DCR unmodified,

shared

Controls instruction set execution (including IA-32)

IFA, IIP,
IPSR, ISR,
IIM, IIPA,
ITTR, IHA,
IFS, IVA

shared 64

Intel® Itanium® interruption registers may be overwritten
on any TLB fault, interruption or exception encountered
during IA-32 or Intel® Itanium® instruction set execution.

PTA shared

64

Shared page table base for memory references
(including IA-32)

ITM shared shared Intel® Itanium® interruption/timer resources

LID, IVR,
TPR, EOI,
IRR0, IRR1,
IRR2, IRR3,
ITV, PMV,
LRR0, LRR1,
CMCV

shared 64

Intel® Itanium® external interrupt control registers are
used to generate, prioritize and delivery external
interrupts during IA-32 or Intel® Itanium® instruction set
execution.
2:214 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.3 IA-32 System Segment Registers

System Descriptors are maintained in an unscrambled format shown in Figure 10-1 that differs
from the IA-32 scrambled memory descriptor format. The unscrambled register format is designed
to support fast conversion of IA-32 segmented 16/32-bit pointers into virtual addresses by
Itanium-based code. IA-32 segment register load instructions unscramble the GDT/LDT memory
format into the descriptor register format on a segment register load. Itanium-based software can
also directly load descriptor registers provided they are properly unscrambled by software. When
Itanium-based software loads these registers, no data integrity checks are performed at that time if
illegal values are loaded in any fields. For a complete definition of all bit fields and field semantics
refer to the IA-32 Intel® Architecture Software Developer’s Manual.

Translation Resources

TRs

shared
All Intel® Itanium® virtual memory registers can be used
for memory references (including IA-32).

TCs

RRs

PKRs

Debug Registers

IBRs dr0-3, dr7 shared 64 Intel® Itanium® debug registers are used memory
references (including IA-32).DBRs dr0-3, dr7

Performance Monitors

PMCs shared 64 Intel® Itanium® performance monitors measure
performance events (including IA-32).

PMDs shared 64 reflect performance monitor results of execution
(including IA-32)

a. IA-32 MOV from CR0 and CR4 return the value in the CFLG register.
b. The IOBase register is used by IN/OUT instructions. If IN/OUT operations are disabled via CFLG.io, this

register can be used for other values.
c. The TSSD registers are used by IN/OUT instructions for I/O permission via CFLG.io. If access to the TSS is

disabled, these registers can be used for other values.
d. The Mov from CR2,CR3 instructions return the value contained in KR2.

Figure 10-1. IA-32 System Segment Register Descriptor Format (LDT, GDT, TSS)
63 62 60 59 58 57 56 55 52 51 32 31 0

g ig p dpl s stype lim{19:0} base{31:0}

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS)

base 31:0 Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for IA-32 instruction set memory references.
This value is ignored for Intel® Itanium® instruction set memory references.

lim 51:32 Segment Limit. Contains the maximum effective address value within the segment. See the
IA-32 Intel® Architecture Software Developer’s Manual for details and segment limit fault
conditions.

stype 55:52 Segment Type identifier. See the IA-32 Intel® Architecture Software Developer’s Manual for
encodings and definition.

Table 10-1. IA-32 System Register Mapping (Continued)

Intel®
Itanium®

Reg
IA-32 Reg Convention Size Description
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:215

System segment selectors and descriptors for GDT and LDT are maintained in Itanium general
registers to support segment register loads used extensively by segmented 16-bit code. On the
transition into the IA-32 instruction set, GDT/LDT descriptor table must be initialized if IA-32
code will perform protected mode segment register loads or far control transfers.

Within the IA-32 System Environment, GDT and LDT are considered privileged operating system
segmentation resources. However, in the Itanium System Environment, applications can transition
between the IA-32 and Itanium instruction set and bypass IA-32 segmentation. Itanium user level
instructions can also directly modify all selectors and descriptors including GDT and LDT. An
operating system should either protect memory with virtual memory management mechanisms
defined by the Itanium architecture or disabled application level instruction set transitions. Within
the Itanium System Environment, GDT/LDT memory spaces must be mapped into user space,
since supervisor overrides for accesses to GDT/LDT are disabled.

The TSSD descriptor points to the I/O Permission Bitmap. If CFLG.io is 1, IN, INS, OUT, and
OUTS consult the TSSD I/O permission bitmap as defined in the IA-32 Intel® Architecture
Software Developer’s Manual. If CFLG.io is 0, the TSSD I/O permission bitmap is not checked.
See “I/O Port Space Model” for details on I/O port permission and for TLB based access control.
The TSSD register is not used within the Itanium System Environment to support task switches, or
interlevel control transfers. If the TSSD is used for I/O Permissions, Itanium-based operating
system software must ensure that a valid 286 or 386 Task State Descriptor is loaded, otherwise IN/
OUT operations to the TSSD I/O permission bitmap will result in undefined behavior.

The IDT descriptor is not supported or defined within the Itanium System Environment.

10.3.1 IA-32 Current Privilege Level

PSR.cpl is the current privilege level of the processor for instruction execution (including IA-32).
PSR.cpl is used by the processor for all IA-32 descriptor segmentation and paging permission
checks. PSR.cpl is a secured register. Typical IA-32 processors used SSD.dpl as the official
privilege level of the processor. Since, SSD.dpl is not secured from user modification, processor
implementations must base all privilege checks and state backups based on PSR.cpl.

s 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 Descriptor Privilege Level. The DPL is checked for memory access permission for IA-32
instruction set memory references.

p 59 Segment Present bit. If 0, and an IA-32 memory reference uses this segment an
IA_Exception(GPFault) is generated.

ig 62:60 Ignored - For the LDT/GDT/TSS descriptors reads of this field return the last value written by
Itanium®-based code. Reads of this field return zero if written by IA-32 descriptor
loads.These field is ignored by the processor during IA-32 instruction set execution. This
field may have a future use and should be set to zero by software.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | 0xFFF for IA-32
instruction set memory references.

Table 10-2. IA-32 System Segment Register Fields (LDT, GDT, TSS) (Continued)
2:216 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.3.2 IA-32 System EFLAG Register

The EFLAG (AR24) register is made of two major components, user arithmetic flags (CF, PF, AF,
ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None of
the arithmetic or system flags affect Itanium instruction execution. The arithmetic flags are used by
the IA-32 instruction set to reflect the status of IA-32 operations, control IA-32 string operations,
and control branch conditions for IA-32 instructions. System flags are typically managed by an
operating system and are used to control the overall operations of the processor. System flags are
broken into two categories, system flags that control IA-32 instruction set execution behavior and
virtualizable system flags. The NT system flag shown in bold font in Figure 10-2 is virtualized.

System flags AC, TF, RF, VIF, VIP, IOPL and VM directly control the execution of IA-32
instructions. These bits do not control any Itanium instructions. See Table 10-3 for a complete
definition these bits.

The NT bit does not directly control the execution of any IA-32 or Itanium instructions. All IA-32
instructions that modify this bit is intercepted (e.g. IRET, Task Switches)

When Itanium-based software loads this application register (AR24), a Reserved Register/Field
fault will be raised if a non-zero value is written into bits listed as reserved.

10.3.2.1 Virtualized Interrupt Flag

To provide for virtualization of IA-32 code, the IF bit is virtualizable in the context of an operating
system. Interrupts are enabled for IA-32 instructions, if (PSR.i and (~CFLG.if or
EFLAG.if)) is true. For Itanium-based code, interrupts are enabled if PSR.i is 1.

An optional System Flag intercept trap can be generated if CFLG.ii is 1, and the IF-flag changes
state due to IA-32 code executing CLI, STI, or POPF. See “IA-32 Control Registers” for CFLG
details. Using this model, virtualization code can set CFLG.if to 0 and CFLG.ii to 0, IA-32
instruction set modifications of EFLAG.if does not affect actual interrupt masking, therefore no
notification events need be sent to virtualizing software. When virtualization code, detects and
queues an external interrupt for delivery into a virtualized IA-32 operating system/application, it
can set CFLG.ii to1 to force notification the next time the IF-bit changes state, indicating IA-32
code is either opening or closing the interrupt window. Setting CFLG.if to 1, allows for direct IA-32
control of interrupt masking.

Virtualization of the IF flag is independent of VME extensions. Both mechanisms can be used
independently, see the IA-32 Intel® Architecture Software Developer’s Manual for the complete
VME definition.

Figure 10-2. IA-32 EFLAG Register
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved (set to 0) id vip vif ac vm rf 0 nt iopl of df if tf sf zf 0 af 0 pf 1 cf
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0)
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:217

Table 10-3. IA-32 EFLAG Field Definition

EFLAGa Bits Description

EFLAG.cf 0 IA-32 Carry Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

1 Ignored - Writes are ignored, reads return one for IA-32 and Intel® Itanium®
instructions.

3,5,

15

Ignored - Writes are ignored, reads return zero for IA-32 and Intel® Itanium®
instructions. Software should set this bits to zero.

EFLAG.pf 2 IA-32 Parity Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.af 4 IA-32 Aux Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.zf 6 IA-32 Zero Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.sf 7 IA-32 Sign Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.tf 8 IA-32 Trap Flag- In the Intel® Itanium® System Environment, IA-32 instruction single
stepping is enabled when EFLAG.tf is 1 or PSR.ss is 1. EFLAG.tf does not control
single stepping for Intel® Itanium® instruction set execution. When single stepping is
enabled, the processor generates a IA-32_Exception(Debug) trap event after the
successful execution of each IA-32 instruction. If EFLAG.tf is modified by the POPF
or POPFD instruction an IA-32_Intercept(SystemFlag) trap is raised. See the IA-32
Intel® Architecture Software Developer’s Manual for details on this bit.

EFLAG.if 9 IA-32 Interruption Flag. In the Intel® Itanium® System Environment, when PSR.i and
(~CFLG.if or EFLAG.if) is 1, external interrupts are enabled during IA-32 instruction
set execution, otherwise external interrupts are held pending. If CFLG.if is 1,
modification of the EFLAG.if directly affects external interrupt enabling. If CFLG.if is 0,
EFLAG.if does not affect interrupt enabling. The IF-bit does not affect external
interrupt enabling for Intel® Itanium® instructions nor NMI interrupts.
The IF bit can be modified by IA-32 and Itanium®-based code only when PSR.cpl is
less than or equal to EFLAG.iopl. If PSR.cpl is greater than EFLAG.iopl, writes to the
IF-bit are silently ignored.

If CFLG.ii is 1, successful modification of the IF-bit by CLI, STI, or POPF results in an
IA-32_Intercept(SystemFlag) trap, otherwise the IF-bit is modified without
interception. Modification of this bit by Intel® Itanium® instructions does not result in
an intercept. See the IA-32 Intel® Architecture Software Developer’s Manual for
details on this bit.

EFLAG.df 10 IA-32 Direction Flag. See IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.of 11 IA-32 Overflow Flag. See IA-32 Intel® Architecture Software Developer’s Manual for
details.

EFLAG.iopl 13:12 IA-32 In/Out Privilege Level, controls accessibility by IA-32 IN/OUT instructions to the
I/O port space and permission to modify the IF-bit for Intel® Itanium® and IA-32
instructions. If PSR.cpl > IOPL, permission is denied for IA-32 IN/OUT instructions,
and modifications of EFLAG.if by either IA-32 or Intel® Itanium® instructions are
ignored. IOPL can only be modified by IA-32 or Intel® Itanium® instructions executing
at privilege level 0, otherwise modifications of this bit are silently ignored. This bit is
supported in both the IA-32 and Intel® Itanium® System Environments. See the IA-32
Intel® Architecture Software Developer’s Manual for details on this bit.

EFLAG.nt 14 IA-32 Nested Task switch. In the IA-32 System Environment, indicates a nested task
flag when chaining interrupted and called IA-32 tasks. IA-32 task switches are not
directly supported in the Intel® Itanium® System Environment, since IRET,
interruptions, calls, and jumps through task gates are always intercepted. EFLAG.nt
can be modified by the POPF or POPFD instruction in both system environments.
Modification of EFLAG.nt by POPF and POPFD does not result in a System Flag
Intercept. See the IA-32 Intel® Architecture Software Developer’s Manual for details
on this bit.
2:218 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

EFLAG.rf 16 IA-32 Resume Flag. In the Intel® Itanium® System Environment, when EFLAG.rf or
PSR.id is 1, code breakpoint faults are temporarily disabled for one IA-32 instruction,
so that IA-32 instructions can be restarted after a code breakpoint fault without
causing another code breakpoint fault. EFLAG.rf does not affect Intel® Itanium®
Instruction Debug faults. After the successful execution of each IA-32 instruction,
PSR.id and EFLAG.rf are cleared to zero. On entry into the IA-32 instruction set via
rfi or br.ia, EFLAG.rf and PSR.id is not cleared until the successful completion
of the first (target) IA-32 instruction. jmpe clears the PSR.id and the EFLAG.rf bit.

EFLAG.rf is set to 1 if a repeat string sequence (REP MOVS, SCANS, CMPS, LODS,
STOS, INS, OUTS) takes an external interrupt, trap or fault before the final iteration.
EFLAG.rf and PSR.id are set to 0 after the last iteration. For all other cases, external
interrupts, faults, traps, and intercept conditions EFLAG.rf is unmodified.

The RF-bit can be modified by Intel® Itanium® instructions running at any privilege
level. IA-32 instructions cannot directly modify the RF-bit or PSR.id. Specifically,
POPF cannot modify the RF-bit and execution of IRET is always intercepted in the
Intel® Itanium® System Environment. See the IA-32 Intel® Architecture Software
Developer’s Manual for details on this bit.

EFLAG.vm 17 IA-32 Virtual Mode 86. When 1, IA-32 instructions execute in the VM86 environment.
This bit can only be modified by IA-32 or Intel® Itanium® instructions executing at
privilege ring 0, otherwise modifications of this bit by Intel® Itanium® or IA-32
instructions is silently ignored. Itanium®-based software is responsible for initializing
the processor with the required VM86 register state before transferring to IA-32 VM86
environment. This bit is supported in both the IA-32 and Intel® Itanium® System
Environments. See the IA-32 Intel® Architecture Software Developer’s Manual for
complete details of the VM86 environment. Software must ensure the processor is in
IA-32 Protected Mode when setting the VM bit.

EFLAG.ac 18 IA-32 Alignment Check. In the Intel® Itanium® System Environment, IA-32
instructions raise an IA-32_Exception(AlignmentCheck) fault if an unaligned
reference is performed and PSR.ac is 1 or (CFLG.am is 1 and EFLAG.ac is 1 and
memory is accessed at an effective privilege level of 3). Neither EFLAG.ac, CR0.am
nor privilege level affect alignment check faults for Intel® Itanium® instructions. See
“Memory Alignment” for details on alignment conditions. This bit can be modified by
IA-32 and Intel® Itanium® instructions at any privilege level. Modification of this bit by
the POPF instructions results in an IA-32_Intercept(SystemFlag) trap. See the IA-32
Intel® Architecture Software Developer’s Manual for details on this bit.

EFLAG.vif 19 IA-32 Virtual Interrupt Flag. See VME extensions in the IA-32 Intel® Architecture
Software Developer’s Manual for details. Affects execution of POPF, PUSHF, CLI and
STI. This bit is supported in both the IA-32 and Intel® Itanium® System Environments.
A IA-32 Code Fetch fault (GPFault(0)) is generated on every IA-32 instruction
(including the target of rfi and br.ia), if the following condition is true:

EFLAG.vip & EFLAG.vif & CFLG.pe & PSR.cpl==3 & (CFLG.pvi | (EFLAG.vm &
CFLG.vme))

EFLAG.vip 20 IA-32 Virtual Interrupt Pending. See VME extensions in the IA-32 Intel® Architecture
Software Developer’s Manual for programming details. Affects execution of POPF,
PUSHF, CLI and STI. This bit is supported in both the IA-32 and Intel® Itanium®
System Environments.

EFLAG.id 21 IA-32 Identifier bit, can be written and read by IA-32 instructions, indicates IA-32
CPUID instruction is supported. This bit is supported in both the IA-32 and Intel®
Itanium® System Environments.

63:22 reserved must be set to zero.

a. On entry into the IA-32 instruction set all bits may be read by subsequent IA-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits
alter the behavior of Itanium® instruction set execution.

Table 10-3. IA-32 EFLAG Field Definition (Continued)

EFLAGa Bits Description
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:219

10.3.3 IA-32 System Registers

IA-32 system registers such as CR3, CR2, debug registers, performance counters. IA-32 control
registers do not affect execution of Itanium instructions. All IA-32 privileged instructions that
access prior IA-32 system registers are intercepted.

10.3.3.1 IA-32 Control Registers

IA-32 control registers CR0 and CR4 are mapped into the Itanium application register CFLG
(AR27). IA-32 control bits, shown in Figure 10-3, only control execution of the IA-32 instruction
set. Additional CR0 bits are defined in CFLG to control virtualization of IA-32 code (namely the
IO and IF bits) as shown in Figure 10-3. CFLG is readable by Itanium-based code at all privilege
levels but can only be written at privilege level 0, otherwise a Privileged Register fault is generated.
When Itanium-based software loads this application register (AR24), a Reserved Register/Field
fault will be raised if a non-zero value is written into bits listed as reserved.

• State in italics is virtualized. This state has no impact on a IA-32 or Itanium instruction set
execution.

• State in bold only affects IA-32 instruction set execution, Itanium instruction execution is not
affected.

Table 10-4 defines all IA-32 control register state and the behavior of each bit in the Itanium
System Environment.

Figure 10-3. Control Flag Register (CFLG, AR27)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PG CD NW ignored (set to 0) AM ig WP ignored (set to 0) II IF IO NE ET TS EM MP PE

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved (set to 0) MMXEX FXSR PCE PGE MCE PAE PSE DE TSD PVI VME

Table 10-4. IA-32 Control Register Field Definition

Bit
Intel® Itanium®

State
Bit Description

CR0 CFLG{31:0} CR0: IA-32 Mov to CR0 result in a instruction interception fault. Mov from CR0
returns the value contained in CFLG{31:0}. Modification of CFLG{31:0} by Intel®
Itanium® instructions only alters the CR0 state, no side effects (such as TLB flushes)
occur.

CR0.PE CFLG.pe 0 Protected Mode Enable: This bit determines whether the processor operates in
IA-32 Protected Mode or Real Mode. This bit affects only IA-32 instruction set
execution, Intel® Itanium® operations are not affected by this bit. Modification of this
bit by Itanium®-based code does have NOT any side effects such as flushing the
TLBs. This bit is supported in both the IA-32 and Intel® Itanium® System
Environments. See IA-32 Intel® Architecture Software Developer’s Manual for
details on this bit and the Protected Mode environment.

CR0.MP CFLG.mp 1 Monitor co-Processor: When CFLG.ts is 1 and CFLG.mp is 1, execution of IA-32
FWAIT/WAIT instructions results in an Device Not Available fault. This bit is ignored
by Intel® Itanium® floating-point instructions. This bit is supported in both IA-32 and
Intel® Itanium® System Environments. See the IA-32 Intel® Architecture Software
Developer’s Manual for details on this bit.
2:220 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

CR0.EM CFLG.em 2 Emulation: When CFLG.em is set, execution of IA-32 ESC and floating-point
instructions generates an IA-32_exception(DNA) fault. When CFLG.em is 1,
execution of IA-32 MMX technology or Streaming SIMD Extension instructions
results in an IA-32_Intercept (Instruction) fault. This bit does not affect Intel®
Itanium® floating-point instructions. This bit is supported in both the IA-32 and
Intel® Itanium® System Environments. See IA-32 Intel® Architecture Software
Developer’s Manual for details on this bit.

CR0.TS CFLG.ts 3 Task Switched: When CFLG.ts is 1, execution of an IA-32 ESC, floating-point
instruction, MMX technology or Streaming SIMD Extension instruction results in a
IA-32_Exception(DNA) fault. When CFLG.ts is 1 and CFLG.mp is 1, execution of
IA-32 FWAIT/WAIT instructions results in an IA-32_Exception(DNA) fault. This bit is
ignored by Intel® Itanium® instructions. This bit is supported in both the IA-32 and
Intel® Itanium® System Environments. See IA-32 Intel® Architecture Software
Developer’s Manual for details on this bit.

CR0.ET CFLG.et 4 Extension Type: ET is ignored since i387 co-processor instructions are supported.
This bit is reserved on all Pentium processors. Reads always return 1. This bit is
supported in both the IA-32 and Intel® Itanium® System Environments.

CR0.NE CFLG.ne 5 Numeric Error: Numeric errors are always enabled in the Intel® Itanium® System
Environment. The NE bit and the IGNNE# pin are ignored by the processor and the
FERR# pin is not asserted for any numeric errors on IA-32 or Intel® Itanium®
floating-point instructions.

In the IA-32 System Environment, this bit is supported as defined in the IA-32 Intel®
Architecture Software Developer’s Manual.

-- CFLG.io 6 I/O Enable: If CFLG.io is 1 and CPL>IOPL, IA-32 IN, INS, OUT, OUTS instructions
consulted the TSS for I/O permission. If CFLG.io is 0 or CPL<=IOPL, permission is granted
regardless of the state of the TSS I/O permission bitmap (the bitmap is not referenced). This
bit always returns zero when read by the IA-32 Mov from CR0 instruction. This bit is
not defined in the IA-32 System Environment.

-- CFLG.if 7 IF Enable: When CFLG.if is 1, EFLAG.if can be used to enabled or disable external
interrupts for IA-32 instructions. If CFLG.if is 0, EFLAG.if does not control external
interrupt enabling. External interrupts are enabled for the IA-32 instruction set by if
PSR.i and (~CLFG.if or EFLAG.if). This bit always returns zero when read by the
IA-32 Mov from CR0 instruction. This bit is not defined in the IA-32 System
Environment.

-- CFLG.ii 8 IF Intercept: When CFLG.ii is 1, successful modification of the EFLAG.if bit by IA-32
CLI, STI or POPF instructions result in a IA-32_Intercept(SystemFlag) trap. This bit
always returns zero when read by the IA-32 Mov from CR0 instruction. This bit is not
defined in the IA-32 System Environment.

ignored 9:15,
17,
19:28

Ignored - May have a possible future use. Software should set these fields to zero.

CR0.WP CFLG.wp 16 Write Protect: This bit is ignored in the Itanium® System Environment. In the IA-32
System Environment, WP controls supervisor write-protection for IA-32 paging. See
IA-32 Intel® Architecture Software Developer’s Manual for details on this bit.

CR0.AM CFLG.am 18 Alignment Mask: For IA-32 instructions an IA-32_Exception(AlignmentCheck) fault
is generated on a reference to an unaligned data memory operand if PSR.ac is 1 or
(CFLG.am is 1 and EFLAG.ac is 1 and memory is accessed at an effective privilege
level of 3). Neither EFLAG.ac, CR0.am nor privilege level affect alignment check
faults for Itanium® instructions. This bit is supported in both the IA-32 and Itanium
System Environments. See the IA-32 Intel® Architecture Software Developer’s
Manual for details on this bit.

CR0.NW CFLG.nw 29 Not Write-through and Cache Disable: These bits are ignored in the Itanium®
System Environment. Cacheability is controlled virtual memory attributes. These bits
are provided as storage for compatibility purposes.

CR0.CD CFLG.cd 30

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit
Intel® Itanium®

State
Bit Description
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:221

CR0.PG CFLG.pg 31 Paging Enable: In the Intel® Itanium® System Environment, this bit is ignored for
IA-32 and Intel® Itanium® memory references. Virtual translations are enabled via
PSR.it and PSR.dt. This bit is provided as storage for compatibility purposes.
Modification of this bit by Itanium-based code does NOT have any side effects such
as flushing the TLBs. This bit is supported as defined in the IA-32 Intel® Architecture
Software Developer’s Manual for the IA-32 System Environment.

CR2 KR2{63:32} IA-32 Page Fault Virtual Address: IA-32 Mov to CR2 result in an interception fault.
Mov from CR2 returns the value contained in KR2{63:32}. CR2 is replaced by IFA in
the Intel® Itanium® System Environment.

CR3 KR2{31:0} IA-32 Page Table Address: IA-32 Mov to CR3 result in an interception fault. Mov
from CR3 return the value contained in KR2{31:0}. CR3 is replaced by PTA in the
Intel® Itanium® System Environment. Modification of KR2{31:0} by Itanium-based
code does NOT have the side effect of flushing the TLBs.

CR3.PWT KR4.pwt Page Write-Through and Cache Disabled: In the Intel® Itanium® System
Environment, these bits are ignored. This bit are provided as storage for
compatibility purposes. These bits are supported as defined in the IA-32 Intel®
Architecture Software Developer’s Manual for the IA-32 System Environment.

CR3.PCD KR4.pcd

CR4 CFLG{63:32} CR4: A-32 Mov to CR4 result in an instruction interception fault. Mov from CR4
returns the value contained in CFLG{63:32}. Modification of CFLG{63:32} by Intel®

Itanium® instructions only alters the register state, no side effects (such as TLB
flushes) occur.

CR4.VME CFLG.vme 32 IA-32 Virtual Machine Extension and Protected Mode Virtual Interrupt Enable: These
bits control the VM86 VME extensions and Protected Mode Virtual Interrupt
extensions defined in the IA-32 Intel® Architecture Software Developer’s Manual for
STI, CLI and PUSHF. These bits have no effect on Intel® Itanium® instructions. This
bit is supported in both the IA-32 and Intel® Itanium® System Environments.

CR4.PVI CFLG.pvi 33

CR4.TSD CFLG.tsd 34 Time Stamp Disable: IA-32 RDTSC user level reads of the Time Stamp Counter are
enabled when CR4.tsd when zero. Otherwise execution of the RDTSC instruction
results in a GPFault. CFLG.tsd is ignored by Intel® Itanium® instructions. This bit is
supported in both the IA-32 and Intel® Itanium® System Environments. See the
IA-32 Intel® Architecture Software Developer’s Manual for details on these bits.

CR4.DE CFLG.de 25 Debug Extensions: In the Intel® Itanium® System Environment, this bit is ignored by
IA-32 or Intel® Itanium® references to the I/O port space. This bit is provided as
storage for compatibility purposes. This bit is supported as defined in the IA-32
Intel® Architecture Software Developer’s Manual for the IA-32 System Environment.

CR4.PSE CFLG.pse 36 Page Size Extensions: In the Intel® Itanium® System Environment, this bit is ignored
by IA-32 or Intel® Itanium® references. In the IA-32 System Environment, this bit
enables 4M-byte page extensions for IA-32 paging. Modification of this bit by
Itanium®-based code does have any side effects such as flushing the TLBs.

CR4.PAE CFLG.pae 37 Physical Address Extensions: In the IA-32 System Environment, this bit enables
IA-32 Physical Address Extensions for IA-32 paging This bit is ignored in the Intel®
Itanium® System Environment. Modification of this bit by Itanium®-based code does
have any side effects such as flushing the TLBs.

CR4.MCE CFLG.mce 38 Machine Check Enable: This bit is ignored in the Intel® Itanium® System
Environment. This bit is provided as storage for compatibility purposes. This bit is
supported as defined in the IA-32 Intel® Architecture Software Developer’s Manual
for the IA-32 System Environment.

CR4.PGE CFLG.pge 39 Paging Global Enable: This bit is ignored in the Intel® Itanium® System
Environment. This bit is provided as storage for compatibility purposes. This bit is
supported as defined in the IA-32 Intel® Architecture Software Developer’s Manual
for the IA-32 System Environment, where this bit enables global pages for the IA-32
paging. Modification of this bit by Itanium®-based code does have any side effects
such as flushing the TLBs.

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit
Intel® Itanium®

State
Bit Description
2:222 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.3.3.2 IA-32 Debug Registers

Within the Itanium System Environment, the IA-32 debug registers (DR0 - DR7) are superseded by
the Itanium debug registers DBR0-7 and IBR0-7, see “Data Breakpoint Register Matching” for
details. Accesses to the IA-32 debug registers result in an interception fault.

The Itanium debug registers are designed to facilitate debugging of both IA-32 and Itanium-based
code. Specifically, instruction and data breakpoints can be programmed by loading 64-bit virtual
addresses into IBR and DBR along with an address mask. Itanium defined single stepping
mechanisms, and taken branch traps are also defined to trap on IA-32 instructions. See “Data
Breakpoint Register Matching” for details on IA-32 instruction set behavior with respect to the
debug facilities defined by the Itanium architecture.

10.3.3.3 IA-32 Memory Type Range Registers (MTRRs)

Within the Itanium System Environment, IA-32 MTRR registers are superseded by physical
memory attributes supplied by the TLB, as defined in “Cacheability and Coherency Attribute.”
IA-32 instruction references to the MTRRs in the MSR register space results in an instruction
intercept fault.

10.3.3.4 IA-32 Model Specific and Test Registers

Within the Itanium System Environment, the IA-32 Model Specific Register space (MSRs) are
superseded by the PAL firmware interface. Cache testing, initialization, processor configuration
should be performed through the PAL interface. See “PAL Procedures” for a complete definition of
the PAL functions and interfaces. Accesses to the IA-32 Model Specific Register space result in an
instruction interception fault.

CR4.PCE CFLG.pce 40 Performance Counter Enable: IA-32 RDPMC user level reads of the performance
counters are enabled when CR4.pce is 1. Otherwise execution of the RDPMC
instruction results in a GPFault. CFLG.pce is ignored by Intel® Itanium® instructions.
This bit is supported in both the IA-32 and Intel® Itanium® System Environments.
See the IA-32 Intel® Architecture Software Developer’s Manual for details on these
bits.

CR4.

FXSR

CFLG.

FXSR

41 Streaming SIMD Extension FXSR Enable. When 1, enables the Streaming SIMD
Extension register context. When 0, execution of all Streaming SIMD Extension
instructions results in an IA-32_Intercept(Instruction) fault. This bit does not control
the behavior of Intel® Itanium® instructions. This bit is supported in both the IA-32
and Intel® Itanium® System Environments. See the IA-32 Intel® Architecture
Software Developer’s Manual for details on these bits.

CR4.

MMXEX

CFLG.

MMXEX

42 Streaming SIMD Extension Exception Enable: When 1, enables Streaming SIMD
Extension unmasked exceptions. When 0, all Streaming SIMD Extension Exceptions
are masked. This bit does not control the behavior of Intel® Itanium® instructions.
This bit is supported in both the IA-32 and Intel® Itanium® System Environments.
See the IA-32 Intel® Architecture Software Developer’s Manual for details on these
bits.

reserved 43:63 Reserved

Table 10-4. IA-32 Control Register Field Definition (Continued)

Bit
Intel® Itanium®

State
Bit Description
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:223

10.3.3.5 IA-32 Performance Monitor Registers

Within the Itanium System Environment, the Itanium performance monitors are designed to
measure IA-32 and Itanium instructions, and system performance through a unified performance
monitoring facility. Itanium-based code can program the performance monitors for IA-32 and/or
Itanium events by configuring the PMC registers. Count values are accumulated in the PMD
registers for both IA-32 and Itanium events. See implementation specific documentation for the list
of supported events and encodings.

IA-32 code can sample the performance counters by issuing the RDPMC instruction. RDPMC
returns count values from the specified Itanium performance monitor. Operating systems can secure
the monitors from being read by IA-32 code by setting PSR.sp to 1, or setting CR4.pce to 0, or
setting the performance monitor’s pm-bit. Reads of a secured counter by RDPMC return a
IA-32_Exception(GPFault(0)). IA-32 code cannot write or configure the performance monitors, all
writes to the MSR register space are intercepted.

10.3.3.6 IA-32 Machine Check Registers

Within the Itanium System Environment, IA-32 machine check registers are superseded by the
Itanium machine check architecture. See “Machine Checks” for details. IA-32 accesses to the
Pentium III processor machine check registers results in an instruction intercept.

10.4 Register Context Switch Guidelines for IA-32 Code

The following section gives operating system performance guidelines to minimize the amount of
register context that must be saved and restored for IA-32 processes during a context switch.

10.4.1 Entering IA-32 Processes

High FP registers (FR32-127) – The processor requires access to all high FP registers during the
execution of IA-32 instructions. It is recommended on entering an IA-32 process, that the OS save
the high FP registers belonging to a prior context and then enable the high FP registers (PSR.dfh is
0). Otherwise, the processor will immediately raise a Disabled FP Register fault on the first IA-32
instruction executed in the IA-32 process. Performing the state save of the prior high FP register
context during the context switch avoids the unnecessary generation of the Disabled FP Register
fault.

Low FP registers (FR2-31) – The processor does not require access to the low FP registers unless
executing IA-32 FP, MMX technology or Streaming SIMD Extension instructions. It is
recommended on entry to an IA-32 process, that the OS disable the low FP registers by setting
PSR.dfl to 1. PSR.dfl set to 0 indicates that there was a possibility that IA-32 FP, MMX technology
or Streaming SIMD Extension instruction could execute and write FR8-31. If the low FP registers
are enabled on entry to an IA-32 process (PSR.dfl is 0), all low FP registers will appear to be dirty
on IA-32 process exit.

High Integer Registers (GR32-127) – Since the processor leaves all high registers in the register
stack in an undefined state, these registers must be saved by the RSE before entering an IA-32
process.

Low Integer registers (GR1-31) – These registers must be explicitly saved before entering an IA-32
process.
2:224 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.4.2 Exiting IA-32 Processes

High FP registers (FR32-127) – PSR.mfh is unmodified when leaving the IA-32 instruction set.
IA-32 instruction set execution leaves FR32-127 in an undefined state. Software can not rely on
register values being preserved across an instruction set transition. These registers do NOT need to
be preserved across a context switch.

Low FP registers (FR2-31) – PSR.mfl indicates there is a possibility that FR8-31 were modified by
IA-32 FP, MMX technology, or Streaming SIMD Extension instruction. The modify bit is set by the
processor when leaving the IA-32 instruction set, if PSR.dfl is 0, otherwise PSR.mfl is unmodified.
During the state save of the outbound IA-32 process, it is recommended that the OS save FR2-31 if
and only if the lower FP registers are marked as modified.

High Integer Registers (GR32-127) – Since the processor leaves all high registers undefined across
an instruction set transition, these registers do NOT need to be preserved across an IA-32 context
switch.

Low Integer registers (GR1-31) – These registers must be explicitly preserved across a context
switch.

10.5 IA-32 Instruction Set Behavior Summary

Table 10-5 summarizes IA-32 instruction behavior within the Itanium System Environment. All
IA-32 instructions are unchanged from the IA-32 Intel® Architecture Software Developer’s Manual
except where noted. IA-32 instructions can also generate additional Itanium register and memory
faults as defined in Table 5-6. Please refer to the IA-32 Intel® Architecture Software Developer’s
Manual for the behavior of all IA-32 instructions in the IA-32 System Environment.

For all listed and unlisted IA-32 instructions in Table 10-5 the following relationships hold:

• Writes of any IA-32 general purpose, floating-point or MMX technology or Streaming SIMD
Extension registers by IA-32 instructions are reflected in the Itanium registers defined to hold
that IA-32 state when the IA-32 instruction set completes execution.

• Reads of any IA-32 general purpose, floating-point or MMX technology or Streaming SIMD
Extension registers by IA-32 instructions see the state of the Itanium registers defined to hold
the IA-32 state after entering the IA-32 instruction set.

• IA-32 numeric instructions are controlled by and reflect their status in FCW, FSW, FTW, FCS,
FIP, FOP, FDS and FEA. On exit from the IA-32 instruction set, Itanium registers defined to
hold IA-32 state reflect the results of all IA-32 prior numeric instructions (FSR, FCR, FIR,
FDR). Itanium numeric status and control resources defined to hold IA-32 state are honored by
IA-32 numeric instructions when entering the IA-32 instruction set.

In Table 10-5 unchanged indicates there is no change in behavior with respect to the IA-32 System
Environment.
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:225

 Table 10-5. IA-32 Instruction Summary

IA-32 Instruction
Intel® Itanium® System

Environment
Comments

AAA, AAD. AAM, AAS

unchanged

ADC, ADD, AND,

ADDPS, ADDSS,
ANDNPS, ANDPS

ARPL

BOUND

BSF, BSR
BSWAP

BT, BTC, BTS, BTR

CALL near: no change

far: no change

gate more privilege: Gate
Intercept

gate same privilege: Gate
Intercept

task gate: Gate Intercept

+ additional taken branch trap

Intercept if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.

CBW, CWDE, CDQ
unchanged

CLC, CLD
CLI Optional System Flag

Intercept
Intercept if EFLAG.if changes state and CFLG.ii is 1

CLTS Instruction Intercept IA-32 privileged instruction

CMC

unchanged

CMOV
CMP

CMPPS, CMPSS,
COMISS

CMPS

CMPXCHG, 8B Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor
external lock transaction is required

CPUID

unchanged

CWD, CDQ

CVTPI2PS, CVTPS2PI,
CVTSI2SS, CVTSS2SI,
CVTTPS2PI, CVTTSS2SI

DAA, DAS
DEC

DIV

DIVPS, DIVSS
ENTER

EMMS
2:226 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

F2XM1

unchanged

IA-32 numeric instructions manipulate the IA-32
numeric register stack contained in f8-f15, status is
reflected in FSR. Modification of the IA-32 numeric
environment changes FIR, FDR FCR and FSR.

FABS

FADD, FADDP, FIADD

FBLD
FBSTP

FCHS

FCLEX, FNCLEX
FCMOV

FCOM, FCOMPP

FCOMI, FCOMIP

FUCOMI, FUCOMIP
FCOS

FDECSTP

FDIV, FDIVP, FIDIV
FDIVR, FDIVRP, FDIVR

FFREE

FICOM, FICOMP

FILD
FINCSTP

FINIT, FNINIT

FIST, FISTP
FLD

FLD constant

FLDCW
FLDENV

FMUL, FMULP, FIMUL

FNOP

FPATAN, FPTAN
FPREM, FPREM1

FRNDINT

FRSTOR
FSAVE, FNSAVE

FSCALE

FSIN, FSINCOS

FSQRT
FST, FSTP

FSTCW, FNSTCW

FSTENV, FNSTENV
FSTSW, FNSTSW

FSUB, FSUBP, FISUB

FSUBR, FSUBRP,
FISUBR

FTST
FUCOM, FUCOMP

FWAIT

FXAM

FXCH
FXTRACT

FXRSTOR, FXSAVE

FYL2X, FYL2XP1

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:227

HLT Instruction Intercept IA-32 privileged instruction
IDIV unchanged

IMUL

IN, INS unchanged + I/O ports are
mapped virtually

If CFLG.io is 0, the TSS I/O permission bitmap is
not consulted. Intel® Itanium® TLB faults control
accessibility to I/O ports.

INC unchanged

INT 3, INTO Mandatory Exception vector
#

Delivered as an IA-32_Interrupt

INT n Mandatory Interruption vector
#

Delivered as an IA-32_Exception

INVD Instruction Intercept IA-32 privilege instruction
INVLPG

IRET, IRETD Real Mode: Instruction
Intercept

to VM86: Instruction Intercept

from VM86: Instruction
Intercept

same privilege: Instruction
Intercept

less privilege: Instruction
Intercept

different task: Instruction
Intercept

All forms of IRET result in an instruction intercept

Jcc additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

JMP near: no change

far: no change

gate task: Gate Intercept

call gate: Gate Intercept

additional taken branch trap

Intercept fault if through a call or task gate

If PSR.tb is 1, raise a taken branch trap.
JMPE Jumps to the Intel® Itanium® instruction set

LAHF

unchanged

LAR
LDMXCSR

LDS, LES, LFS, LGS,
LSS

LEA

LEAVE

LGDT, LLDT
Instruction Intercept IA-32 privileged register resourceLIDT

LMSW

Lock prefix Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor
external lock transaction is required

LODS unchanged
LOOP, LOOPcc additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

LSL unchanged User level instruction

LTR Instruction Intercept IA-32 privileged register

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments
2:228 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

MASKMOVQ

unchanged
MAXPS, MAXSS, MINPS,
MINSS
MOV

MOVNTPS, MOVNTQ

MOV from CR unchanged
MOV to CR Instruction Intercept IA-32 privileged system registers

MOV to/from DR

Mov SS System Flag Intercept Trap System Flag Intercept Trap after instruction
completes

MOVAPS, MOVHPS,
MOVLPS. MOVMSKPS,
MOVSS, MOVUPS

unchanged

MOVD, MOVQ

MOVS

MOVSX, MOVZX
MUL

MULPS, MULSS

NEG
NOP

NOT

OR
ORPS

OUT, OUTS unchanged + I/O ports are
mapped virtually

If CFLG.io is 0, the TSS I/O permission bitmap is
not consulted. Intel® Itanium® TLB faults control
accessibility to I/O ports.

PACKSS, PACKUS

unchanged

PADD, PADDS, PADDUS

PAND, PANDN

PCMPEQ, PCMPGT
PEXTRW, PINSRW

PMADD

PMULHW, PMULLW,
PMULHUW

PMOVMSKB
POP, POPA

POP SS System Flag Intercept System Flag Intercept Trap after instruction
completes

POPF, POPFD Optional System Flag
Intercept

Intercept if EFLAG.if changes state and CFLG.ii is 1

Intercept if EFLAG.ac, or tf change state.

POR

unchanged

PREFETCH
PSHUFW

PSLL, PSRA, PSRL

PSUB, PSUBS, PSUBUS

PUNPCKH, PUNPCKL
PXOR

PUSH, PUSA

unchanged
PUSHF, PUSHFD Pushes value in EFLAG, no intercept
RCL, RCR, ROL, ROR

RCPPS, RSQRTPS

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:229

RDMSR Instruction Intercept IA-32 privileged system register space
RDTSC Optional GPFault No longer faults in VM86, GPFault if secured by

PSR.si or CFLG.tsd.RDPMC

REP, REPcc prefix unchanged
RET near: no change

far: no change

less privilege: no change

same privilege: no change

+ additional taken branch trap If PSR.tb is 1, raise a taken branch trap.

RSM Instruction Intercept IA-32 privileged instruction
SAHF

unchanged

SAL, SAR, SHL, SHR

SBB

SCAS
SFENCE

SETcc

SGDT, SLDT Instruction Intercept IA-32 privileged instruction
SHLD, SHRD unchanged

SHUFPS, SQRTPS,
SQRTSS

SIDT Instruction Intercept IA-32 privileged instructions

SMSW

STC, STD unchanged
STI Optional System Flag

Intercept
Intercept if EFLAG.if changes state and CFLG.ii is 1

STMXCSR unchanged

STOS

STR Instruction Intercept IA-32 privileged instruction

SUB unchanged

SUBPS, SUBSS
TEST

unchangedUCOMISS

UNPCKHPS, UNPCKLPS
UD2 Instruction Intercept Reserved undefined opcodes

VERR, VERW unchanged User level instruction

WAIT
WBINVD Instruction Intercept IA-32 privileged instructions

WRMSR

XADD Optional Lock Intercept If Locks are disabled (DCR.lc is 1) and a processor
external lock transaction is required than a Lock
Intercept.

XCHG

XLAT, XLATB

unchangedXOR

XORPS

Table 10-5. IA-32 Instruction Summary (Continued)

IA-32 Instruction
Intel® Itanium® System

Environment
Comments
2:230 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.6 System Memory Model

Within the Itanium System Environment, a unified memory model is presented to the programmer.
Applications and the operating system see the same 64-bit virtual memory space and virtual
addressing mechanisms regardless of the referencing instruction set. A virtual address points to the
same physical storage location from both IA-32 and Itanium instruction sets.

Itanium-based operating systems must not use IA-32 segmentation as a protected system resource.
An Itanium-based operating system must use virtual memory management defined by the Itanium
architecture to secure IA-32 and Itanium-based applications, memory and I/O devices. The Itanium
architecture is defined to be unsegmented architecture and all Itanium memory references bypass
IA-32 segmentation and protection checks. In addition, Itanium-based user level code can directly
modify IA-32 segment selector and descriptor values for all segments (including GDT and LDT). If
operating systems do not rely on segmentation for protection, there are no security concerns for
exposing IA-32 segment registers and descriptors to Itanium-based user level applications

IA-32 instruction and data reference addresses are generated as 16/32-bit effective addresses as
shown in Figure 10-4. IA-32 segmentation is then applied to map 32-bit effective addresses into
32-bit virtual addresses, the processor then converts the address into a 64-bit virtual address by zero
extension from 32 to 64-bits. Itanium instructions bypass all of these steps and directly generate
addresses within the 64-bit virtual address space.

For both IA-32 and Itanium instruction set memory references, virtual memory management
defined by the Itanium architecture is used to map a given virtual address into a physical address.
Itanium-based virtual memory management hardware does not distinguish between Itanium and
IA-32 instruction set generated memory references during the conversion from a virtual to physical
address.

10.6.1 Virtual Memory References

In the Itanium System Environment the following virtual memory options are available for
supporting IA-32 and Itanium memory references.

• Software TLB fills (TLBs are enabled, but the VHPT is disabled).

• 8-byte short format VHPT, see “Virtual Hash Page Table (VHPT)” for details.

• 32-byte long format VHPT.

Figure 10-4. Virtual Memory Addressing

Base

Index

Displacement

Base

Segmen-+

16/32-bit
32-bit Virtual

64-bit

IA-32

Intel® Itanium®
TLB

Address

 Zero

64-bit Virtual
Address

Effective Physical

Extend

Address Address

tation
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:231

Itanium virtual memory resources can be used by the operating system for all IA-32 memory
references. These resources include virtual Region Registers (RR), Protection Key Registers
(PKR), the Virtual Hash Page Table (VHPT), all supported range of page sizes, Translation
Registers (ITR, DTR), the Translation Cache (ITC, DTC) and the complete set of Itanium virtual
memory management faults defined in Chapter 5.

10.6.2 IA-32 Virtual Memory References

By definition, IA-32 instruction and data memory references are confined to 32-bits of virtual
addressing, the first 4 G-bytes of virtual region 0. However, IA-32 memory references can be
mapped anywhere within the implemented physical address space by operating system code.

Virtual addresses are converted into physical addresses through the process defined in “Virtual
Addressing.” IA-32 references use the Itanium TLB resources as follows.

• Region Identifiers – Operating systems can place IA-32 processes within virtual region 0, and
use the entire 224 region identifier name space. By using region identifiers there is no
requirement to flush IA-32 mappings on a context switch.

• Protection Keys – Operating systems can place mappings used by IA-32 processes within any
number of protection domains. If PSR.pk is 1, all IA-32 references search the Protection Key
Registers (PKR) for matching keys. If a key is not found, a Key Miss fault is generated.
Otherwise, key read, write, execute permissions are verified.

• TLB Access Bit – If this bit is zero, an Access Bit fault is generated during Itanium or IA-32
instruction set memory references. Note: the processor does not automatically set the Access
bit in the VHPT on every reference to the page. Access bit updates are controlled by the
operating system.

• TLB Dirty Bit – If this bit is zero, a Dirty bit fault is generated during any Itanium or IA-32
instruction that stores to a dirty page. Note: the processor does not automatically set the Dirty
bit in the VHPT on every write. Dirty bit updates are managed by the operating system.

10.6.3 IA-32 TLB Forward Progress Requirements

To ensure forward progress while executing IA-32 instructions, additional TLB resources and
replacement policies must be defined over and above the definition given in “Translation Cache
(TC).” IA-32 instructions and data accesses may not be aligned resulting in a worst case scenario
for two possible pages being referenced for every memory datum referenced during the execution
of an IA-32 instruction. Furthermore, the worst case non-intercepted IA-32 opcode can reference
up to 4 independent data pages.

The Translation Cache’s (TC) are required to have the following minimum set of resources to
ensure forward progress. Given that software TLB fills can be used to insert entries into the TLB
and a hardware page table walker is not necessarily used, the following requirements must be
satisfied by the processor:

• Instruction Translation Cache – at least 1 way set associative with 2 sets, or 2 entries in a fully
associative design. Replacement algorithms must not consistently displace the last 2 entries
installed by software.

• Data Translation Cache – at least 4 way set associative with 2 sets, or 8 entries in a fully
associative design. Replacement algorithms must not consistently displace the last 8 entries
installed by software or the last 8 translations referenced by an IA-32 instruction.
2:232 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

• Unified Translation Cache – at least 5 way set associative with 2 sets, or 10 entries in a fully
associative design. The processor must not consistently displace the last 10 entries installed or
the last 10 translations referenced by an IA-32 instruction.

The processor must ensure that the minimum number of entries can co-exist in the TLB, and TC
replacement algorithms allow software insertion of the required entries such that the required
number of translations can be co-resident in the TLB.

The processor cannot ensure forward progress unless translations mapping the Itanium-based TLB
Miss handlers are statically mapped by the Instruction Translation Registers.

10.6.4 Multiprocessor TLB Coherency

Global TLB purges can not occur on another processor unless that processor is at an interruptible
point. For IA-32 instruction set execution, interruptible points are defined as; 1) when the processor
is between instructions (regardless of the state of PSR.i and EFLAG.if), and 2) each iteration of an
IA-32 string instruction, regardless of the state of PSR.i and EFLAG.if

The processor may delay in its response and acknowledgment to a broadcast purge TC transaction
until the processor executing an IA-32 instruction has reached a point (e.g. an IA-32 instruction
boundary) where it is safe to process the purge TC request. The amount of the delay is
implementation specific and can vary depending on the receiving processor and what instructions
or operations are executing when it receives the purge request.

10.6.5 IA-32 Physical Memory References

When running IA-32 code, virtual addressing must be utilized by setting PSR.dt to 1 and PSR.it to
1, otherwise processor operation is undefined. Undefined behavior can include, but is not limited
to: machine check abort on entry to IA-32 code, and unpredictable behavior for IA-32 self
modifying code.

Operating systems must ensure PSR.dt and PSR.it are 1 before invoking IA-32 code. From a
practical standpoint, the TLBs must be enabled so IA-32 code can access the virtual address space,
and access memory areas other than WB (e.g. UC or the I/O port space).

Figure 10-5. Physical Memory Addressing

Base

Index

Displacement

Intel® Itanium®

Segmen-+

16-/32-bit 64-bit

IA-32

Effective Address Physical Address

PA{31:0}
PA{63:32}=0

PA{63:0}

tationProcessor

Processor Base
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:233

10.6.6 Supervisor Accesses

If the processor is operating in the Itanium System Environment, supervisor override is disabled,
and LDT, GDT, TSS references are performed at the privilege level specified by PSR.cpl.
Unaligned processor references to LDT, GDT, and TSS segments will never generate an EFLAG.ac
enabled IA-32 Exception (AlignmentCheck) fault, even if PSR.cpl equals 3 and supervisor override
is disabled.

Operating systems must ensure that the GDT/LDT are mapped to pages with user level read/write
access.

Write permission is required if GDT, or LDT memory descriptor Access-bits are zero regardless of
supervisor override conditions. If all GDT/LDT descriptor Access-bits are one, write permission
can be removed. Otherwise, Access Rights, Key Miss or Key Miss faults can be generated during
all segment descriptor referencing instructions.

If a fault is generated during a supervisory access, the ISR.so bit indicates that CPL is zero or a
supervisor override condition was in effect (reference as made to GDT, LDT or TSS).

10.6.7 Memory Alignment

Depending on software conventions, memory structures may have different alignment or padding
restrictions for the IA-32 and Itanium instruction sets. IA-32 and Itanium-based software should
use aligned memory operands as much as possible to avoid possible severe performance
degradation associated with un-aligned values and extra over-head for unaligned data memory fault
handlers.

The processor provides full functional support for all cases of un-aligned IA-32 data memory
references. If PSR.ac is 1 or EFLAG.ac is 1 and CR0.am is 1and the effective privilege level is 3,
unaligned IA-32 memory references result in an IA-32 Exception (AlignmentCheck) fault.
Unaligned processor references to LDT, GDT, and TSS segments will never generate an EFLAG.ac
enabled IA-32 Exception (AlignmentCheck) fault, even if the effective privilege level is 3 and
supervisor override is disabled.

Alignment conditions for Itanium memory references are not affected by the EFLAG.ac, CFLG.am
bits.

If EFLAG.ac and CFLG.am are 1 and the reference is done at privilege level 3, IA-32 instruction
set unaligned conditions are; 2-byte references not a 2-byte boundary, 4-byte references not on a
4-byte boundary, 8-byte references not on a 8-byte boundary, and 10-byte references not on a 8-byte
boundary.

If PSR.ac is 1, IA-32 instruction set unaligned conditions are; 2-byte references not a 2-byte
boundary, 4-byte references not on a 4-byte boundary, 8-byte references not on a 8-byte boundary,
and 10-byte references not on a 16-byte boundary.

The processor exhibits the following behavior when accesses are made to un-aligned data operands
that span virtual page boundaries:

• IA-32 instruction set – If either page contains a fault, no memory location is modified. For
reads, the destination register is not modified.

• Itanium instruction set – All page crossers result in an unaligned reference fault. Memory
contents and register contents are not modified.
2:234 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.6.8 Atomic Operations

All Itanium load/stores and IA-32 non-locked memory references up to 64-bits that are aligned to
their natural data boundaries are atomic.

Both IA-32 and Itanium atomic semaphore operations can be performed on the same shared
memory location. The processor ensures IA-32 locked read-modify-write opcodes and Itanium
semaphore operations are performed atomically even if the operations are initiated from the other
instruction set by the same processors, or between multiple processors in an multiprocessing
system.

There are some restrictions placed on Itanium atomic operations that may prevent Itanium-based
code from manipulating IA-32 semaphores in some rare cases:

• Unaligned Itanium semaphore operations result in an Unaligned Data Reference fault.
Itanium-based code manipulation of an IA-32 semaphore can only be performed if the IA-32
semaphore is aligned.

• Itanium semaphore operations to memory which is neither write-back cacheable nor a
NaTPage result in an Unsupported Data Reference fault (regardless of the state of the DCR.lc).
Itanium-based code manipulation of an IA-32 semaphore can only be performed if the IA-32
semaphore is allocated in aligned write-back cacheable memory.

If an IA-32 locked atomic operation is defined as requiring a read-modify-write operation external
to the processor under external bus lock and if DCR.lc is set to 1, an IA-32_Intercept(Lock) fault is
generated. (IA-32 atomic memory references are defined to require an external bus lock for
atomicity when the memory transaction is made to non-write-back memory or are unaligned across
an implementation-specific non-supported alignment boundary.) If DCR.lc is set to 0, the processor
may either execute the transaction as a series of non-atomic transactions or perform the transaction
with an external bus lock, depending on the processor implementation. For processor
implementations that do support external bus locks, software must ensure that the Bus Lock Mask
bit is set to one, in order to ensure atomicity of these IA-32 operations when DCR.lc=0. The Bus
Lock Mask bit is a feature controllable by the PAL_BUS_SET_FEATURES procedure. (See
Table 11-25 on page 2:295 for more information.)

If the processor supports external bus locks, unaligned IA-32 atomic references are supported, but
their usage is strongly discouraged since they are typically performed outside the processor's cache
which can severely degrade performance of the system. IA-32 external bus locks are not supported
on all processor implementations.

For IA-32 semaphores, atomicity to uncached memory areas (UC) is platform specific, atomicity
can only be ensured by the platform design and can not be enforced by the processor.

10.6.9 Multiprocessor Instruction Cache Coherency

The processor and platform ensure the processor’s instruction cache is coherent for the following
conditions:

• For all processors in the coherence domain, local and remote instruction cache coherency on
all processors is enforced for any store generated by any processor running the IA-32
instruction set.
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:235

• For all processors in the coherence domain, instruction cache coherency on all processors is
enforced for all coherent I/O traffic. (For non-coherent I/O, a processor may or may not see the
results of an I/O operation.)

• For all processors in the coherence domain, instruction cache coherency is not enforced for
stores generated by any processor running the Itanium instruction set. To ensure instruction
cache coherency, Itanium-based code must use the code sequence defined in “Memory
Consistency” on page 1:63.

10.6.10 IA-32 Memory Ordering

IA-32 memory ordering follows the Pentium III defined processor ordered model for cacheable and
uncacheable memory. IA-32 processor ordered memory references are mapped onto the Itanium
memory ordering model as follows:

• All IA-32 stores have release semantics. Except for IA-32 stores to write-coalescing memory
that are unordered. Subsequent loads are allowed to bypass buffered local store data before it is
globally visible. The amount of store buffering is model specific and can vary across processor
generations.

• All IA-32 loads have acquire semantics. Some high performance processor implementations
may speculatively issue acquire loads into the memory system for speculative memory types,
if and only if the loads do not appear to pass other loads as observed by the program. If there is
a coherency action that would result in the appearance to the program of a load bypassing other
load, the processor will reissue the load operation(s) in program order.

• All IA-32 read-modify-write or locked instructions have memory fence semantics. All
buffered stores are flushed.

• IA-32 IN, OUT and serializing operations (as defined in the IA-32 Intel® Architecture Software
Developer’s Manual) have memory fence semantics. In addition, the processor will wait for
completion (acceptance by the platform) of the IN or OUT before executing the next
instruction. All buffered stores are flushed before the IN or OUT operation.

• IA-32 SFENCE has release semantics and will flush all buffered stores.

Table 10-6. Instruction Cache Coherency Rules

Originating
Instruction Set

Local processor External Processor Coherent, I/O Non-Coherent I/O

IA-32 Coherent Coherent

Coherent

Maybe

Non-CoherentIntel® Itanium® May be

Non-coherent

May be

Non-coherent

Table 10-7. IA-32 Load/Store Sequentiality and Ordering

IA-32 Memory
Reference

Uncacheable
Write

Coalescing
Cacheable

store sequential

releasea
non-sequential

unordered

non-sequential

releaseb

load sequential

acquirea
non-sequential

unordered

non-sequential

acquireb

locked

or read-modify-write
operation

sequential

fence

flush prior stores

non-sequential

fence

flush prior stores

non-sequential

fence

flush prior stores
2:236 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

Per Table 10-7, IA-32 memory references can be expressed in terms of acquire, release, fence and
sequential ordering rules defined by the Itanium architecture. IA-32 data memory references follow
the same ordering relationships as defined for Itanium-based code as defined in “Sequentiality
Attribute and Ordering” on page 2:69. The following additional clarifications need to be made for
IA-32 instruction set execution:

• IA-32 loads and instruction fetches to speculative memory can occur randomly. Read accesses
to speculative memory can occur at arbitrary times even if the in-order execution of the
program does not require a read or instruction fetch from a given memory location.

• IA-32 instruction fetches and loads to non-speculative memory occur in program order. IA-32
instruction cache line fetch accesses to uncached memory occur in the order specified by an
in-order execution of the program. Note however that the same cache line may be fetched
multiple times by the processor as multiple instructions within the cache line are executed. The
size of a cache line and number of instruction fetches is model specific.

• IA-32 instruction fetches are not perceived as passing prior IA-32 stores. IA-32 stores into the
IA-32 instruction stream are observed by the processor’s self modifying code logic.
Speculative instruction fetches may be emitted by the processor before a store is seen to the
instruction stream and then discarded. Self modifying code due to Itanium stores is not
detected by the processor.

• IA-32 instruction fetches can pass prior loads or memory fence operations from the same
processor. Data memory accesses, and memory fences are not ordered with respect to IA-32
instruction fetches.

• IA-32 instruction fetches can not pass any serializing instructions, including Itanium srlz.i
and IA-32 CPUID. For speculative memory types the processor may prefetch ahead of a
serialization operation and then discard the prefetched instructions.

• IA-32 serializing operations wait for all previous stores and loads to complete, and for all prior
stores buffered by the processor to become visible. IA-32 serializing instructions include
CPUID.

• IA-32 OUT instructions may be buffered, however the processor will not start execution of the
next IA-32 instruction until the OUT has completed (been accepted by the platform).

• The processor does not begin execution of the next IA-32 instruction until the IN or OUT has
been completed (accepted) by the platform. This statement does not apply for Itanium memory
references to the I/O port space. The processor may issue instruction fetches and VHPT walks
ahead of an IN or OUT.

• VHPT Walks are speculative and can occur at any time. VHPT walks can pass all prior IA-32
loads, stores, instruction fetches, I/O operations and serializing instructions.

IN, INS, OUT, OUTS sequential

fence

flush prior stores

undefined undefined

IA-32 Serialization fence, flush prior stores

SFENCE release, flush prior stores

a. However, IA-32 loads/stores to uncacheable memory flush the write coalescing buffers.
b. However, IA-32 load/stores to cacheable memory do not flush the write coalescing buffers.

Table 10-7. IA-32 Load/Store Sequentiality and Ordering (Continued)

IA-32 Memory
Reference

Uncacheable
Write

Coalescing
Cacheable
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:237

10.6.10.1 Instruction Set Transitions

Instruction set transitions do not automatically fence memory data references. To ensure proper
ordering software needs to take into account the following ordering rules.

10.6.10.1.1 Transitions from Intel® Itanium® Instruction Set to IA-32
Instruction Set

• All data dependencies are honored, IA-32 loads see the results of all prior Itanium and IA-32
stores.

• IA-32 stores (release) can not pass any prior Itanium load or store.

• IA-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium store to a
different address. Itanium-based software can prevent IA-32 loads from passing prior Itanium
loads and stores by issuing an acquire operation (or mf) before the instruction set transition.

10.6.10.1.2 Transitions from IA-32 Instruction Set to Intel® Itanium®
Instruction Set

• All data dependencies are honored, Itanium loads see the results of all prior Itanium and IA-32
stores.

• Itanium stores or loads can not pass prior IA-32 loads (acquire).

• Itanium unordered stores or any Itanium load can pass prior IA-32 stores (release) to a
different address. Itanium-based software can prevent Itanium loads and stores from passing
prior IA-32 stores by issuing a release operation (or mf) after the instruction set transition.

10.7 I/O Port Space Model

A consistent unified addressing model is used for both IA-32 and Itanium references to the I/O port
space. On prior IA-32 processors two I/O models exist; memory mapped I/O and the 64KB I/O port
space. On processors based on the Itanium instruction set, the 64KB I/O port space defined by
IA-32 processors is effectively mapped into the 64-bit virtual address space of the processor,
producing a single memory mapped I/O model as shown in Figure 10-6. This model allows Itanium
normal load and store instructions to also access the I/O port space.

Itanium-based operating system code can directly control IA-32 IN, OUT instruction and
accessibility by IA-32 or Itanium load/store instructions to blocks of 4 virtual I/O ports using the
TLBs. The entire range of virtual memory mechanisms defined by the Itanium architecture: access
rights, dirty, access bits, protection keys, region identifiers can be used to control permission and
addressability.

In the Itanium System Environment, the virtual location of the 64 MB I/O port space is determined
by operating system. For IA-32 IN and OUT instructions, the operating system can specify the
virtual base location via the I/O base register.

Any IA-32 or Itanium load or store within the virtual region mapped by the operating system to the
platform’s physical 64 MB I/O port block, directly accesses physical I/O devices within the I/O port
space. The location of the 64 MB I/O port block within the 263 byte physical address space is
determined by platform conventions, see “Physical I/O Port Addressing” for details.
2:238 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.7.1 Virtual I/O Port Addressing

The IA-32 defined 64-KB I/O port space is expanded into 64 MB. This effectively places 4 I/O
ports per each 4KB virtual and physical page. Since there are 4 ports per virtual page, the TLBs can
be used port address translation, and permission checks as shown in Figure 10-7.

For IA-32 IN and OUT instructions a port’s virtual address is computed as:

port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

This address computation places 4 ports on each 4K page and expands the space to 64MB, with the
ports being at a relative offset specified by port{11:0} within each 4K-byte virtual page. IOBase is
a kernel register (KR) maintained by the operating system that points to the base of the 64MB

Figure 10-6. I/O Port Space Model

Figure 10-7. I/O Port Space Addressing

Virtual Address Space Physical Address Space

I/O Base

IN/OUT
I/O Ports

Platform
I/O Ports

0

263

64MB

264

216

0

216

Memory
Mapped I/O

Memory
Map I/O

IA-32/Intel® Itanium®

64MB

Platform Physical
I/O Block

IA-32
IN, OUT

0

0

IA-32/Intel Itanium

Loads/stores

 Loads/Stores

I/O Port

64-bit

IA-32

TLB

64-bit Virtual
Address Physical Address

OR
Shift
Left
12-bits

Port{15:2}

Port{11:0}

IN, I/O Port

Load,
Store

OUT

IOBase

Intel®

Itanium®

Number

Address
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:239

Virtual I/O port space. The value in IOBase must be aligned on a 64MB boundary otherwise port
address aliasing will occur and processor operation is undefined.

For Itanium load and stores accesses to the I/O port space, a port’s virtual address can be computed
in the same manner, specifically.

port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

In practice this address is a constant for any given physical I/O device.

Software Warning: In the generation of the I/O port virtual address, software MUST ensure that
port_virtual_address{11:2} are equal to port{11:2} bits. Otherwise, some
processors implementations may place the port data on the wrong bytes of
the processor’s bus and the port will not be correctly accessed.

IA-32 IN and OUT instructions and Itanium or IA-32 load/store instructions can reference I/O ports
in 1, 2, or 4-byte transactions. References to the legacy I/O port space cannot be performed with
greater than 4 byte transactions due to bus limitations in most systems. Since an IA-32 IN/OUT
instruction can access up to 4 bytes at port address 0xFFFF, the I/O port space effectively extends 3
bytes beyond the 64KB boundary. Operating systems can; 1) not map the excess 3 bytes, resulting
in denial of permission for the excess 3 bytes, or 2) map via the TLB the excess 3 bytes back to port
address 0 effectively wrapping the I/O port space at 64KB.

Operating system code can map each virtual I/O port space page anywhere within the physical
address space using the Data Translation Registers or the Data Translation Cache. Large page
translations can be used to reduce the number of mappings required in the TLB to map the I/O port
space. For example, one 64MB translation is sufficient to map the entire expanded 64MB I/O port
space. The UC memory attribute must be used for all I/O port space mappings to avoid
speculative processor references to I/O devices, otherwise processor and platform operation is
undefined.

Operating System Warning: Operating system code can not remap a given port to another port
address within the I/O port space, such that port_physical_address{21:12} !=
port_physical_address{11:2}. Otherwise, based on the processor model, I/O port data may be
placed on the wrong bytes of the processor’s bus and the port will not be correctly accessed.

I/O port space breakpoints can be configured by loading the address and mask fields with the
virtual address defined by the operating system to correspond to the I/O port space.

The processor (as defined in the next section) ensures that load, store references will not result in
references to I/O devices for which permission was not granted.

All memory related faults defined in Chapter 5, “Interruptions” can be generated by IA-32 IN and
OUT references to the I/O port space, including IA-32_Exception(Debug) traps for data address
breakpoints and IA-32_Exception(AlignmentCheck) for unaligned references. (EFLAG.ac enabled
unaligned port references are not detected by the processor). Itanium Data Breakpoint registers
(DBRs) can be configured to generate debug traps for references into the I/O port space by either
IA-32 IN/OUT instructions or by IA-32 or Itanium load/store instructions.
2:240 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.7.2 Physical I/O Port Addressing

Some processors implementations will provide an M/IO pin or bus indication by decoding physical
addresses if references are within the 64MB physical I/O block. If so the 64MB I/O port space is
compressed back to 64KB. Subsequent processor implementations may drop the M/IO pin (or bus
indication) and rely on platform or chip-set decoding of a range of the 64MB physical address
space.

Through the PAL firmware interface, the 64MB physical I/O block can be programmed to any
arbitrary physical location. It is suggested that to be compatible with IA-32 based platforms, the
platform physical location of the physical I/O block be programmed above 4G-bytes and above all
useful DRAM, ROM and existing memory mapped I/O areas. See PAL_PLATFORM_ADDR on
page 2:356 for details.

Based on the platform design, some platforms can accept addresses for the expanded 64MB I/O
block, while other platforms will require that the I/O port space be compressed back to 64KB by the
processor. If the I/O port space needs to be compressed either the processor or platform (based on
the implementation) will perform the following operation for all memory references within the
physical I/O block.

IO_address{1:0} = PA{1:0}
IO_address{15:2} = PA{25:12} // byte strobes are generated from the lower I/O_address bits

The processor ensures that the bus byte strobes and bus port address are derived from
PA{25:12,1:0}. Thus allowing an operating system to control security of each 4 ports via TLB
management of PA{25:12}.

10.7.2.1 I/O Port Addressing Restrictions

For the 64MB physical I/O port block the following operations are undefined and may result in
unpredictable processor operation; references larger than 4-bytes, instruction fetch references,
references to any memory attribute other than UC, or semaphore references which require an
atomic lock. To ensure I/O ports accesses are not granted for which the TLB has not been
consulted, the processor ensures:

• All byte addresses within the same 4KB page alias to the 4 ports defined by the mapped
physical I/O port page.

• All IA-32 and Itanium unaligned loads and stores that cross a 4-byte boundary to the
processor’s physical I/O port block are truncated. That is the bus transaction to the area before
the 4-byte boundary is performed (the number of bytes emitted is model specific). No bus
transaction is performed for the bytes that are beyond the 4-byte boundary. 4-byte crosser loads
while return some undefined data. 4-byte crosser stores will not write all intended bytes.

• For IA-32 IN/OUT accesses that cross a 4-port boundary the processor will break the operation
into smaller 1, 2, or 3 byte I/O port transactions within each 4KB virtual page.

10.7.3 IA-32 IN/OUT instructions

IA-32 I/O instructions (IN, OUT, INS, OUTS) defined in the IA-32 Intel® Architecture Software
Developer’s Manual are augmented as follows:
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:241

• I/O instructions first check for IOPL permission. If PSR.cpl<=EFLAG.iopl, access permission
is granted. Otherwise the TSS I/O permission bitmap may be consulted as defined below. If the
Bitmap denies permission or is not consulted an IA-32_Exception(GPFault) is generated.

• If IOPL permission is denied and CFLG.io is 1, the TSS I/O permission bitmap is consulted for
access permission. If the corresponding bit(s) for the I/O port(s) is 1, indicating permission is
denied, a GPFault is generated. Otherwise access permission is granted. The TSS I/O
permission bitmap provides 1 port permission control at the expense of additional processor
data memory references. This mechanism can be used in the Itanium System Environment, but
is not recommended since TLB access controls defined by the Itanium architecture are faster
and provide a consistent control mechanism for both IA-32 and Itanium-based code. Whereas,
the TLB mechanism provides a control mechanism for both IA-32 and Itanium memory
references.

• If CFLG.io is 0, the TSS I/O permission bitmap is not consulted and if the IOPL check failed
an IA-32_Exception(GPFault) is generated. By setting CFLG.io to 0, operating system code
can disable all processor references to the TSS. By setting IOPL<PSR.cpl and setting CFLG.io
to 0, operating system code can block all user level execution of IA-32 I/O instructions, no TSS
needs to be allocated or defined by the operating system.

• I/O port references generate a virtual port address relative to the IOBase register as defined in
“Virtual I/O Port Addressing.”

• If data translations are enabled, the TLB is consulted for the required virtual to physical
mapping. If the required mapping is not present a VHPT Translation, Data TLB Miss or
Alternative Data TLB Miss fault is generated.

• If data translations are enabled, Access Rights, Permission Keys, Access, Dirty and Present
bits are checked and faults generated.

• If data translations are disabled (PSR.dt is 0) or the referenced I/O port is mapped to an
unimplemented virtual address (via the IOBase register), a GPFault is raised on the referencing
IA-32 IN, OUT, INS, or OUTS instruction.

• Alignment and Data Address breakpoints are also checked and may result in an
IA-32_Exception(AlignmentCheck) fault (if PSR.ac is 1) or IA-32_Exception(Debug) trap.

• If an IA-32 IN/OUT I/O port Accesses cross a 4-port boundary the processor will break the
operation into smaller 1, 2, or 3 byte transactions.

• Assuming no faults, a physical transaction is emitted to the mapped or specified physical
address.

The processor ensures that IA-32 IN, INS, OUT, OUTS references are fully ordered and will not
allow prior or future data memory references to pass the I/O operation as defined in “IA-32
Memory Ordering.” The processor will wait for acceptance for IN and OUT operations before
proceeding with subsequent externally visible bus transactions.

10.7.4 I/O Port Accesses by Loads and Stores

If an access is made to the I/O port block using IA-32 or Itanium loads and stores the following
differences in behavior should be noted; EFLAG.iopl permission is not checked, TSS permission
bitmap is not checked, and stores and loads do not honor IN and OUT memory ordering and
acceptance semantics (the processor will not automatically wait for a store to be accepted by the
platform).
2:242 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

Virtual addresses for the I/O port space should be computed as defined in “Virtual I/O Port
Addressing.” If data translations are enabled, the TLB is consulted for mappings and permission,
and the resulting mapped physical address used to address the physical I/O device.

If IA-32 ordering semantics are required to a particular I/O port device (or memory mapped I/O
device), IA-32 or Itanium-based software must enforce ordering to the I/O device. Software can
either perform a memory ordering fence before and after the transaction, or use an load acquire or
store release

To ensure the processor does not speculatively access an I/O device, all I/O devices must be
mapped by the UC memory attribute.

If IA-32 acceptance semantics are required (i.e. additional data memory transactions are not
initiated until the I/O transaction is completed), Itanium-based code can issue a memory acceptance
fence. Conversely, if certain I/O devices do not require IA-32 IN/OUT ordering or acceptance
semantics, Itanium-based code can relax ordering and acceptance requirements as shown below.

OUT

[mf]/ /Fence prior memory references, if required

add port_addr = IO_Port_Base, Expanded_Port_Number
st.rel (port_addr), data
[mf.a] //Wait for platform acceptance, if required
[mf] //Fence future memory operations, if required

IN

[mf] //Fence prior memory references, if required
add port_addr = IO_Port_Base, Expanded_Port_Number
ld.acq data, (port_addr)
[mf.a] //Wait for platform acceptance, if required
[mf] //Fence future memory references, if required

10.8 Debug Model

The debug facilitates defined by the Itanium architecture are designed to support debugging of both
the Itanium and IA-32 instruction set. The following debug events can be triggered during IA-32
instruction set execution by Itanium debug resources.

• Single Step trap – When PSR.ss is 1 (or EFLAG.tf is 1), successful execution of each IA-32
instruction, results in an IA-32_Exception(Debug) trap. After the single step trap, IIP points to
the next IA-32 instruction to be executed.

• Breakpoint Instruction trap – execution of INT 3 (breakpoint) instruction results in a
IA-32_Exception(Debug) trap.

• Instruction Debug fault – When PSR.db is 1 and PSR.id is 0 and EFLAG.rf is 0, any IA-32
instruction fetch that matches the parameters specified by the IBR registers results in an
IA-32_Exception(Debug) fault. After servicing a Debug fault, debuggers can set PSR.id (or
EFLAG.rf for IA-32 instructions) before restarting the faulting instruction. If PSR.id is 1,
Instruction Debug faults are temporarily disabled for one Itanium instruction. If PSR.id is 1 or
EFLAG.rf is 1, Instruction Debug faults are temporarily disabled for one IA-32 instruction.
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:243

The successful execution of an IA-32 instruction clears both PSR.id and EFLAG.rf bits. The
successful execution of an Itanium instruction only clears PSR.id.

• Data Debug traps – When PSR.db is 1, any IA-32 data memory reference that matches the
parameters specified by the DBR registers results in a IA-32_Exception(Debug) trap. IA-32
data debug events are traps, not faults as defined for Itanium instruction set data debug events.
Trap behavior is required since any given IA-32 instruction can access several memory
locations during its execution. The reported trap code returns the match status of the first four
DBR registers that matched during the execution of the IA-32 instruction. Zero, one or DBR
registers may be reported as matching.

• Taken Branch trap – When PSR.tb is 1, a IA-32_Exception(Debug) trap occurs on every
IA-32 taken branch instruction (CALL, Jcc, JMP, RET, LOOP). After the trap, IIP points to the
branch target.

• Lower Privilege Transfer trap – Does not occur during IA-32 instruction set execution.

For virtual memory accesses, breakpoint address registers contain the virtual addresses of the debug
breakpoint. For physical accesses, the addresses in these registers are treated as a physical address.
Software should be aware that debug registers configured to fault on virtual references, may also
fault on a physical reference if translations are disabled. Likewise a debug register configured for
physical references can fault on virtual references that match the debug breakpoint registers.

10.8.1 Data Breakpoint Register Matching

Each Itanium data breakpoint register has the following matching behavior for IA-32 instruction set
data memory references:

• DBR.addr – IA-32 single or multi-byte data memory references that access ANY memory
byte specified by the DBR address and mask fields results in a debug breakpoint trap regardless
of datum size and alignment. The upper 32-bits of DBR.addr must be zero to detect IA-32 data
memory references. Since IA-32 data breakpoints are traps, all processor implementations
ensure data breakpoint traps are precise. Traps are only reported if any byte in the data memory
reference ANDed with the DBR mask bitwise matches the DBR address field ANDed with the
DBR mask. No spurious data breakpoint faults are generated for IA-32 data memory operands
that are unaligned, nor are matches reported if no bytes of the operand lie within the address
range specified by the DBR address and mask fields. Note, Itanium instruction set generated
unaligned data memory references may result in spurious imprecise breakpoint faults.

• DBR.mask – by programming the mask a breakpoint range of 1, 2, 4, 8, or any power of 2
combination can be supported. Mask bits above bit 31 are checked by the processor during
IA-32 data memory references

• trap code B bits – are set indicating a match with the corresponding data breakpoint register
DBR0-3. For IA-32 data debug traps, any number of B-bits can be set indicating a match.

The B-bits are only set and a data breakpoint trap generated if 1) the breakpoint register precisely
matches the specified DBR address and mask, 2) it is enabled by the DBR read or write bits for the
type of the memory transaction, 3) the DBR privilege field matches PSR.cpl, 4) PSR.db is 1, and 5)
no other higher priority faults are taken.

I/O port space breakpoints can be configured by loading the address and mask fields with the
virtual address defined by the operating system to correspond to the I/O port space.
2:244 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.8.2 Instruction Breakpoint Register Matching

Each Itanium instruction breakpoint register has the following matching behavior for IA-32
instruction set memory fetches:

• IBR.addr – an IBR register matches an IA-32 instruction fetch address, if the first byte of an
IA-32 instruction address ANDed with the IBR mask bitwise matches the IBR address field
ANDed with the IBR mask. Note that only the first byte is analyzed. The upper 32-bits of
IBR.addr must be zero to detect IA-32 instruction fetches.

• IBR.mask – by programming the mask a breakpoint range of 1, 2, 4, 8, or any power of 2
combination can be supported. Mask bits above bit 31 are ignored during IA-32 instruction
fetches.

The instruction breakpoint fault is generated if 1) the breakpoint register precisely matches the
specified IBR address and mask, 2) it is enabled by the IBR execute bit, 3) the IBR privilege field
matches PSR.cpl, 4) PSR.db is 1, 5) PSR.id is 0, and 6) no other higher priority faults are taken.

10.9 Interruption Model

Within the Itanium System Environment, all interruptions originating out of the IA-32 or Itanium
instruction sets are delivered to Itanium-based Interruption Handlers within the Itanium-based
operating system. Virtual memory management faults, machine checks, and external interrupts are
always delivered to Itanium-based interruption handlers regardless of the instruction set running at
the time of the interruption. IA-32 exceptions, control transfers through gates, task switches, and
accesses to sensitive IA-32 system resources are intercepted into Itanium-based interruption
handlers. Using these intercepts, Itanium-based software can implement specific policies with
regard to that resource. Policies may include virtualization, emulation of an IA-32 opcode or
memory access, or various permission policies.

In general, if an interruption is independent of the executing instruction set (such as an external
interruption or TLB fault) common Itanium-based handlers are invoked. For classes of exceptions
and intercept conditions that are specific to the IA-32 instruction set, three special Itanium-based
software handlers are invoked to deal with IA-32 instruction set interruptions. Table 10-8 shows the
3 interruption handlers defined to support IA-32 events. See “IA-32 Interruption Vector
Definitions” for details on these interruption handlers.

This grouping of interruption handlers simplifies software handlers such that they do not need to be
concerned with behavior of both IA-32 and Itanium instruction sets.

Interruption registers (defined in Chapter 3) record the state of IA-32 execution at the point of
interruption. For IA-32 exceptions, ISR contains IA-32 defined error codes and vector numbers as
defined by the IA-32 Intel® Architecture Software Developer’s Manual. IA-32 instruction set
related exceptions and software interruptions vector directly through the interruption mechanism
defined by the Itanium architecture without consulting the IA-32 IDT or performing any memory
stack pushes.

Table 10-8. IA-32 Interruption Vector Summary

Handler Description

IA_32_Intercept Intercepted IA-32 instructions, I/O, system flag manipulation and gate transfers.

IA-32_Exception IA-32 instruction set generated exceptions.

IA_32_Interrupt IA-32 instruction set generated software interrupts
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:245

10.9.1 Interruption Summary

Table 10-9 summarizes the set of all IA-32 interruptions and how they are mapped to Itanium-based
interruption handlers within the Itanium System Environment. See Chapter 9 and Chapter 8 for a
detailed definition of each interruption.

 Table 10-9. IA-32 Interruption Summary

IA-32
Vector

Itanium®-based Interruption
Handler

ISR
Vect

ISR
Code

Description

IA-32 Defined Interruptions

0 IA-32_Exception (Divide) 0 0 IA-32 divide by zero fault.

1 IA-32_Exception (Debug) 1 0 IA-32 instruction breakpoint fault.

1 IA-32_Exception (Debug) 1 TrapCode IA-32 debug events. The Trap
Code indicates concurrent taken
branch, data breakpoint and single
step trap conditions.

2 External Interrupt 0 0 NMI is delivered through the Intel®
Itanium® External Interrupt vector.

3 IA-32_Exception(Break) 3 TrapCode IA-32 INT 3 instruction.

4 IA-32_Exception(INTO) 4 TrapCode IA-32 INTO detected overflow trap.

5 IA-32_Exception (Bound) 5 0 IA-32 BOUND range exceeded
fault.

6 IA-32_Intercept(Inst) 0 InterceptCode All IA-32 unimplemented and
illegal opcodes.

7 IA-32_Exception(DNA) 7 0 IA-32 Device not available fault.

8 -- na IA-32 Double fault can not be
generated in the Intel® Itanium®
system environment, Intel
reserved.

9 -- na Intel reserved

10 -- na IA-32 Invalid TSS fault can not
generated in the Intel® Itanium®
system environment, Intel
reserved,

11 IA-32_Exception(NotPresent) 11 ErrorCodea IA-32 Segment Not present fault.

12 IA-32_Exception (Stack) 12 ErrorCode IA-32 Stack Exception fault.

13 IA-32_Exception (GPFault) 13 ErrorCode IA-32 General Protection fault.

14 Intel® Itanium® TLB faults see Data TLB

faults below

IA-32 Page fault can not be
generated in the Intel® Itanium®
system environment, replaced by
Intel® Itanium® TLB faults, Intel
reserved,

15 -- na Intel reserved.

16 IA-32_Exception (FPError) 16 0 IA-32 floating-point fault.

17 IA-32_Exception(AlignCheck) 17 0 IA-32 un-aligned data references.

18 Corrected MCHK na IA-32 Machine Check can not be
generated in the Intel® Itanium®
system environment, replaced by
the PAL Machine Check
Architecture, Intel reserved.

19 IA-32_Exception (StreamSIMD) 19 0 IA-32 SSE Numeric Error fault.

20-31 -- na Intel reserved.
2:246 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

10.9.2 IA-32 Numeric Exception Model

IA-32 numeric instructions follow the IA-32 delayed floating-point exception model. Specifically
IA-32 numeric exceptions are held pending until the next IA-32 numeric instruction or MMX
technology instruction as defined in the IA-32 Intel® Architecture Software Developer’s Manual.
Numeric faults generated on Streaming SIMD Extension instructions are reported precisely on the
faulting Streaming SIMD Extension instruction. Streaming SIMD Extension instructions do NOT
trigger the report of pending IA-32 numeric exceptions.

For voluntary transitions out of the IA-32 instruction, an implicit FWAIT operation is performed by
the jmpe instruction to ensure all pending numeric exceptions are reported. For involuntary
transitions out of the IA-32 instruction set (external interruptions, TLB faults, exceptions, etc.) the
processor does not perform a FWAIT operation. However, every IA-32 numeric instruction that
generates a pending numeric exception loads the application registers FSR, FIR, and FDR with the
IA-32 floating-point state on the instruction that generating the exception. This state contains
information defined by the IA-32 FSTENV and FLDENV instructions. During a process context
switch, the operating system must save and restore FSR, FIR, and FDR (effectively performing an
FSTENV and FLDENV) to ensure numeric exceptions are correctly reported across a process
switch.

0-255 External Interrupt 0 0 External interrupts are delivered
through the Intel® Itanium®
External lnterrupt vector. Software
must read the IVR register to
determine the vector number.

0-255 IA-32_Interrupt (vector #) Vect# TrapCode IA-32 Software Interrupt trap. ISR
contains the vector number.

IA-32 Interceptions

IA-32_Intercept(Inst) 0 InterceptCode Intercept for unimplemented, illegal
or privileged IA-32 opcodes.

IA-32_Intercept(Gate) 1 TrapCode Intercept for control transfers
through a Call Gate, Task gate or
Task Segment.

IA-32_Intercept(SystemFlag) 2 TrapCode Intercept for modification of system
flag values.

IA-32_Intercept(Lock) 4 0 IA-32 semaphore operation
requires an external bus lock when
DCR.lc is 1.

3,5-25
5

-- Intel reserved

a. The IA-32 Error Code is defined as a Selector Index, and TI, IDT and EXT bits are set based on the
exception. See IA-32 Intel® Architecture Software Developer’s Manual for the complete definition.

Table 10-9. IA-32 Interruption Summary (Continued)

IA-32
Vector

Itanium®-based Interruption
Handler

ISR
Vect

ISR
Code

Description
Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications 2:247

10.10 Processor Bus Considerations for IA-32 Application
Support

The section briefly discusses bus and platform considerations when supporting IA-32 applications
in the Itanium System Environment.

Itanium-based code does not assert the SPLCK and LOCK pins. The LOCK pin is used by IA-32
code to signal an external atomic bus transaction for which atomicity cannot be enforced within the
processor’s caches, whereas, SPLCK indicates if an unaligned external bus lock requires a split lock
operation and hence several bus transactions. For IA-32 code, if the platform does not support
LOCK or SPLCK, the operating system must disable external bus lock transactions by setting
DCR.lc to 1. When DCR.lc is 1, any IA-32 atomic reference not serviced internally in the
processor’s caches results in an IA-32_Intercept(Lock) fault. See “Default Control Register (DCR –
CR0)” for details. When DCR.lc is 0, operating system code is responsible for emulation of the
IA-32 instruction and ensuring atomicity (if required).

The A20M and IGNE pins are ignored in the Itanium System Environment. FERR is not asserted in
the Itanium System Environment.

In both IA-32 and Itanium System Environments, the M/IO pin (or an external bus indication) is
asserted by any memory reference to the 64MB I/O port block range of the physical address space.
See Section 10.7, “I/O Port Space Model” for details.

SMI and the SMM environment are not supported on processors based on the Itanium architecture.
The PMI interrupt and PAL firmware environment replace them. See Section 11.5, “Platform
Management Interrupt (PMI)” for details.

10.10.1 IA-32 Compatible Bus Transactions

Within the Itanium System Environment, the following bus transactions are initiated:

• INTA - Interrupt Acknowledge – emitted by the operating system (via a read to the INTA byte
in the processor’s Interrupt Block) to acquire the interrupt vector number from an external
interrupt controller.

• HALT – Emitted when the processor has entered the halt state due to the operating system/
platform firmware calling PAL_HALT or PAL_HALT_LIGHT.

• SHUTDOWN – Emitted when the processor has entered the shutdown state. This can only be
generated when the processor has entered into the IA-32 System Environment by calling
PAL_ENTER_IA_32_ENV procedure call.

• STPACK – Stop Acknowledge. Emitted by calling an implementation specific PAL firmware
procedure. See the processor specific firmware guide for more information.

• FLUSH – Emitted when the WBINVD or INVD instruction is executed when running in the
IA-32 System Environment entered by calling PAL_ENTER_IA_32_ENV procedure call.
Indicates that external caches (if any) should be invalidated.

• SYNC – Emitted when the WBINVD instruction is executed when running in the IA-32
System Environment entered by calling PAL_ENTER_IA_32_ENV procedure call. Indicates
that external caches (if any) should copy all modified cache lines back to main memory.
2:248 Volume 2: Itanium®-based Operating System Interaction Model with IA-32 Applications

2SSE

Processor Abstraction Layer 11

This chapter defines the architectural requirements for the Processor Abstraction Layer (PAL)
for all processors based on the Itanium architecture. It is intended for processor designers,
firmware/BIOS designers, system designers, and writers of diagnostic and low level operating
system software.

PAL is part of the Itanium processor architecture and its goal is to provide a consistent firmware
interface to abstract processor implementation-specific features.

The objectives of this chapter are to define:

• The architectural behavior and interface requirements for processor testing, configuration and
error recovery. This includes the hardware entrypoints into PAL and the PAL interfaces to
platform firmware and system software.

• A set of boot and runtime PAL procedures to access processor implementation-specific
hardware and to return information about processor implementation-dependent configuration.

• A computing environment for both PAL entrypoints and procedures such that:

• Memory used by PAL procedures is allocated by the caller of PAL procedures.

• PAL code runs little endian.

• PAL interface is as endian neutral as possible.

• PAL is Itanium-based code.

• PAL code runs at privilege level 0.

• PAL procedures can be called without backing store, except where memory based
parameters are returned.

• The processor and platform hardware requirements for PAL. This includes minimizing PAL
dependencies on platform hardware and clearly stating where those dependencies exist.

• A PAL interface and requirements to support firmware update and recovery.

11.1 Firmware Model

As shown in Figure 11-1, Itanium-based firmware consists of three major components: Processor
Abstraction Layer (PAL), System Abstraction Layer (SAL), and Extensible Firmware Interface
(EFI) layer. PAL, SAL, and EFI together provide processor and system initialization for an
operating system boot. PAL and SAL provide machine check abort handling and other processor
and system functions which would vary from implementation to implementation. The interactions
of the various services that PAL, SAL, and EFI provide are shown in Figure 11-2.

In the context of this model and throughout the rest of this chapter, the System Abstraction Layer
(SAL) is a firmware layer which isolates operating system and other higher level software from
implementation differences in the platform, while PAL is the firmware layer that abstracts the
processor implementation.
Volume 2: Processor Abstraction Layer 2:249

Figure 11-1. Firmware Model

Non-performance criti-
cal hardware events,
e.g., reset, machine
checks

Operating System Software

System Abstraction Layer
(SAL)

 Processor (hardware)

Performance critical hard-
ware events, e.g., inter-
rupts

Instruction
Execution

Platform (hardware)

Processor Abstraction Layer (PAL)

Interrupts,
traps, and
faults

Transfers to
SAL entrypoints

Transfers to
OS entrypoints

PAL
procedure
calls

Access to
platform
resources

Extensible Firmware
 Interface (EFI)

SAL
procedure
calls

OS Boot
Handoff

EFI
procedure
calls

OS Boot
Selection
2:250 Volume 2: Processor Abstraction Layer

11.1.1 Processor Abstraction Layer (PAL) Overview

The purpose of the Processor Abstraction Layer, is to provide a firmware abstraction between the
processor hardware implementation and system software and platform firmware, so as to maintain
a single software interface for multiple implementations of the processor hardware. PAL is defined
to be independent of the number of processors on a platform.

Figure 11-2. Firmware Services Model

Processor

Init

Handler

Processor

Reset

Handler

Processor

Error

Handler

Processor

Services

(Procedures)

PAL

Platform

Init

Handler

Platform

Reset

Handler

Platform

Error

Handler

Platform

Services

(Procedures)

Boot

Services

(Transient)

Initialization

Event

Reset/

Power On

Machine

Check

SAL

Operating System Software

OS Loader
OS Init

Handler

OS Machine

Check

Handler

Platform/Processor Hardware

Event
Reset

Runtime

Runtime
Processor

PMI

Handler

Platform

PMI

Handler

PMI

Event

EFI
OS

Boot
Services

Runtime
Services
Volume 2: Processor Abstraction Layer 2:251

PAL encapsulates those processor functions that are likely to change on an implementation to
implementation basis so that SAL firmware and operating system software can maintain a
consistent view of the processor. These include non-performance critical functions dealing such as
processor initialization, configuration and error handling.

PAL consists of two main components:

• Entrypoints, which are invoked directly by hardware events such as reset, init and machine
checks. These interruption entrypoints perform functions such as processor initialization and
error recovery.

• Procedures, which may be called by higher level firmware and software to obtain information
about the identification, configuration, and capabilities of the processor implementation; to
perform implementation-dependent functions such as cache initialization; or to allow software
to interact with the hardware through such functions as power management or enabling/
disabling processor features.

11.1.2 Firmware Entrypoints

Figure 11-3. Firmware Entrypoints Logical Model

PALE_RESET

PALE_INIT OS_INIT

Reset

Power-On
SAL_RESET OS_LOADER

SAL_BOOT_RENDEZ

PAL OS

SAL_INIT
Initialize

SAL

PALE_CHECK OS_MCA
Error

SAL_CHECK

Firmware Recovery Complete

PALE_PMI SALE_PMI

PMI

Resume

S
A

LE
_E

N
T

R
Y

Application
Processors

Rendezvous Complete

EFI Boot Manager

Bootstrap Processor (BSP)

(APs)

BSP BSP

EFI

Wake Up

SAL_MC_RENDEZ

Application Processors (APs)

Bootstrap Processor (BSP)

MC_Rendezvous
Interrupt

Wake Up
2:252 Volume 2: Processor Abstraction Layer

11.1.3 PAL Entrypoints

The following hardware events can trigger the execution of a PAL entrypoint:

• Power-on/reset

• Hardware errors (both correctable and uncorrectable)

• Initialization event (via external interrupt bus message or processor pin)

• Platform management interrupt (via external interrupt bus message or processor pin)

These hardware events trigger the execution of one of the following PAL entrypoints (as shown in
Figure 11-3):

• PALE_RESET – Initializes and tests the processor following power-on or reset and then
branches to SALE_ENTRY to determine whether to perform firmware recovery update, or to
boot the machine for OS use. See Section 11.1.4.

• PALE_CHECK – Determines if errors are processor related, saves processor related error
information and corrects errors where possible (for example, by flushing a corrupted
instruction cache line and marking the cache line as unusable). In all cases, PALE_CHECK
branches to SALE_ENTRY to complete the error logging, correction, and reporting.

• PALE_INIT – Saves the processor state, places the processor in a known state, and branches to
SALE_ENTRY. PALE_INIT is entered as a response to an initialization event.

• PALE_PMI – Saves the processor state and branches to SALE_PMI. PALE_PMI is entered as
a response to a platform management interrupt.

11.1.4 SAL Entrypoints

There are two entrypoints from PAL into SAL:

• SALE_ENTRY – PAL branches to this SAL entrypoint after a power-on, reset, machine check,
or initialization event. If SALE_ENTRY was invoked by a machine check or initialization
event, SALE_ENTRY branches to the appropriate routine:

• SAL_CHECK is invoked after a machine check.

• SAL_INIT is invoked after an initialization event.

If SALE_ENTRY was invoked by a reset or power on, it checks to determine if a firmware
recovery condition exists. If it does, SALE_ENTRY performs the firmware update, then
performs a RESET operation to invoke PAL_RESET. If a recovery condition does not exist,
SAL_ENTRY returns to PAL_RESET to complete processor self-test. PAL_RESET then
branches back to SALE_ENTRY, which, in turn, branches to SAL_RESET.

• SALE_PMI – platform management interrupt. PALE_PMI branches to this SAL entrypoint
after saving processor state in response to the platform management interrupt.

11.1.5 OS Entrypoints

There are several entrypoints from SAL into an operating system (or equivalent software).
Entrypoints from SAL into the operating system are expected to meet the following model:

• OS_BOOT – Operating System Boot interface.

• OS_MCA – Operating System Machine Check Abort Handler.

• OS_INIT – Operating System Initialization Handler.

• OS_RENDEZ – Operating System Multiprocessor Rendezvous interface.
Volume 2: Processor Abstraction Layer 2:253

11.1.6 Firmware Address Space

The firmware address space occupies the 16 MB region between 4 GB - 16 MB and 4 GB
(addresses 0xFF00_0000 through 0xFFFF_FFFF). There are two primary layouts of this address
space. The first version is shown in Figure 11-4 and the second version is shown in Figure 11-5.
The first version has one PAL_A component. This layout allows for robust recovery of PAL_B and
SAL_B components. This layout is useful for cases where PAL_A will not need to be upgraded.
The second version splits the PAL_A block into two components. The first component is referred to
as the generic PAL_A and the second component is the processor specific PAL_A. Splitting the
PAL_A up in this manner allows for a robust upgrade of the processor specific PAL_A firmware as
well as the PAL_B and SAL_B components. This is very useful if a platform is designed to support
multiple processor generations which would require a PAL_A upgrade when the new processor
generation is released. The generic PAL_A which resides in the Protected Boot Block will work
across processor generations for a given platform. The processor specific PAL_A resides outside
the Protected Boot Block and works for a specific processor generation.

The firmware address space is shared by SAL and PAL. Some of the SAL/PAL boundaries are
implementation dependent. The address space contains the following regions and locations.

• The 16 bytes at 0xFFFF_FFF0 (4GB-16) contain IA-32 Reset Code.

• The 8 bytes at 0xFFFF_FFE8 (4GB-24) contain the physical address of the SALE_ENTRY
entrypoint.

• The 8 bytes at 0xFFFF_FFE0 (4GB-32) contain the physical address of the Firmware Interface
Table.

• The 16 bytes at 0xFFFF_FFD0 (4GB-48) contain the FIT entry for the PAL_A (or generic
PAL_A in the split PAL_A model) code provided by the processor vendor. The format of this
FIT entry is described in Figure 11-7.

• The 8 bytes at 0xFFFF_FFC8 (4GB-56) contains the physical address of the alternate
Firmware Interface Table. This pointer is optional and is only needed if the firmware contains
an alternate FIT table. If no alternate FIT table it provided a value of 0x0 should be encoded in
this entry.

• The 8 bytes at 0xFFFF_FFC0 (4GB-64) are zero-filled and reserved for future use.

• PAL_A code (also known as generic PAL_A code in split PAL_A model) resides below
0xFFFF_FFC0. This area contains the hardware-triggered entrypoints PALE_RESET,
PALE_INIT, and PALE_CHECK. In the model where PAL_A is not split, the PAL_A code
will perform any processor-specific initialization needed in order for SAL to perform a
firmware recovery. In the split PAL_A model, the generic PAL_A will search the FIT table(s)
to find the first compatible and error-free processor-specific PAL_A code. It will then branch
to this code to perform the processor-specific initialization needed in order for SAL to perform
a firmware recovery. The PAL_A code area is a multiple of 16 bytes in length.

• SAL_A code occupies the region immediately below the PAL_A code. This area contains the
SALE_ENTRY entrypoint as well as optional implementation-independent firmware update
code. The SAL_A code area is a multiple of 16 bytes in length.

• The collection of regions above from the beginning of the SAL_A code to 4GB is called the
Protected Bootblock. The size of the Protected Bootblock is SAL_A size + PAL_A size + 64.

• The Firmware Interface Table (FIT) comprises of 16-byte entries containing starting address
and size information for the firmware components. The FIT is generated at build time, based
on the size and location of the firmware components. Optionally, an alternate FIT may be
included in the firmware. The alternate FIT will only be used if the primary FIT failed its
checksum. In the split PAL_A model, this allows the generic PAL_A firmware to find the
processor-specific PAL_A component(s), even if the primary FIT is corrupt. This feature
allows hand-off to the SAL recovery code, even if there is a primary FIT checksum failure.
2:254 Volume 2: Processor Abstraction Layer

Figure 11-4. Firmware Address Space

4GB

4GB-16
4GB-24
4GB-32

4GB-X

4GB-(X+Y)

4GB-(X+Y+C)

4GB-(X+Y+C+D)

4GB-16MB

IA-32 Reset vector

SALE_ENTRY address
Firmware Interface Table address

PAL_A block

SAL_A block
(Itanium™-based and optional IA-32 code)

Firmware Interface Table (FIT)

Reserved PAL space (optional)

PAL_B block

Reserved SAL space (optional)

SAL_B block

Available space

(16 bytes)

(8 bytes)

(multiple of 16 bytes)

(8 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)
SALE_ENTRY

CPU Reset

Init

H/W Error

PALE_RESET

PALE_INIT

PALE_CHECK

C

X

16MB
Maximum

(Protected bootblock)
4GB-48

4GB-64
Reserved (16 bytes)

PAL_A FIT entry (16 bytes)

(PAL_B size)

D
(SAL_B size)

Y
(FIT size)

B
(SAL_A size)

A
(PAL_A size)

64 bytes

FIT_BASE

PAL_BASE

SAL_BASE
Volume 2: Processor Abstraction Layer 2:255

• The processor-specific PAL_A contains the code that is required to be run before handing off
to SAL for a firmware recovery check. This component is only available on processors that
support a split PAL_A firmware model. One processor specific PAL_A is architecturally
required in this model. The firmware may optionally contain two or more processor specific
PAL_A components.

• The PAL_B block is comprised of code that is not required to be executed for SAL to perform
a firmware recovery update. The PAL_B code area is a multiple of 16 bytes in length. The

Figure 11-5. Firmware Address Space with Processor-specific PAL_A Components

4GB

4GB-16
4GB-24
4GB-32

4GB-X

4GB-(X+Y)

4GB-(X+Y+Z+

4GB-(X+Y+Z+

4GB-16MB

IA-32 Reset vector

SALE_ENTRY address
Firmware Interface Table address

Generic PAL_A block

SAL_A block

(Itanium™-based and optional IA-32 code)

Firmware Interface Table (FIT)

Reserved PAL space (optional)

PAL_B block

Reserved SAL space (optional)

SAL_B block

Available Space

(16 bytes)

(8 bytes)

(multiple of 16 bytes)

(8 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

(multiple of 16 bytes)

CPU Reset

Init

H/W Error

PALE_RESET

PALE_INIT

PALE_CHECK

C

X

16MB
(Maximum)

(Protected

4GB-48

4GB-64 Reserved (8 bytes)

PAL_A FIT entry (16 bytes)

(PAL_B size)

D
(SAL_B size)

Y
(FIT size)

B
(SAL_A size)

A
(PAL_A size)

64 bytes

FIT_BASE

PAL_BASE

SAL_BASE

4GB-56 Alternate Firmware Interface Table address (optional) (8 bytes)

Processor specific PAL_A (multiple of 16 bytes)

Alternate Firmware Interface Table (multiple of 16 bytes)

Alternate Processor specific PAL_A (multiple of 16 bytes)

(optional)

(optional)

bootblock)

(FIT size)

(Processor PAL_A size)

(Processor PAL_A size)

E

F

Z

C+E+F)

C+D+E+F)
2:256 Volume 2: Processor Abstraction Layer

PAL_B block must be aligned on a 32K byte boundary. An OEM can choose to have more than
one PAL_B block in the firmware image.

• The remainder of the firmware address space is occupied by SAL_B code. SAL_B may
include IA-32 BIOS code. The location of the SAL_B and IA-32 BIOS code within the
firmware address space is implementation dependent.

At a minimum, all of the PAL firmware components, pointers at the top of the firmware address
space, FIT tables and the portion of the SAL code that is executed at the RECOVERY CHECK
hand-off must be accessible from the processor without any special system fabric initialization
sequence. This implies that the system fabric is implicitly initialized at power on for accessing the
portions of the firmware address space listed above or that the special hardware which contains the
firmware code and data is implemented on the processor and not accessed across the system fabric.
The entire firmware code and data area can also be implicitly initialized at power on from the
processor as well, but the minimum set is listed above.

The Firmware Interface Table (FIT) contains starting addresses and sizes for the different firmware
components. Because these code blocks may be compiled at different times and places, code in one
block (such as PAL_A) cannot branch to code in another block (such as PAL_B) directly. The FIT
allows code in one block to find entrypoints in another. Figure 11-6 below shows the FIT layout.

Each FIT entry contains information for the corresponding firmware component. The first entry
contains size and checksum information for the FIT itself. The order of the following FIT entries
must be arranged in ascending order by the type field, otherwise execution of firmware code will be
unpredictable. Multiple FIT entries of the same type are allowed as shown in Figure 11-6.

When multiple entries of the same type exist for PAL components, PAL searches the FIT table in
ascending order looking for the first entry that is compatible and error free for the processor it is
currently executing on.

Figure 11-6. Firmware Interface Table

4GB-X

4GB-(X+Y)

PAL_B entry (one entry is required)

Y
Processor-specific PAL_A (one entry is required for the split PAL_A model)

FIT header (16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

(16 bytes)

PAL_B entry (other entries are optional)

Processor-specific PAL_A (other entries are optional)

OEM use

(16 bytes)

(16 bytes)

OEM use
Volume 2: Processor Abstraction Layer 2:257

• Size – a 3-byte field containing the size of the component in bytes divided by 16.

• Reserved – All fields listed as reserved must be zero filled.

• Version – a 2-byte field containing the component’s version number.

• Type – A 7-bit field containing the type code for the element. Types are defined in Table 11-1.
OEMs may define unique types for one or more blocks of SAL_B, IA-32 BIOS, etc., within
the OEM-defined type range of 0x10 to 0x7E.

• C_V – a 1-bit flag indicating whether the component has a valid checksum. If this field is zero,
the value in the Chksum field is not valid.

• Chksum – a 1-byte field containing the component’s checksum. The modulo sum of all the
bytes in the component and the value in this field (Chksum) must add up to zero. This field is
only valid if the C_V flag is non-zero. If the checksum option is selected for the FIT, in the FIT
Header entry (FIT type 0), the modulo sum of all the bytes in the FIT table must add up to zero.

Note: The PAL_A FIT entry is not part of the FIT table checksum.

• Address – an 8-byte field containing the base address of the component. For the FIT header,
this field contains the ASCII value of “_FIT_<sp><sp><sp>” (<sp> represents the space
character).

The FIT allows simpler firmware updates. Different components may be updated independently.
This address layout can also support firmware images spanning multiple storage devices. FIT
entries must be arranged in ascending order by the type field, otherwise execution of firmware code
will be unpredictable.

Figure 11-7. Firmware Interface Table Entry

Table 11-1. FIT Entry Types

Type Meaning

0x00 FIT Header

0x01 PAL_B (required)

0x02-0x0D Reserved

0x0E Processor Specific PAL_A

0x0F PAL_A (also generic PAL_A)a

a. The PAL_A FIT entry is located at 0xFFFF_FFDO (4GB-48) and is not
part of the actual FIT table.

0x10-0x7E OEM-defined

0x7F Unused Entry

Address (8 bytes)

Chksum

Start of entry

Start + 16

Start + 8
Reserved (3 bytes)C SizeV

063 56 55 32 31 24 23

(2 bytes)

48 47

VersionType

54
2:258 Volume 2: Processor Abstraction Layer

11.2 PAL Power On/Reset

11.2.1 PALE_RESET

The purpose of PALE_RESET is to initialize and test the processor. Upon receipt of a power-on
reset event the processor begins executing code from the PALE_RESET entrypoint in the firmware
address space. PALE_RESET initializes the processor and may perform a minimal processor self
test. PAL may optionally perform authentication of the PAL firmware to ensure data integrity. If the
authentication code runs cacheable by default, then a processor-specific mechanism will be
provided to disable caching for diagnostic purposes.

PALE_RESET then branches to SALE_ENTRY to determine if a recovery condition exists, which
would require an update of the firmware. If it does, SALE_ENTRY performs the update and resets
the system. If no firmware recovery is needed, SAL returns to PALE_RESET to perform the
processor self-tests and initialization. SAL can control the length and coverage of the PAL
processor self-test by examining and modifying the self-test control word passed to SAL at the
firmware recovery hand-off state. Please see Section 11.2.3 for more information on the self-test
control word.

The PAL processor self-tests are split into two phases. The first phase is written to test processor
features that do not require external memory to be present to execute correctly. These tests are
automatically run when SAL returns to PAL after the branch to SALE_ENTRY for a firmware
recovery check. This section is referred to as phase one of processor self-test and they are generally
run early during the processor boot process. The second phase is written requiring that external
memory is available to execute correctly. These tests are run when a call to the PAL procedure
PAL_TEST_PROC is made with the correct parameters set up. These tests are referred to as phase
two of processor self-test since they are usually run later in the processor boot process after external
memory has been initialized on the platform.

PAL may execute IA-32 instructions to fully test and initialize the processor. This IA-32 code will
not generate any special IA-32 bus transactions nor will it require any special platform features to
correctly execute. PAL then branches to SALE_ENTRY to conduct platform initialization and
testing before loading the operating system software.

11.2.2 PALE_RESET Exit State

• GRs: The contents of all general registers are undefined except the following:

• GR20 (bank 1) contains the SALE_ENTRY State Parameter as defined in Figure 11-8. For
the function field of the SALE_ENTRY State Parameter, only the values 3, RECOVERY
CHECK, for the first call to SALE_ENTRY, and 0, RESET, for the second call to
SALE_ENTRY are valid.

• GR32 contains 0 indicating that SALE_ENTRY was entered from PALE_RESET.

• GR33 contains the geographically significant unique processor ID. The value is the same
as that returned by PAL_FIXED_ADDR.

• GR34 contains the physical address for making a PAL procedure call. If the call is for
RECOVERY CHECK, only the subset of PAL procedures needed for SALE_ENTRY to
perform firmware recovery will be available. These procedures are:

• PAL_FREQ_RATIOS

• PAL_LOGICAL_TO_PHYSICAL
Volume 2: Processor Abstraction Layer 2:259

• PAL_PLATFORM_ADDR

• an implementation-specific PAL procedure for PAL authentication.

• GR35 contains the Self Test State Parameter as defined in Figure 11-9.

• GR36 contains the PAL_RESET return address for SALE_ENTRY to return to if a
recovery condition does not exist. When PAL_RESET calls SALE_ENTRY the second
time to initialize the system for operating system use, this register will contain the physical
address for making an implementation-specific PAL procedure call for PAL
authentication.

Note: For all other PAL procedure calls, the physical address at GR34 should be used.

• GR37 contains the self-test control word as defined in Figure 11-10. This control word is
processor implementation-specific and informs SAL if self-test control is implemented
and the number of controllable bits. If self-test control is implemented, PAL will read this
value when SAL returns to PAL after firmware recovery check. If the self-test control is
not supported, this register will be ignored when SAL returns to PAL after firmware
recovery check.

• Banked GRs: All bank 0 general registers are undefined.

• FRs: The contents of all floating-point registers are undefined. The floating-point registers are
enabled unless the state field of the Self Test State Parameter is FUNCTIONALLY
RESTRICTED and the floating-point unit failed self test. Then, the floating-point registers are
disabled. Refer to Section 11.2.2.2 for the definition of FUNCTIONALLY RESTRICTED.

• Predicates: The contents of all predicate registers are undefined.

• BRs: The contents of all branch registers are undefined.

• ARs: The contents of all application registers are undefined except the following:

• RSC: All fields in the register stack configuration register are 0, which places the RSE in
enforced lazy mode.

• CFM: The CFM is set up so that all stacked registers are accessible, CFM.sof = 96 and all
other CFM fields are 0.

• PSR: PSR.bn is 1; PSR.df1 and PSR.dfh are 1 if the floating-point unit failed self test. All
other PSR bits are 0. PSR.ic and PSR.i are zero to ensure external interrupts, NMI and PMI
interrupts are disabled.

• CRs: The contents of all control registers are undefined except the following:

• DCR: contains the value 0.

• IVA: contains the physical address of an interruption vector table previously set up by
PAL. SAL may choose to change this value. The IVA will be 0 when the
SALE_ENTRY State Parameter function is RECOVERY CHECK.

• RRs: The contents of all region registers are undefined.

• PKRs: The contents of all protection key registers are undefined.

• DBRs: The contents of all data breakpoint registers are undefined

• IBRs: The contents of all instruction breakpoint registers are undefined.

• PMCs: The contents of all performance monitor control registers are undefined.

• PMDs: The contents of all performance monitor data registers are undefined.

• Cache: The processor internal caches are enabled and invalidated. Unless directed otherwise
by the self-test control word, phase one of the processor self-test verifies the caches themselves
and the paths from the caches to the processor core. The path from external memory to the
caches cannot be tested until phase two of the processor self-test.
2:260 Volume 2: Processor Abstraction Layer

Note: All cache contents will be invalidated when SAL returns to PAL after the
RECOVERY_CHECK hand-off. If the SAL uses the caches in their
RECOVERY_CHECK code, it is SAL’s responsibility to write back any modified data
in the caches before returning to PAL

• TLB: The TRs and TCs are initialized with all entries having been invalidated. The TLB is
disabled because PSR.it=PSR.dt=PSR.rt=0. The TLBs cannot be fully tested until phase two of
the processor self-test.

Prior to passing control to SALE_ENTRY, PALE_RESET must ensure that the processor Interrupt
block pointer is set to point to address 0x0000_0000_FEE0_0000.

11.2.2.1 Definition of SALE_ENTRY State Parameter

• function – an 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

• status – a function-dependent 8-bit field indicating the firmware status on entry to
SALE_ENTRY. If the function value is RESET or RECOVERY_CHECK, the status values
are:

Figure 11-8. SALE_ENTRY State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved status function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-2. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition

Table 11-3. status Field Values

Status Value Description

Normal 0 Normal reset.

FIT Header Failure 1 FIT header for FIT and alternate FIT (if supported) is incorrect

FIT Checksum Failure 2 FIT checksum for FIT and alternate FIT (if supported) is incorrect

PAL_B Checksum Failure 3 PAL_B checksum (for all compatible PAL_B’s found) is incorrect

PAL_A Authentication Failure 4 PAL_A (generic in split model) failed authentication

PAL_B Authentication Failure 5 PAL_B (for all compatible PAL_B’s found) failed authentication

PAL_B Not Found 6 FIT Entry for PAL_B missing from the FIT and alternate FIT (if
supported)

Incompatible 7 No PAL_B was found in the FIT and alternate FIT (if supported)
that is compatible with the processor stepping

Unaligned 8 No PAL_B was found in the FIT and alternate FIT (if supported)
that was correctly aligned to a 32KB boundary
Volume 2: Processor Abstraction Layer 2:261

All other values of status are reserved.

Definitions of status values for other values of function are listed in the machine check and init
sections.

For the case of RECOVERY CHECK, authentication of PAL_A and PAL_B should be
completed before call to SALE_ENTRY.

11.2.2.2 Definition of Self Test State Parameter

• state – a 2-bit field indicating the state of the processor after self-test. If SAL directed PAL to
skip some self-tests by modifying the self-test control word, failures related to these self-tests
will not be reflected in this state.

PAL_A_Spec Not Found /

FIT Checksum Failure

9 No compatible processor-specific PAL_A was found in the FIT
because of a FIT checksum failure and no compatible
processor-specific PAL_A was found in the alternate FIT (if
supported)

PAL_A_Spec Found / FIT
Checksum Failure

10 A compatible processor-specific PAL_A was found in the
alternate FIT. No compatible processor-specific PAL_A was
found in the FIT due to a FIT checksum failure.

PAL_A_Spec Failure /

Good PAL_A_Spec found in FIT

11 One or more compatible processor-specific PAL_A’s found in the
FIT failed its checksum or authentication. Another compatible
processor-specific PAL_A was found in the FIT that passed its
checksum and authentication.

PAL_A_Spec Auth Failure 12 No compatible processor-specific PAL_A’s were found in the FIT
or alternate FIT (if supported) that passed its checksum and
authentication

PAL_A_Spec Auth Failure /

Good PAL_A_Spec found in AF

13 One or more compatible processor-specific PAL_A’s found in the
FIT or alternate FIT (if supported) failed its checksum and
authentication. Another compatible processor-specific PAL_A
was found in the alternate FIT that passed its checksum and
authentication.

PAL_A_Spec Not Found 14 No compatible processor-specific PAL_A was found in the FIT or
alternate FIT (if supported)

PAL_A_Spec Not Found in FIT /

Good PAL_A_Spec found in AF

15 No compatible processor-specific PAL_A was found in the FIT. A
compatible processor-specific PAL_A was found in the alternate
FIT.

PAL_B Auth Failure / Good PAL_B
found

16 One or more compatible PAL_B’s failed authentication and
checksum. Another compatible PAL_B was found that passed
authentication and checksum.

Figure 11-9. Self Test State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved mf fp ia vm reserved te state

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_status

Table 11-3. status Field Values (Continued)

Status Value Description
2:262 Volume 2: Processor Abstraction Layer

To further qualify FUNCTIONALLY RESTRICTED, the following requirements will be met:

• The processor has detected and isolated the failing component so that it will not be used.

• The processor must have at least one functioning memory unit, ALU, shifter, and branch
unit.

• The floating-point unit may be disabled.

• The RSE is not required to work, but register renaming logic must work properly.

• The paths between the processor controlled caches and the register files have been shown
to work. The path between the processor caches and memory cannot be validated until
phase two of the processor self-test invoked by the PAL_TEST_PROC procedure.

• Loads and stores to firmware address space must work correctly.

Additional information about the failure can be obtained by examining the test_status field of
the Self Test State Parameter.

For the case of FUNCTIONALLY RESTRICTED, it is required that higher level firmware or
OS not use failing functional units during their execution. PAL will not prevent failing
functional units from being used.

• te – a 1-bit field indicating whether testing has occurred. If this field is zero, the processor has
not been tested, and no other fields in the Self Test State Parameter are valid. The processor
can be tested prior to entering SALE_ENTRY for both RECOVERY CHECK and RESET
functions.

If the state field indicates that the processor is functionally restricted, then the fields vm, ia &
fp specify additional information about the functional failure.

• vm – a 1-bit field, if set to 1, indicating that virtual memory features are not available

• ia – a 1-bit field, if set to 1, indicating that IA-32 execution is not available

• fp – a 1-bit field, if set to 1, indicating that floating-point unit is not available

• mf – a 1-bit field, if set to 1, indicating miscellaneous functional failure other than vm, ia,
or fp. The test_status field provides additional information about this failure on an
implementation-specific basis.

• test_status – an unsigned 32-bit-field providing additional information on test failures when
the state field returns a value of PERFORMANCE RESTRICTED or FUNCTIONALLY
RESTRICTED. The value returned is implementation dependent.

Table 11-4. state Field Values

State Value Description

Catastrophic Failure N/A The processor is not capable of continuing. In this case it does
not branch to SALE_ENTRY.

Healthy 00 No hardware failures have occurred in testing that would affect
either the performance or functionality of the processor.

Performance Restricted 01 A hardware failure has occurred in testing that does not affect the
functionality of the processor, but performance may be degraded.

Functionally Restricted 10 A hardware failure has occurred in testing that affects the
functionality of the processor, but firmware code can still be run.
The processor may also be performance restricted.
Volume 2: Processor Abstraction Layer 2:263

11.2.3 PAL Self-test Control Word

The PAL self-test control word is a 48-bit value. This bit field is defined in Figure 11-10.

• test_control – This is an ordered implementation-specific control word that allows the user
control over the length and run-time of the processor self-tests. This control word is ordered
from the longest running tests up to the shortest running tests with bit 0 controlling the longest
running test.

PAL may not implement all 47-bits of the test_control word. PAL communicates if a bit
provides control by placing a zero in that bit. If a bit provides no control, PAL will place a one
in it.

PAL will have two sets of test_control bits for the two phases of the processor self-test.

PAL provides information about implemented test_control bits at the hand-off from PAL to
SAL for the firmware recovery check. These test_control bits provide control for phase one of
processor self-test. It also provides this information via the PAL procedure call
PAL_TEST_INFO for both the phase one and phase two processor tests depending on which
information the caller is requesting.

PAL interprets these bits as input parameters on two occasions. The first time is when SAL
passes control back to PAL after the firmware recovery check. The second time is when a call
to PAL_TEST_PROC is made. When PAL interprets these bits it will only interpret
implemented test_control bits and will ignore the values located in the unimplemented
test_control bits.

PAL interprets the implemented bits such that if a bit contains a zero, this indicates to run the
test. If a bit contains a one, this indicates to PAL to skip the test.

If the cs bit indicates that control is not available, the test_control bits will be ignored or
generate an illegal argument in procedure calls if the caller sets these bits.

• cs – Control Support: This bit defines if an implementation supports control of the PAL
self-tests via the self-test control word. If this bit is 0, the implementation does not support
control of the processor self-tests via the self-test control word. If this bit is 1, the
implementation does support control of the processor self-tests via the self-test control word.

If control is not supported, GR37 will be ignored at the hand-off between SAL and PAL after
the firmware recovery check and the PAL procedures related to the processor self-tests may
return illegal arguments if a user tries to use the self-test control features.

Figure 11-10. Self-test Control Word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved cs test_control
2:264 Volume 2: Processor Abstraction Layer

11.3 Machine Checks

11.3.1 PALE_CHECK

When a machine check abort (MCA) occurs, PALE_CHECK is responsible for saving minimal
processor state to a uncacheable platform-specific memory location previously registered with PAL
via the PAL_MC_REGISTER_MEM procedure. This platform location is called the Minimal State
Save Area (min-state save area) and is described in Section 11.3.2.3. PALE_CHECK is also
responsible for correcting processor related errors whenever possible. PALE_CHECK terminates
by branching to SALE_ENTRY, passing the state of the processor at the time of the error. The level
of recovery provided by PALE_CHECK is implementation dependent and is beyond the scope of
this specification.

At the hand-off from PALE_CHECK to SALE_ENTRY, error information is passed in the
Processor State Parameter described in Section 11.3.2.1. After exit from PALE_CHECK, more
detailed error information is available by calling the PAL_MC_ERROR_INFO procedure.
Information about implementation-dependent state is available by calling the
PAL_MC_DYNAMIC_STATE procedure. The interrupted process may be resumed by calling the
PAL_MC_RESUME procedure. See Section 11.3.3 for more information on returning to the
interrupted context and Section 11.9, “PAL Procedures” on page 2:284 for detailed descriptions of
all these procedure calls.

Code for handling machine checks must take into consideration the possibility that nested machine
checks may occur. A nested machine check is a machine check that occurs while a previous
machine check is being handled.

PALE_CHECK is entered in the following conditions:

• When PSR.mc = 0 and an error occurs which results in a machine check, or

• When PSR.mc changes from 1 to 0 and there is a pending machine check from an earlier error.

PSR.mc is set to 1 by the hardware when PALE_CHECK is entered. PSR.mc will remain set for the
duration of PALE_CHECK, and PALE_CHECK will exit with PSR.mc set. SAL must not clear
PSR.mc to 0 before all the information from the current machine check is logged. If SAL enables
machine checks (by setting PSR.mc=0) during the SAL MCA handling, there is a potential for the
error logs in the processor and the min-state save area to be overwritten by a subsequent MCA
event. PALE_CHECK must attempt to branch to SALE_ENTRY unless code execution is not
possible.

The error information logged will reflect the state at the time the error occurred. State information
from a different point in time will NOT be logged. If complete information is not available a code is
logged which indicates that the information is not available.

• The processor state information used to resume a process for which an error has been corrected
will reflect the state at the time the machine check interruption occurred and will be sufficient
to resume the interrupted process.

• When a single error is signalled multiple times (for example, multiple operations to a single
bad cache line), hardware and firmware will be able to perform the same logging and recovery
as if the error had been signalled once.
Volume 2: Processor Abstraction Layer 2:265

For testing and configuration purposes, it may be necessary for software to intentionally generate a
machine check. In this case PALE_CHECK will log the error information, but not attempt recovery
before branching to SALE_ENTRY. To allow for this, the PAL_MC_EXPECTED procedure call is
defined to indicate that PALE_CHECK should not to attempt recovery.

11.3.1.1 Resources Required for Machine Check and Initialization Event
Recovery

While the level of recovery from machine checks is implementation dependent, for each particular
level of recovery there is a set of architecturally required resources. The following paragraphs
define the required and optional resources needed to support firmware and software recovery of
machine checks and initialization events.

• Minimal resources required to allow software recovery of machines checks when PSR.ic=1:

• XR0 register: memory pointer to min-state save area previously registered with PAL via
the PAL_MC_REGISTER_MEM procedure. The layout of this memory area is described
in Section 11.3.2.3.

• Bank zero registers GR 24 through GR 31. These registers are not preserved across
interruptions and may be used as scratch registers by machine check recovery code. See
Section 3.3.7, “Banked General Registers” for the definition of the bank 0 registers.

• Additional resources required to allow software recovery of machine checks when PSR.ic=0.
The presence of these resources is processor implementation specific. The
PAL_PROC_GET_FEATURES procedure described on page 2:355 returns information on the
existence of these optional resources.

• XIP, XPSR, XFS: interruption resources implemented to store information about the IP,
PSR and IFS when the machine check occurred. A model-specific version of the rfi
instruction must also be implemented to restore the machine context from these resources.

• XR1-XR3: scratch registers implemented to preserve bank 0 GR 24 through GR 31.

Each of the registers described above should be accessed only by PAL in order to support firmware
and software recovery of machine checks.

11.3.2 PALE_CHECK Exit State

The state of the processor on exiting PALE_CHECK is:

• GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static registers
and bank one static registers (GR16-31) at the time of the MCA have been saved in the
min-state save area and are available for use.

• If recovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are undefined and
their contents have been lost. In this case, recovery is not possible. See Section 11.3.1.1
for details.

• GR16 through GR20 (bank 0) contain parameters which PALE_CHECK passes to
SALE_ENTRY for diagnostic and recovery purposes:

• GR16 contains the address to the first available location in the min-state save area for
use by SAL. The address is 8-byte aligned.

• GR17 contains the value of the min-state save area address stored in XR0.

• GR18 contains the Processor State Parameter, as defined in Figure 11-11.
2:266 Volume 2: Processor Abstraction Layer

• GR19 contains the PALE_CHECK return address for rendezvous, or 0 if no return is
expected. (See Section 11.3.2.2)

• GR20 contains the SALE_ENTRY State Parameter as defined in Figure 11-14.

• FRs: The contents of all floating-point registers are unchanged from the time of the MCA.

• Predicates: All predicate registers have been saved in the min-state save area and are available
for use.

• BRs: The contents of all branch registers are unchanged from the time of the MCA, except the
following.

• BR0 has been saved to the min-state save area and is available for use.

• ARs: The contents of all application registers are unchanged from the time of the MCA, except
the RSE control register (RSC), the RSE backing store pointer (BSP), and the ITC counter. The
RSC register is unchanged, except that the RSC.mode field will be set to 0 (enforced lazy
mode) and the RSC register at the time of the MCA has been saved in the min-state save area.
A cover instruction is executed in the PALE_CHECK handler which allocates a new stack
frame of zero size. BSP will be modified to point to a new location, since all the registers from
the current frame at the time of interruption were added to the RSE dirty partition by the
allocation of a new stack frame. The ITC register will not be directly modified by PAL, but
will continue to count during the execution of the MCA handler.

• CFM: The CFM register points to a zero-size current frame and all the rotating register bases
are set to zero. The CFM register at the time of the MCA has been saved to the min-state save
area in either the IFS or XFS slot depending on the implementation.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time of the MCA.

• PSR: PSR.mc is 1; all other bits are 0. The PSR at the time of the MCA is saved in the
min-state save area.

• CRs: The contents of all control registers are unchanged from the time of the MCA with the
exception of interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the MCA.

• PKRs: The contents of all protection key registers are unchanged from the time of the MCA.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the MCA.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the MCA.
The contents of the PMD registers are not modified by PAL code, but may be modified if
events it is monitoring are encountered.

• Cache: The processor internal cache is enabled and is unchanged from the time of the MCA
except for any lines that were invalidated to correct the error.

• TLB: The TCs may be initialized and the TRs are unchanged from the time of the MCA.

• Interruption Resources:

• IRR: PALE_CHECK may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

• The contents of IIP, IPSR and IFS at the time of the MCA are saved to the min-state save
area and are available for use.
Volume 2: Processor Abstraction Layer 2:267

11.3.2.1 Processor State Parameter (GR 18)

Figure 11-11. Processor State Parameter

The term “valid” in Table 11-5 indicates that the registers are either unchanged from the time of
interruption or that the values have been preserved in the min-state save area.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gr b0 b1 fp pr br ar rr tr dr pc cr ex cm rs in dy pm pi mi tl hd us ci co sy mn me ra rz rsvd

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

uc rc bc tc cc reserved dsize

Table 11-5. Processor State Parameter Fields

Field Name Bit Description

rsvd 0-1 Reserved

rz 2 The attempted processor rendezvous was successful if set to 1.

ra 3 A processor rendezvous was attempted if set to 1.

me 4 Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn 5 Min-state save area has been registered with PAL if set to 1.

sy 6 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and that
no loads or stores beyond that point occurred. See Table 11-6.

co 7 Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this bit
is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-6.

ci 8 Machine check is isolated. A value of 1 indicates that the error has been isolated by the
system, it may or may not be recoverable. If 0, the hardware was unable to isolate the
error within the CPU and memory hierarchy. The error may have propagated off the
system (to persistent storage or the network). If ci = 0 then us will be set to 1, and co
and sy are cleared to 0. See Table 11-6.

us 9 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-6.

hd 10 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl 11 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 More information. A value of 1 indicates that more error information about the machine
check event is available by making the PAL_MC_ERROR_INFO procedure call.

pi 13 Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm 14 Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 Interruption caused by INIT. (0=machine check, 1=INIT)
2:268 Volume 2: Processor Abstraction Layer

11.3.2.1.1 Using Processor State Parameter to Determine if Software
Recovery of a Machine Check is Possible

The us, ci, co, and sy bits in the Processor State Parameter are valid only if the error has not been
previously corrected in hardware or firmware (cm bit is 0). Even then, only the bit combinations
shown in Table 11-6 are valid. If the multiple error bit is set (me=1) both the co and sy bits must be
0. The us and ci bits will be set according to the worst case of the errors that occurred.

rs 17 The RSE is valid. (1=valid, 0=not valid)

cm 18 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 A machine check was expected. (1=expected, 0=not expected)

cr 20 Control registers are valid. (1=valid, 0=not valid)

pc 21 Performance counters are valid. (1=valid, 0=not valid)

dr 22 Debug registers are valid. (1=valid, 0=not valid)

tr 23 Translation registers are valid. (1=valid, 0=not valid)

rr 24 Region registers are valid. (1=valid, 0=not valid)

ar 25 Application registers are valid. (1=valid, 0=not valid)

br 26 Branch registers are valid. (1=valid, 0=not valid)

pr 27 Predicate registers are valid. (1=valid, 0=not valid)

fp 28 Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

rsvd 58:48 Reserved

cc 59 Cache check. A value of 1 indicates that a cache related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 TLB check. A value of 1 indicates that a TLB related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

bc 61 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

Table 11-6. Software Recovery Bits in Processor State Parameter

cm us ci co sy Description

1 x x x x The machine check is corrected. The us, ci, co, and sy bits are not valid.

0 1 0 0 0 The error was not isolated. Software must reset system. Data on disk may be
corrupt.

0 1 1 0 0 The error was isolated but not contained. Corrupt data was not written to I/O, but
may remain in the CPU or memory untagged. Software must reset system.

0 0 1 0 0 The error was isolated and contained, but is not continuable. The current
instruction stream cannot be restarted without loss of information. Partial
recovery may be possible.

Table 11-5. Processor State Parameter Fields (Continued)

Field Name Bit Description
Volume 2: Processor Abstraction Layer 2:269

11.3.2.2 Multiprocessor Rendezvous Requirements for Handling Machine
Checks

When PALE_CHECK has determined that an error has occurred which could cause a
multiprocessor system to lose error containment, it must rendezvous the other processors in the
system before proceeding with further processing of the machine check. This is accomplished by
branching to SALE_ENTRY with a non-zero return vector address in GR19. It is then the
responsibility of SAL to rendezvous the other processors and return to PALE_CHECK through the
address in GR19. If the rendezvous was successful GR19 must be set to 0 before return.

At the time PALE_CHECK makes the rendezvous call to SALE_ENTRY, the processor state is
exactly the same as defined in Section 11.3.2, “PALE_CHECK Exit State” with the following
requirement on the use of registers by SAL:

Any processor state not listed below must be either unchanged or restored by SAL before returning
to PALE_CHECK.

• SAL will preserve the values in GR4-GR7 and GR17-GR18.

• SAL will return to PALE_CHECK via the address in GR19.

• SAL will set up GR19 to indicate the success of the rendezvous before returning to PAL.

• GR19 is zero to indicate the rendezvous was successful.

• GR19 is non zero to indicate that the rendezvous was unsuccessful.

• All other non-banked (GR1-3, GR8-15), bank 0 GRs (GR20-GR31) and BR0 are undefined
and available for use by SAL.

After return from the SAL rendezvous call, PALE_CHECK will complete processing the machine
check if the rendezvous was successful and then branch to SALE_ENTRY with GR19 set to zero.
The processor state when transferring to SAL is as defined in Section 11.3.2, “PALE_CHECK Exit
State.” If the rendezvous failed PALE_CHECK will simply construct the Processor State Parameter
and branch to SALE_ENTRY.

Any further discussion of multiprocessor rendezvous, including platform requirements and
implications, is beyond the scope of this specification. See the relevant SAL/Error handling
documents for further information.

11.3.2.3 Processor Min-state Save Area Layout

The processor min-state save area is 4KB in size and must be in an uncacheable region. The first
1KB of this area is architectural state needed by the PAL code to resume during MCA and INIT
events (architected min-state save area + reserved). The remaining 3KB is a scratch buffer reserved
exclusively for PAL use, therefore SAL and OS must not use this area. The layout of the processor
min-state save area is shown in Figure 11-12.

0 0 1 1 0 The error was isolated, contained, and is continuable. If software can correct the
error the current instruction stream can be continued with no loss of information.

0 0 1 1 1 The error was isolated, contained, and is continuable. The instruction pointer
points to the instruction where the error occurred. If software can correct the error
the current instruction stream can be continued with no loss of information.

Table 11-6. Software Recovery Bits in Processor State Parameter (Continued)

cm us ci co sy Description
2:270 Volume 2: Processor Abstraction Layer

The layout for the processors portion of the architectural 1KB processor min-state save area is
shown in Figure 11-13. When SAL registers the area with PAL, it passes in a pointer to offset zero
of the area. When PALE_CHECK is entered as a result of a machine check, it fills in processor
state, processes the machine check, and branches to SALE_ENTRY with a pointer to the first
available memory location that SAL can use in GR16. SAL may allocate a variable sized area
above the address passed in GR16 up to the 1KB architectural limit, but this is internal to SAL and
not known to PAL.

The base address of the min-state save area must minimally be aligned on a 512-byte boundary, but
larger alignments like 4 KB are fine. All saves and restores to and from the min-state save area are
made using 8-byte wide load and store instructions. If the processor min-state save area is not
registered via the PAL_MC_REGISTER_MEM procedure prior to the machine check, software
recovery is not possible.

The value passed in GR16 to SAL may point beyond the defined processor state shown in
Figure 11-13. PAL may use this area for implementation-dependent processor state that needs to be
saved and restored.

Figure 11-12. Processor Min-state Save Area Layout

Architectural

PAL Reserved Memory

Min-state save ptr

Min-state save ptr + 1KB

Min-state save ptr + 4KB

1KB

3KB
Volume 2: Processor Abstraction Layer 2:271

Figure 11-13. Processor State Saved in Min-state Save Area

NaT bits for saved GRs

GR1

GR2

GR3

GR4

GR5

GR6

GR7

GR8

GR9

GR10

GR11

GR12

GR13

GR14

GR15

Bank 0 GR16

Bank 0 GR17

Bank 0 GR18

Bank 0 GR19

Bank 0 GR20

Bank 0 GR21

Bank 0 GR22

Bank 0 GR23

Bank 0 GR24

Bank 0 GR25

Bank 0 GR26

Bank 0 GR27

Bank 0 GR28

Bank 0 GR29

Bank 0 GR30

Bank 0 GR31

Bank 1 GR16

Bank 1 GR17

Bank 1 GR18

Bank 1 GR19

Bank 1 GR20

Bank 1 GR21

Bank 1 GR22

Bank 1 GR23

Bank 1 GR24

Bank 1 GR25

Bank 1 GR26

Bank 1 GR27

Bank 1 GR28

Bank 1 GR29

Bank 1 GR30

Bank 1 GR31

Predicate Registers

BR0

RSC

IIP

IPSR

IFS

XIP or undefined

XPSR or undefined

XFS or undefined

0x0

0x8

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

0x50

0x58

0x60

0x68

0x70

0x78

0x80

0x88

0x90

0x98

0xa0

0xa8

0xb0

0xb8

0xc0

0xc8

0xd0

0xd8

0xe0

0xe8

0xf0

0xf8

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

0x140

0x148

0x150

0x158

0x160

0x168

0x170

0x178

0x180

0x188

0x190

0x198

0x1a0

0x1a8

0x1b0

0x1b8

0x1c0

GR16

~~ ~~
BR10x1c8
2:272 Volume 2: Processor Abstraction Layer

11.3.2.4 Definition of SALE_ENTRY State Parameter

• function – an 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

11.3.3 Returning to the Interrupted Process

The PAL_MC_RESUME procedure is defined to return to the interrupted context after handling a
machine check or initialization event. See page 2:353 for a description of the PAL_MC_RESUME
procedure. If software attempts to return to the interrupted context without using this procedure,
processor behavior is undefined.

There are certain error cases that may require returning to a new context in order to recover from
the machine check. If this occurs a new context can be returned to via the PAL_MC_RESUME
procedure with the new_context flag set. The caller needs to set up the new processor min-state
save area as shown in Figure 11-13 for all the listed register states. If the caller wants to return to a
context where PSR.ic is zero (i.e., an interruption handler) the IIP, IPSR and IFS values in the
min-state save area must be set up with the first level return values. These are the values for the IP,
PSR and CFM of the interruption handler it wishes to return to. The XIP, XPSR, XFS values in the
min-state save area must be set up with the second level return values. These are the IP, PSR and
CFM values for where the interruption handler will return to. If the caller wants to return to a
context where PSR.ic is one, it must set up the IIP, IPSR, IFS and the XIP, XPSR, and XFS both to
contain the new instruction pointer, PSR value, and CFM values.

When returning to a new context, the memory area from BR1 up to the 1KB architectural limit is
ignored by the PAL_MC_RESUME procedure. The software constructing the new context
min-state save area does not have to worry filling in this memory area with any values. When a new
context is returned to, the state originally saved in the min-state save area (old context) shall be
discarded and never used again.

In order to return to the interrupted context without loss of any architectural state, the caller must
restore all register state that is not stored in the processors min-state save area before making the
PAL_MC_RESUME procedure call. Since BR0 and BR1 are the only two branch registers saved in
the min-state save area, the caller must only use these two branch registers when making the
PAL_MC_RESUME procedure call.

Figure 11-14. SALE_ENTRY State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-7. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition in SAL
Volume 2: Processor Abstraction Layer 2:273

11.4 PAL Initialization Events

11.4.1 PALE_INIT

PALE_INIT is entered when an initialization event (INIT) occurs, as a result of the assertion on an
INIT signal to the processor or an INIT interruption occurring. If PSR.mc = 1, the initialization
event is held pending until PSR.mc becomes 0. The purpose of PALE_INIT is to save the
architecturally defined processor state to the Minimal State Save Area (min-state save area) and to
branch to SALE_ENTRY. The code sequence interrupted by the initialization event can be restarted
via PAL_MC_RESUME if PSR.ic = 1. The code sequence interrupted by the initialization event
can be restarted if PSR.ic = 0 and the processor has implemented the optional recovery resources
described in Section 11.3.1.1, “Resources Required for Machine Check and Initialization Event
Recovery.” If PSR.ic = 0 and the optional recovery resources have not been implemented, then the
initialization event is not recoverable.

11.4.2 PALE_INIT Exit State

The state of the processor on exiting PALE_INIT is:

• GRs: The contents of all non-banked static registers (GR1-GR15), bank zero static registers
and bank one static registers (GR16-31) at the time of the INIT have been saved in the
min-state save area and are available for use.

• If recovery is not supported when PSR.ic=0 then GR24 - GR31 (bank 0) are undefined and
their contents have been lost. In this case, recovery is not possible. See Section 11.3.1.1
for details.

• GR16 through GR20 (bank 0) contain parameters which PALE_INIT passes to
SALE_ENTRY for diagnostic and recovery purposes:

• GR16 contains the address to the first available location in the min-state save area for
use by SAL. The address is 8-byte aligned.

• GR17 contains the value of the min-state save area address stored in XR0.

• GR18 contains the Processor State Parameter, as defined in Figure 11-15 on
page 2:275.

• GR19 contains the PALE_INIT return address for rendezvous, or 0 if no return is
expected. (See Section 11.3.2.2)

• GR20 contains the SALE_ENTRY state as defined in Figure 11-14.

• FRs: The contents of all floating-point registers are unchanged from the time of the INIT.

• Predicates: All predicate registers have been saved in the min-state save area and are available
for use.

• BRs: The contents of all branch registers are unchanged from the time of the INIT except the
following:

• BR0 is has been saved to the min-state save area and is available for use.

• ARs: The contents of all application registers are unchanged from the time of the INIT, except
the RSE control register (RSC), the RSE backing store pointer (BSP), and the ITC counter. The
RSC register is unchanged, except that the RSC.mode field will be set to 0 (enforced lazy
mode) and the RSC register at the time of the INIT has been saved in the min-state save area. A
cover instruction is executed in the PALE_INIT handler which allocates a new stack frame of
2:274 Volume 2: Processor Abstraction Layer

zero size. BSP will be modified to point to a new location, since all the registers from the
current frame at the time of interruption were added to the RSE dirty partition by the allocation
of a new stack frame. The ITC register will not be directly modified by PAL, but will continue
to count during the execution of the INIT handler.

• CFM: The CFM register points to a zero-size current frame and all the rotating register bases
are set to zero. The CFM register at the time of the INIT has been saved to the min-state save
area in either the IFS or XFS slot depending on the implementation.

• RSE: The RSE is in enforced lazy mode, and all stacked registers are unchanged from the time
of the INIT.

• PSR: PSR.mc is 1; all other bits are 0. The PSR at the time of the INIT is saved in the min-state
save area.

• CRs: The contents of all control registers are unchanged from the time of the INIT with the
exception of the interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the INIT.

• PKRs: The contents of all protection key registers are unchanged from the time of the INIT.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the INIT.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the INIT. The
contents of the PMD registers are not modified by PAL code, but may be modified if events it
is monitoring are encountered.

• Cache: The contents of the caches are unchanged from the time of the INIT.

• TLB: The TCs may be initialized and the TRs are unchanged from the time of the INIT.

• Interruption Resources:

• IRR: PALE_INIT may not change the IRR, but interrupts may have arrived
asynchronously, changing the contents of the IRRs.

• The contents of IIP, IPSR and IFS at the time of INIT are saved to the min-state save area
and are available for use.

11.4.2.1 Processor State Parameter (GR18)

Figure 11-15. Processor State Parameter

The term “valid” in Table 11-5 indicates that the registers are either unchanged from the time of
interruption or that the values have been preserved in the min-state save area.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gr b0 b1 fp pr br ar rr tr dr pc cr ex cm rs in dy pm pi mi tl hd us ci co sy mn me ra rz rsvd

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

uc rc bc tc cc reserved dsize
Volume 2: Processor Abstraction Layer 2:275

Table 11-8. Processor State Parameter Fields

Field
name

Bit
INIT

value
Description

rsvd 0-1 Reserved

rz 2 xa The attempted processor rendezvous was successful if set to 1.

ra 3 xa A processor rendezvous was attempted if set to 1.

me 4 0 Distinct multiple errors have occurred, not multiple occurrences of a single error.
Software recovery may be possible if error information has not been lost.

mn 5 xa Min-state save area has been registered with PAL if set to 1.

sy 6 0 Storage integrity synchronized. A value of 1 indicates that all loads and stores prior to
the instruction on which the machine check occurred completed successfully, and
that no loads or stores beyond that point occurred. See Table 11-6.

co 7 1 Continuable. A value of 1 indicates that all in-flight operations from the processor
where the machine check occurred were either completed successfully (such as a
load), were tagged with an error indication (such as a poisoned store), or were
suppressed and will be re-issued if the current instruction stream is restarted. This bit
can only be set if the architectural state saved on a machine check is all valid. If this
bit is set, then us must be cleared to 0, and ci must be set to 1. See Table 11-6.

ci 8 1 Machine check is isolated. A value of 1 indicates that the error has been isolated by
the system, it may or may not be recoverable. If 0, the hardware was unable to isolate
the error within the CPU and memory hierarchy. The error may have propagated off
the system (to persistent storage or the network). If ci = 0 then us will be set to 1, and
co and sy are cleared to 0. See Table 11-6.

us 9 0 Uncontained storage damage. A value of 1 indicates the error is contained within the
CPU and memory hierarchy, but that some memory locations may be corrupt. If us is
set to 1, then co and sy will always be cleared to 0. See Table 11-6.

hd 10 0 Hardware damage. A value of 1 indicates that as a result of the machine check some
non essential hardware is no longer available causing this processor to execute with
degraded performance (no functionality has been lost).

tl 11 0 Trap lost. A value of 1 indicates the machine check occurred after an instruction was
executed but before a trap that resulted from the instruction execution could be
generated.

mi 12 0 More information. A value of 1 indicates that more error information about the
machine check event is available by making the PAL_MC_ERROR_INFO procedure
call.

pi 13 0 Precise instruction pointer. A value of 1 indicates that the machine logged the
instruction pointer to the bundle responsible for generating the machine check.

pm 14 0 Precise min-state save area. A value of 1 indicates that the min-state save area
contains the state of the machine for the instruction responsible for generating the
machine check. When this bit is set, the pi bit will always be set as well.

dy 15 xa Processor Dynamic State is valid. (1=valid, 0=not valid) See the
PAL_MC_DYNAMIC_STATE procedure call for more information.

in 16 1 Interruption caused by INIT. (0=machine check, 1=INIT)

rs 17 xa The RSE is valid. (1=valid, 0=not valid)

cm 18 0 The machine check has been corrected. (1=corrected, 0=not corrected)

ex 19 0 A machine check was expected. (1=expected, 0=not expected)

cr 20 xa Control registers are valid. (1=valid, 0=not valid)

pc 21 xa Performance counters are valid. (1=valid, 0=not valid)

dr 22 xa Debug registers are valid. (1=valid, 0=not valid)

tr 23 xa Translation registers are valid. (1=valid, 0=not valid)

rr 24 xa Region registers are valid. (1=valid, 0=not valid)

ar 25 xa Application registers are valid. (1=valid, 0=not valid)

br 26 xa Branch registers are valid. (1=valid, 0=not valid)
2:276 Volume 2: Processor Abstraction Layer

11.4.2.2 Definition of SALE_ENTRY State Parameter

• function – an 8-bit field indicating the reason for branching to SALE_ENTRY.

All other values of function are reserved.

pr 27 xa Predicate registers are valid. (1=valid, 0=not valid)

fp 28 xa Floating-point registers are valid. (1=valid, 0=not valid)

b1 29 xa Preserved bank one general registers are valid. (1=valid, 0=not valid)

b0 30 xa Preserved bank zero general registers are valid. (1=valid, 0=not valid)

gr 31 xa General registers are valid. (1=valid, 0=not valid) (does not include banked registers)

dsize 47:32 xa Size in bytes of Processor Dynamic State returned by PAL_MC_DYNAMIC_STATE.

rsvd 58:48 Reserved

cc 59 0 Cache check. A value of 1 indicates that a cache related machine check occurred.
See the PAL_MC_ERROR_INFO procedure call for more information.

tc 60 0 TLB check. A value of 1 indicates that a TLB related machine check occurred. See
the PAL_MC_ERROR_INFO procedure call for more information.

bc 61 0 Bus check. A value of 1 indicates that a bus related machine check occurred. See the
PAL_MC_ERROR_INFO procedure call for more information.

rc 62 0 Register file check. A value of 1 indicates that a register file related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

uc 63 0 Uarch check. A value of 1 indicates that a micro-architectural related machine check
occurred. See the PAL_MC_ERROR_INFO procedure call for more information.

a. The values of the fields marked with x are set by the PAL INIT handler based on the INIT handling.

Figure 11-16. SALE_ENTRY State Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved function

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-9. function Field Values

Function Value Description

RESET 0 System reset or power-on

MACHINE CHECK 1 Machine check event

INIT 2 Initialization event

RECOVERY CHECK 3 Check for recovery condition in SAL

Table 11-8. Processor State Parameter Fields (Continued)

Field
name

Bit
INIT

value
Description
Volume 2: Processor Abstraction Layer 2:277

11.5 Platform Management Interrupt (PMI)

11.5.1 PMI Overview

PMI is an asynchronous highest-priority external interrupt that encapsulates a collection of
platform-specific interrupts. Platform Management Interrupts occur during instruction processing,
causing the flow of control to be passed to the PAL PMI handler. In the process, state is saved in the
interruption registers (IIP, IPSR) by the processor hardware and the processor starts executing
instructions at the PALE_PMI entrypoint. The PAL code will save some additional state in the bank
0 registers. The PAL will either handle the PMI if it is PAL related PMI or transition to the SAL
PMI code if it is a SAL related PMI. Upon completion of processing, the SAL PMI code returns to
PAL PMI code to restore the interrupted processor state and to resume execution at the interrupted
instruction.

As shown in Figure 11-17, PMI code consists of two major components, namely the PAL PMI
handler which handles all processor-specific processing, and the SAL PMI handler which handles
all platform-related processing. The location of the PALE_PMI and SALE_PMI handlers are
programmable. The location of the PALE_PMI handler can be programmed by the
PAL_COPY_PAL procedure described on page 2:317. The SALE_PMI handler can be
programmed by the PAL_PMI_ENTRYPOINT procedure described on page 2:357. If a PMI is
taken very early in the boot sequence before PAL has a chance to register its PALE_PMI
entrypoint, processor operation is undefined. If a SAL related PMI is seen before the SAL PMI
handler is registered, the PAL PMI code will just return to the interrupted context

The hardware events that can cause the PMI request are referred to as PMI events. PMI events are
the highest priority external interrupts and are only maskable when the system software is
processing very critical tasks with PSR.ic=0. When PSR.ic is 1, PMI events are unmasked. PSR.i
has no effect on PMI events. All PMI events are internally latched into an array of
implementation-specific latches in the processor. The PAL PMI handler reads the latches to
determine what PMI vector requests are pending and dispatches them in priority order. Table 11-10
lists the PMI events and their priority.

PMI messages can be delivered by an external interrupt controller, or as an inter-processor interrupt
using delivery mode 010. Table 11-11 shows the PMI message vector assignments. Vectors 4-15
are reserved for PAL, and within these PAL vectors, a higher vector number has higher priority.

Figure 11-17. PMI Entrypoints

Table 11-10. PMI Events and Priorities

PMI Events Priority

PMI message for PAL (vectors 4-15) High

PMI message for SAL (vectors 1-3)

PMI pin (vector 0) Low

PAL SAL

PALE_PMI SALE_PMI

OS
2:278 Volume 2: Processor Abstraction Layer

Vectors 1-3 are available for SAL to use, and within these SAL vectors, a higher vector number has
higher priority. Vector 0 is used to indicate the PMI pin event. The PMI vector number is passed to
the SAL PMI handler in GR 24. Vectors described as Intel reserved will be ignored by the
processor.

11.5.2 PALE_PMI Exit State

The state of the processor on exiting PALE_PMI is:

• GRs: The contents of non-banked general registers are unchanged from the time of the
interruption.

• Bank 1 GRs: The contents of all bank one general registers are unchanged from the time
of the interruption.

• Bank 0:GR16-23: The contents of these bank zero general registers are unchanged from
the time of the interruption.

• Bank 0:GR24-31: contain parameters which PALE_PMI passes to SALE_PMI:

• GR24 contains the value decoded as follows:

• Bits 7-0: PMI Vector Number

• Bit 63-8: Reserved

• GR25 contains the value of the min-state save area address stored in XR0.

• GR26 contains the value of saved RSC. The contents of this register shall be
preserved by SAL PMI handler.

• GR27 contains the value of saved B0. The contents of this register shall be preserved
by SAL PMI handler.

Table 11-11. PMI Message Vector Assignments

Priority Vector Description

0 PMI pin

1

Available for SAL firmware2

3

4

Intel Reserved

5

6

7

8

9

10

11

12

13 IA-32 Machine Check Rendezvous

14 Intel Reserved

15

Low

High S
A

L
 V

ec
to

rs

Low

High

In
te

l R
es

er
ve

d
PA

L

Volume 2: Processor Abstraction Layer 2:279

• GR28 contains the value of saved B1. The contents of this register shall be preserved
by SAL PMI handler.

• GR29 contains the value of the saved predicate registers. The contents of this register
shall be preserved by SAL PMI handler.

• GR30-31 are scratch registers available for use.

• FRs: The contents of all floating-point registers are unchanged from the time of the
interruption.

• Predicates: The contents of all predicate registers are undefined and available for use.

• BRs: The contents of all branch registers are unchanged, except the following which contain
the defined state.

• BR1 is undefined and available for use.

• BR0 PAL PMI return address.

• ARs: The contents of all application registers are unchanged from the time of the interruption,
except the RSE control register (RSC) and the ITC counter. The RSC.mode field will be set to
0 (enforced lazy mode) while the other fields in the RSC are unchanged. The ITC register will
not be directly modified by PAL, but will continue to count during the execution of the PMI
handler.

• CFM: The contents of the CFM register is unchanged from the time of the interruption.

• RSE: Is in enforced lazy mode, and stacked registers are unchanged from the time of the
interruption.

• PSR: All PSR bits are equal to 0.

• CRs: The contents of all control registers are unchanged from the time of the interruption with
the exception of interruption resources, which are described below.

• RRs: The contents of all region registers are unchanged from the time of the interruption.

• PKRs: The contents of all protection key registers are unchanged from the time of the
interruption.

• DBR/IBRs: The contents of all breakpoint registers are unchanged from the time of the
interruption.

• PMCs/PMDs: The contents of the PMC registers are unchanged from the time of the PMI. The
contents of the PMD registers are not modified by PAL code, but may be modified if events it
is monitoring are encountered

• Cache: The processor internal cache is not specifically modified by the PMI handler but may
be modified due to normal cache activity of running the handler code.

• TLB: The TCs are not modified by the PALE_PMI handler and the TRs are unchanged from
the time of the interruption.

• Interruption Resources:

• IRRs: The contents of IRRs are unchanged from the time of the interruption.

• IIP and IPSR contain the value of IP and PSR. The IFS.v bit is reset to 0.

11.5.3 Resume from the PMI Handler

To return to the instruction that was interrupted by the PMI event, SAL PMI must branch to the
PAL PMI target address in BR0. All register contents must be preserved as specified in
Section 11.5.2.
2:280 Volume 2: Processor Abstraction Layer

11.6 Power Management

This section describes the architecturally supported set of required and optional power states that
may be implemented to reduce power consumption in implementations where this is a design goal.
In addition, the PAL interfaces required to manage these states are described.

Figure 11-18 shows state transitions for the various power states and the software interfaces
required for the transitions.

• NORMAL – the normal, fully functional, highest power state.

• LOW-POWER – An implementation may choose to dynamically reduce power via
microarchitectural low power techniques. The operation of interrupts, snoops, etc., in
low-power mode will be identical to those in normal-power mode. This dynamic power
reduction is optional for an implementation to support. The PAL procedures
PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES returns whether an
implementation supports dynamic power reduction. If an implementation supports dynamic
power reduction then this procedure will allow the caller to enable or disable this feature.

The following software controllable low power states may be provided. They are described below.

• LIGHT_HALT – entered by calling PAL_HALT_LIGHT. This state reduces power by
stopping instruction execution, but maintains cache and TLB coherence in response to external
requests. The processor transitions from this state to the NORMAL state in response to any
unmasked external interrupt (including NMI), machine check, reset, PMI or INIT. An
unmasked external interrupt is defined to be an interrupt that is permitted to interrupt the

Figure 11-18. Power States

HALT 1

PAL_HALT

LIGHT HALT

NORMAL/

Cache
coherent, but
no instruction

execution

Cache not
coherent, no
instruction
execution

LOW-POWER
PAL_HALT_LIGHT

HALT 2 - 7

No instruction
execution.

Implementation-
dependent state.

PAL_HALT

Unmasked external
interrupts, Machine
check, Reset, PMI

and INIT

Unmasked external
Interrupts, Machine
check, Reset, PMI
and INIT

Unmasked external
Interrupts, Machine
check, Reset, PMI
and INIT
Volume 2: Processor Abstraction Layer 2:281

processor based on the current setting of the TPR.mic and TPR.mmi fields. This state is a
required state.

• HALT 1 – entered by calling PAL_HALT with a power state argument equal to one. This
implementation-dependent low-power state will maintain the processor caches but will ignore
any coherency bus traffic. This state is optional for a processor to implement. It is the
responsibility of the caller to ensure cache coherency in this state.

• HALT 2 - 7 – these are optional implementation-dependent states entered by calling
PAL_HALT with a power state argument in the range of 2-7. Before making this procedure
call, the operating system software should first ascertain that the states are implemented by
calling PAL_HALT_INFO. The information returned from the PAL_HALT_INFO procedure
will also specify the coherency of caches and TLBs for each of these low-power states.

The interval timer within the processor will function at a constant frequency in all the power states
as long as the input clock to the processor is maintained. However, the performance monitor event
that counts the number of processor clock cycles will only increment in either the NORMAL or
LOW-POWER state.

The PAL procedure PAL_HALT_INFO returns information about the power states implemented in
a particular processor. This information allows the caller to decide which low power states are
implemented and which ones to call based on the callers requirements.

11.7 PAL Glossary

Corrected Machine Check (CMC)
A corrected machine check is a machine check that as been successfully corrected by hardware and/or
firmware. Information about the cause of the error is recorded, and an interrupt is set to allow the Operating
System software to examine and diagnose the error. Return is controlled to the program executing at the time
of the error.

Entrypoint
A firmware entrypoint is a piece of code which is triggered by a hardware event, usually the assertion of a
processor pin, or the receipt of an interruption. If return to the caller is done, it is though the RFI instruction.
The currently defined PAL entrypoints are PALE_RESET, PALE_INIT, PALE_PMI, and PALE_CHECK.

Machine Check (MC)
A machine check is a hardware event that indicates that a hardware error or architectural violation has
occurred that threatens to damage the architectural state of the machine, possibly causing data corruption. The
occurrence of the error triggers the execution of firmware code which records information about the error, and
attempts to recover when possible.

OLR
On line replacement. The replacement of a computer component while the system is up and running without
requiring a reboot.

Preserved
When applied to an entrypoint, preserved means that the value contained in a register at exit from the
entrypoint code is the same as the value at the time of the hardware event that caused the entrypoint to be
invoked. When applied to a procedure, preserved means that the value contained in a register at exit from the
2:282 Volume 2: Processor Abstraction Layer

procedure is the same as the value at entry to the procedure. The value may have been changed and restored
before exit.

Processor Abstraction Layer (PAL)
PAL is firmware that abstracts processor implementation differences and provides a consistent interface to
higher level firmware and software. PAL has no knowledge of platform implementation details.

Procedure
A firmware procedure is a piece of code which is called from other firmware or software, and which uses the
return mechanism of the Itanium® Runtime Calling Conventions to return to its caller.

Reserved
When applied to a data variable, it means that the variable must not be used to convey information. All
software passing the variable must place a value of zero in the variable. The occurrence of a non-zero value
may cause undefined results.

When applied to a value or range of values, any values not defined in the range and specified as reserved must
not be used. The occurrence of a reserved value may cause undefined results.

Scratch
When applied to either an entrypoint or procedure, scratch means that the contents of the register has no
meaning and need not be preserved. Further the register is available for the storage of local variables. Unless
otherwise noted, the register should not be relied upon to contain any particular value after exit.

Stacked Calling Convention
The firmware calling convention which adheres fully to the Itanium® Runtime Calling Conventions. To use
this calling convention, the RSE must be working and usable.

Static Calling Convention
The firmware calling convention which adheres to the Itanium® Runtime Calling Conventions for the static
general registers, branch registers, predicate registers, but for which all other registers are unused except for
the RSE control registers. The RSE is placed in enforced lazy mode, and the stacked general registers or
memory are not referenced.

System Abstraction Layer (SAL)
SAL is firmware that abstracts platform implementation differences for higher level software. SAL has no
knowledge of processor implementation details.

Unchanged
When applied to an entrypoint, unchanged means that the register referenced has not been changed from the
time of the hardware event that caused the entrypoint to be invoked until it exited to higher level firmware or
software. When applied to a procedure, unchanged means that the register referenced has not been changed
from procedure entry until procedure exit. In all cases, the value at exit is the same as the value at entry or the
occurrence of the hardware event.
Volume 2: Processor Abstraction Layer 2:283

11.8 PAL Code Memory Accesses and Restrictions

PAL issues load and store operations to memory in the following cases with the following memory
attributes:

• during machine check/INIT handling to the min-state save area memory region registered
with PAL using the UC memory attribute

• during the execution of PAL procedures to the memory buffer allocated by the caller of the
procedure using the memory attribute of the address passed by the caller.

• PAL may also issue loads from the architected firmware address space and loads/stores
from the registered min-state save area whenever it is executing a PAL procedure or
handling PAL based interruptions (reset, MCA, INIT and PMI). PAL code may use either
the UC or WBL memory attribute when accessing these areas.

PAL code will not send IPIs that require any special support from the platform.

11.9 PAL Procedures

PAL procedures may be called by higher-level firmware and software to obtain information about
the identification, configuration, and capabilities of the processor implementation, or to perform
implementation-dependent functions such as cache initialization. These procedures access
processor implementation-dependent hardware to return information that characterizes and
identifies the processor or implements a defined function on that particular processor.

PAL procedures are implemented by a combination of firmware code and hardware. The PAL
procedures are defined to be relocatable from the firmware address space. Higher level firmware
and software must perform this relocation during the reset flow. The PAL procedures may be called
both before and after this relocation occurs, but performance will usually be better after the
relocation. In order to ensure no problems occur due to the relocation of the PAL procedures, these
procedures are written to be position independent. All references to constant data done by the
procedures is done in an IP relative way.

PAL procedures are provided to return information or allow configuration of the following
processor features:

• Cache and memory features supported by the processor

• Processor identification, features, and configuration

• Machine Check Abort handling

• Power state information and management

• Processor self test

• Firmware utilities

PAL procedures are implemented as a single high level procedure, named PAL_PROC, whose first
argument is an index which specifies which PAL procedure is being called. Indices are assigned
depending on the nature of the PAL procedure being referenced, according to Table 11-12.
2:284 Volume 2: Processor Abstraction Layer

The assignment of indices for all architected procedures is controlled by this document. The
assignment of indices for implementation-specific procedures is controlled by the specific
processor for which the procedures are implemented. No implementation-specific procedure calls
are required for the correct operation of a processor. No SAL or operating system code should ever
have to call an implementation-specific procedure call for normal activity. They are reserved for
diagnostic and bring-up software and the results of such calls may be unpredictable.

Architected procedures may be designated as required or optional. If a procedure is designated as
optional, a unique return code will be returned to indicate the procedure is not present in this PAL
implementation. It is the caller’s responsibility to check for this return code after calling any
optional PAL procedure

In addition to the calling conventions described below, PAL procedure calls may be made in
physical mode (PSR.it=0, PSR.rt=0, and PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and
PSR.dt=1). All PAL procedures may be called in physical mode. Only those procedures specified
later in this chapter may be called in virtual mode. PAL procedures written to support virtual mode,
and the caller of PAL procedures written in virtual mode must obey the restrictions documented in
this chapter, otherwise the results of such procedure calls may be unpredictable.

11.9.1 PAL Procedure Summary

The following tables summarize the PAL procedures by application area. Included are the name of
the procedure, the index of the procedure, the class of the procedure (whether required or optional),
and the calling convention used for the procedure (static or stacked), and whether the procedure can
be called in physical mode only or both physical and virtual modes.

Table 11-12. PAL Procedure Index Assignment

Index Description

0 Reserved

1 - 255 Architected procedures; static register calling conventions

256 - 511 Architected procedures; stacked register calling conventions

512 - 767 Implementation-specific procedures; static registers calling conventions

768 - 1023 Implementation-specific procedures; stacked register calling conventions

1024 + Reserved

Table 11-13. PAL Cache and Memory Procedures

Procedure Idx Class Conv. Mode Description

PAL_CACHE_FLUSH 1 Req. Static Both Flush the instruction or data
caches.

PAL_CACHE_INFO 2 Req. Static Both Return detailed instruction or data
cache information.

PAL_CACHE_INIT 3 Req. Static Phys. Initialize the instruction or data
caches.

PAL_CACHE_PROT_INFO 38 Req. Static Both Return instruction or data cache
protection information.

PAL_CACHE_SHARED_INFO 43 Opt. Static Both Returns information on which
logical processors share caches.

PAL_CACHE_SUMMARY 4 Req. Static Both Return a summary of the cache
hierarchy.
Volume 2: Processor Abstraction Layer 2:285

PAL_MEM_ATTRIB 5 Req. Static Both Return a list of supported memory
attributes.

PAL_PREFETCH_VISIBILITY 41 Req. Static Both Used in architected sequence to
transition pages from a cacheable,
speculative attribute to an
uncacheable attribute. See
Section 4.4.11.2, “Physical
Addressing Attribute Transition –
Disabling Prefetch/Speculation
and Removing Cacheability.”

PAL_PTCE_INFO 6 Req. Static Both Return information needed for
ptc.e instruction to purge entire
TC.

PAL_VM_INFO 7 Req. Static Both Return detailed information about
virtual memory features supported
in the processor.

PAL_VM_PAGE_SIZE 34 Req. Static Both Return virtual memory TC and
hardware walker page sizes
supported in the processor.

PAL_VM_SUMMARY 8 Req. Static Both Return summary information
about virtual memory features
supported in the processor.

PAL_VM_TR_READ 261 Req. Stacked Phys. Read contents of a translation
register.

Table 11-14. PAL Processor Identification, Features, and Configuration Procedures

Procedure Idx Class Conv. Mode Description

PAL_BUS_GET_FEATURES 9 Req. Static Phys. Return configurable processor bus
interface features and their current
settings.

PAL_BUS_SET_FEATURES 10 Req. Static Phys. Enable or disable configurable
features in processor bus interface.

PAL_DEBUG_INFO 11 Req. Static Both Return the number of instruction and
data breakpoint registers.

PAL_FIXED_ADDR 12 Req. Static Both Return the fixed component of a
processor’s directed address.

PAL_FREQ_BASE 13 Opt. Static Both. Return the frequency of the output
clock for use by the platform, if
generated by the processor.

PAL_FREQ_RATIOS 14 Req. Static Both. Return ratio of processor, bus, and
interval time counter to processor
input clock or output clock for
platform use, if generated by the
processor.

PAL_LOGICAL_TO_PHYSICAL 42 Opt. Static Both Return information on which logical
processors map to a physical
processor die.

PAL_PERF_MON_INFO 15 Req. Static Both Return the number and type of
performance monitors.

PAL_PLATFORM_ADDR 16 Req. Static Both Specify processor interrupt block
address and I/O port space address.

PAL_PROC_GET_FEATURES 17 Req. Static Phys. Return configurable processor
features and their current setting.

Table 11-13. PAL Cache and Memory Procedures (Continued)

Procedure Idx Class Conv. Mode Description
2:286 Volume 2: Processor Abstraction Layer

PAL_PROC_SET_FEATURES 18 Req. Static Phys. Enable or disable configurable
processor features.

PAL_REGISTER_INFO 39 Req. Static Both Return AR and CR register
information.

PAL_RSE_INFO 19 Req. Static Both Return RSE information.

PAL_VERSION 20 Req. Static Both Return version of PAL code.

Table 11-15. PAL Machine Check Handling Procedures

Procedure Idx Class Conv. Mode Description

PAL_MC_CLEAR_LOG 21 Req. Static Both Clear all error information from
processor error logging registers.

PAL_MC_DRAIN 22 Req. Static Both Ensure that all operations that could
cause an MCA have completed.

PAL_MC_DYNAMIC_STATE 24 Opt. Static Phys. Return Processor Dynamic State for
logging by SAL.

PAL_MC_ERROR_INFO 25 Req. Static Both Return Processor Machine Check
Information and Processor Static State
for logging by SAL.

PAL_MC_EXPECTED 23 Req. Static Phys. Set/Reset Expected Machine Check
Indicator.

PAL_MC_REGISTER_MEM 27 Req. Static Phys. Register min-state save area with PAL
for machine checks and inits.

PAL_MC_RESUME 26 Req. Static Phys. Restore minimal architected state and
return to interrupted process.

Table 11-16. PAL Power Information and Management Procedures

Procedure Idx Class Conv. Mode Description

PAL_HALT 28 Opt. Static Phys Enter the low-power HALT state or an
implementation-dependent low-power
state.

PAL_HALT_INFO 257 Req. Stacked Both Return the low power capabilities of the
processor.

PAL_HALT_LIGHT 29 Req. Static Both Enter the low power LIGHT HALT state

Table 11-17. PAL Processor Self Test Procedures

Procedure Idx Class Conv. Mode Description

PAL_CACHE_LINE_INIT 31 Req. Static Phys. Initialize tags and data of a cache line for
processor testing.

PAL_CACHE_READ 259 Opt. Stacked Phys. Read tag and data of a cache line for
diagnostic testing.

PAL_CACHE_WRITE 260 Opt. Stacked Phys. Write tag and data of a cache for diagnostic
testing.

PAL_TEST_INFO 37 Req. Static Phys. Returns alignment and size requirements
needed for the memory buffer passed to
the PAL_TEST_PROC procedure as well
as information on self-test control words for
the processor self tests.

PAL_TEST_PROC 258 Req. Stacked Phys. Perform late processor self test.

Table 11-14. PAL Processor Identification, Features, and Configuration Procedures (Continued)

Procedure Idx Class Conv. Mode Description
Volume 2: Processor Abstraction Layer 2:287

11.9.2 PAL Calling Conventions

The following general rules govern the definition of the PAL procedure calling conventions.

11.9.2.1 Overview of Calling Conventions

There are two calling conventions supported for PAL procedures: static registers only and stacked
registers. Any single PAL procedure will support only one of the two calling conventions. In
addition, PAL procedure may be called in either physical mode (PSR.it=0, PSR.rt=0, and
PSR.dt=0) or virtual mode (PSR.it=1, PSR.rt=1, and PSR.dt=1).

11.9.2.1.1 Static Registers Only

This calling convention is intended for boot time usage before main memory may be available or
error recovery situations, where memory or the RSE may not be reliable. All parameters are passed
in the lower 32 static general registers. The stacked registers will not be used within the procedure.
No memory arguments may be passed as parameters to or from PAL procedures written using the
static register calling convention. To avoid RSE activity, static register PAL procedures must be
called with the br.cond instruction, not the br.call instruction. Please refer to Table 11-22 for a
detailed list of the general register usage for static registers only calling convention.

11.9.2.1.2 Stacked Registers

This calling convention is intended for usage after memory has been made available, and for
procedures which require memory pointers as arguments. The stacked registers are also used for
parameter passing and local variable allocation. This convention conforms to the Itanium™
Software Conventions and Runtime Architecture Guide. Thus, procedures using the stacked register
calling convention can be written in the C language. There is one exception to the runtime
conventions. The first argument to the procedure must also be copied to GR28 prior to making the
procedure call. This allows procedures written using both static and stacked register calling
conventions to call a single PAL_PROC entrypoint. This should be accomplished by having the
stacked register procedures call a stub module which copies GR32 to GR28, then call PAL_PROC.
It is the responsibility of the caller to provide this stub. Please refer to Table 11-23 for a detailed list
of the general register usage for the stacked register calling convention.

Table 11-18. PAL Support Procedures

Procedure Idx Class Conv. Mode Description

PAL_COPY_INFO 30 Req. Static Phys. Return information needed to relocate PAL
procedures and PAL PMI code to memory.

PAL_COPY_PAL 256 Req. Stacked Phys. Relocate PAL procedures and PAL PMI
code to memory.

PAL_ENTER_IA_32_ENV 33 Opt. Static Phys. Enter IA-32 System environment.

PAL_PMI_ENTRYPOINT 32 Req. Static Phys. Register PMI memory entrypoints with
processor.
2:288 Volume 2: Processor Abstraction Layer

11.9.2.1.3 Making PAL Procedure Calls in Physical or Virtual Mode

PAL procedure calls which are made in physical mode must obey the calling conventions described
in this chapter, but there are no additional restrictions beyond those noted above. PAL procedure
calls made in virtual mode must have the region occupied by PAL_PROC virtually mapped with an
ITR. It needs to map this same area with either a DTR or DTC using the same translation as the
ITR. In addition, it must also provide a DTR or DTC mapping for any memory buffer pointers
passed as arguments to a procedure. It is the responsibility of the caller to provide these mappings.

If the caller chooses to map the PAL_PROC area or any memory pointers with a DTC it must call
the procedure with PSR.ic = 1 to handle any TLB faults that could occur. The PAL_PROC code
needs to be mapped with an ITR. Unpredictable results may occur if it is mapped with an ITC
register.

11.9.2.2 Processor State

The PAL procedures are only available to the code running at privilege level 0. They must run in
physical mode (unless specified as callable in virtual mode). PAL procedures are not interruptible
by external interrupt or NMI, since PSR.i must be 0 when the PAL procedure is called. PAL
procedures are not interruptible by PMI events, if PSR.ic is 0. If PSR.ic is 1, PAL procedures can be
interrupted by PMI events. PAL procedures can be interrupted by machine checks and initialization
events.

Generally PAL procedures will not enable interruptions not already enabled by the caller. Any PAL
call that might cause interruptions (besides data TLB faults, see Section 11.9.2.1.3), must install an
IVA handler to handle them. PAL_TEST_PROC may generate any interruptions it needs to test the
processor.

Table 11-19 defines the requirements for the PSR at entry to and at exit from a PAL procedure call.
The operating system must follow the state requirements for PSR shown below. PAL procedure
calls made by SAL may impose additional requirements. PAL_TEST_PROC may change PSR bits
shown as unchanged in order to test the processor. These bits will be preserved in this case. PSR
bits are described in increasing bit number order. Any PSR bit numbers not specified are reserved
and unchanged.

Table 11-19. State Requirements for PSR

PSR bit Description Entry Exit Class

be big-endian memory access enable 0 0 preserved

up user performance monitor enable C C unchanged

ac alignment check C C preserved

mfl floating-point registers f2-f31 written C C preserved

mfh floating-point registers f32-f127 written C C preserved

ic interruption state collection enable 0 0 unchanged

1 1 preserved

i interrupt enable 0 0 unchanged

pk protection key validation enable C C unchanged

dt data address translation enablea 0 0 unchanged

1 1 preserved

dfl disabled FP register f2 to f31 0 0 unchanged

dfh disabled FP register f32 to f127b 0 0 unchanged
Volume 2: Processor Abstraction Layer 2:289

11.9.2.2.1 Definition of Terms

The terms used in the definition of the requirements have the following meaning:

1 1 unchanged

sp secure performance monitors C C unchanged

pp privileged performance monitor enable C C unchanged

di disable ISA transition C C preserved

si secure interval timer C C unchanged

db debug breakpoint fault enable 0 0 unchanged

lp lower-privilege transfer trap enable 0 0 unchanged

tb taken branch trap enable 0 0 unchanged

rt register stack translation enablea 0 0 unchanged

1 1 preserved

cpl current privilege level 0 0 unchanged

is instruction set 0 0 preserved

mc machine check abort maskc 0 0 preserved

1 1 unchanged

it instruction address translation enablea 0 0 unchanged

1 1 preserved

id instruction debug fault disable 0 0 unchanged

da data access and dirty-bit fault disable 0 0 unchanged

dd data debug fault disable 0 0 unchanged

ss single step trap enable 0 0 unchanged

ri restart instruction 0 0 preserved

ed exception deferral 0 0 preserved

bn register bank 1 1 preserved

ia instruction access-bit fault disable 0 0 unchanged

a. PAL procedures which are called in physical mode must remain in physical mode for the duration of the call.
PAL procedures which are called in virtual mode, may perform specific actions in physical mode, but must
return to the same virtual mode state before returning from the call.

b. PAL_TEST_PROC and an implementation-specific authentication procedure call need to be called with
PSR.dfh equal to 0. If they are not they will return invalid argument. All other PAL procedure calls may be
called with PSR.dfh equal to 0 or 1.

c. Most PAL runtime procedures should be called with PSR.mc = 0 except for code flow involved in handling
machine checks.

Table 11-20. Definition of Terms

Term Description

entry Start of the first instruction of the PAL procedure.

exit Start of the first instruction after return to caller’s code.

0 Must be zero at entry to the procedure or on exit from the procedure. If the value at entry is
not zero, the procedure may return an illegal argument or execute in an undefined manner.

1 Must be one at entry to the procedure or on exit from the procedure. If the value at entry is
not one, the procedure may return an illegal argument or execute in an undefined manner.

Table 11-19. State Requirements for PSR (Continued)

PSR bit Description Entry Exit Class
2:290 Volume 2: Processor Abstraction Layer

11.9.2.2.2 System Registers

The PAL_TEST_PROC procedure may change system registers marked as unchanged in order to
fully test the processor. When this is done, the values of the system registers will be preserved.

reserved When any input parameter is listed as reserved, this value must be zero. If an input value
has a range of values, any values outside the range, listed as reserved, must not be used.
For either case, the PAL procedure may return an illegal argument or execute in an
undefined manner.

C The state of bits marked with C are defined by the caller. If the value at exit is also C, it
must be the same as the value at entry.

unchanged The PAL procedure must not change these values from their entry values during execution
of the procedure.

scratch The PAL procedure may modify these values as necessary during execution of the
procedure. The caller cannot rely on these values.

preserved The PAL procedure may modify these values as necessary during execution of the
procedure. However, they will be restored to their entry values prior to exit from the
procedure.

Table 11-21. System Register Conventions

Name Description Class

DCR Default Control Register preserved

ITM Interval Timer Match Register unchanged

IVA Interruption Vector Address preserved

PTA Page Table Address preserved

IPSR Interruption Processor Status Register scratch

ISR Interruption Status Register scratch

IIP Interruption Instruction Bundle Pointer scratch

IFA Interruption Faulting Address scratch

ITIR Interruption TLB Insertion Register scratch

IIPA Interruption Instruction Previous Address scratch

IFS Interruption Function State scratch

IIM Interruption Immediate Register scratch

IHA Interruption Hash Address scratch

LID Local Interrupt ID unchanged

IVR Interrupt Vector Register (read only) unchanged

TPR Task Priority Register unchanged

EOI End Of Interrupt unchanged

IRR0-IRR3 Interrupt Request Registers 0-3 (read only) unchanged

ITV Interval Timer Vector unchanged

PMV Performance Monitoring Vector unchanged

CMCV Corrected Machine Check Vector unchanged

LRR0-LRR1 Local Redirection Registers 0-1 unchanged

RR Region Registers preserved

PKR Protection Key Registers preserved

TR Translation Registers unchangeda

TC Translation Cache scratch

Table 11-20. Definition of Terms (Continued)

Term Description
Volume 2: Processor Abstraction Layer 2:291

11.9.2.2.3 General Registers

PAL will use one of two general register calling conventions described in Section 11.9.2.1,
depending on the availability of memory and the stacked registers at the time of the call. The
following tables describe the contents of the general registers.

IBR/DBR Break Point Registers preserved

PMC Performance Monitor Control Registers preserved

PMD Performance Monitor Data Registers unchangedb

a. If an implementation provides a means to read TRs for PAL, this should be preserved.
b. No PAL procedure writes to the PMD. Depending on the PMC, the PMD may be kept counting performance

monitor events during a procedure call. The exception is PAL_TEST_PROC, which tests the performance
counters.

Table 11-22. General Registers – Static Calling Convention

Register Conventions

GR0 always 0

GR1 preserved

GR2 - GR3 scratch, used with 22 bit immediate add

GR4 - GR7 preserved

GR8 - GR11 scratch, procedure return value

GR12 preserved

GR13 unchanged

GR14 - GR27 scratch

GR28 - GR31 input arguments, scratch (PAL index must be passed in GR28)

Bank 0 Registers

(GR16 - GR23)

preserved

Bank 0 Registers

(GR 24 - GR31)

scratch

GR32 - GR127 unchanged

Table 11-23. General Registers – Stacked Calling Conventions

Register Conventions

GR0 always 0

GR1 preserved

GR2 - GR3 scratch, used with 22 bit immediate add

GR4 - GR7 preserved

GR8 - GR11 scratch, procedure return value

GR12 special, stack pointer (sp)

GR13 special, thread pointer (tp)

GR14 - GR27 scratch

GR28 input argument, scratch (PAL Index must be passed in GR28)

GR29-GR31 scratch

Bank 0 Registers

(GR16 - GR23)

preserved

Table 11-21. System Register Conventions (Continued)

Name Description Class
2:292 Volume 2: Processor Abstraction Layer

The caller must initialize SP for physical and virtual procedure calls only prior to calling a PAL
procedure. A minimum 8 KB of room must be available for the stack space of the PAL procedure.
The caller to a PAL procedure should set up the RSE backing store before making any procedure
calls using the stacked calling conventions. The backing store memory should have a minimum of 8
KB of room for RSE spills.

PAL shall be called with PSR.bn=1. The GR specifications for GR16 through GR31 are for bank
one. The bank zero register requirements are specified as a separate line item.

11.9.2.2.4 Floating-point Registers

Although there is no PAL procedure that passes floating-point parameters, the floating-point
register conventions are the same as those of the Itanium™ Software Conventions and Runtime
Architecture Guide.

11.9.2.2.5 Predicate Registers

The conventions for the predicate registers follow the Itanium™ Software Conventions and
Runtime Architecture Guide.

11.9.2.2.6 Branch Registers

The conventions for the branch registers follow the Itanium™ Software Conventions and Runtime
Architecture Guide.

11.9.2.2.7 Application Registers

Bank 0 Registers

(GR 24 - GR31)

scratch

GR32 - GR127 stacked registers;

in0 - in95: input arguments (PAL index must be in0)

loc0 - loc95: local variables

out0 - out95: output arguments

Table 11-24. Application Register Conventions

Register Description Class

KR0-7 Kernel Registers unchanged

RSC Register Stack Configuration Register unchanged

BSP Backing Store Pointer (read only) unchangeda

BSPSTORE Backing Store Pointer for Memory Stores unchangeda

RNAT RSE NaT Collection Register unchangeda

FCR IA-32 Floating-point Control Registers preserved

EFLAG IA-32 EFLAG register preserved

CSD IA-32 Code Segment Descriptor preserved

SSD IA-32 Stack Segment Descriptor preserved

CFLG IA-32 Combined CR0 and CR4 Register preserved

Table 11-23. General Registers – Stacked Calling Conventions (Continued)

Register Conventions
Volume 2: Processor Abstraction Layer 2:293

PAL procedures that use the static calling conventions do not use stacked registers or the RSE.
Therefore RSE internal state and the CFM are unchanged by these procedures.

11.9.2.3 Return Buffers

Any addresses passed to PAL procedures as buffers for return parameters must be 8-byte aligned.
Unaligned addresses may cause undefined results.

11.9.2.4 Invalid Arguments

The PAL procedure calling conventions specify rules that must be followed. These rules specify
certain PSR values, they specify that reserved fields and arguments must be zero filled and specify
that values not defined in a range and defined as reserved must not be used.

If the caller of a PAL procedure does not follow these rules, an invalid argument return value may
be returned or undefined results may occur during the execution of the procedure. If the caller
passes in a PAL procedure index value that is not defined, PAL will return an Unimplemented
procedure (-1) status to the caller.

11.9.3 PAL Procedure Specifications

The following pages provide detailed interface specifications for each of the PAL procedures
defined in this document. Included in the specification are the input parameters, the output
parameters, and any required behavior.

FSR IA-32 Floating-point Status Register preserved

FIR IA-32 Floating-point Instruction Register preserved

FDR IA-32 Floating-point Data Register preserved

CCV Compare and Exchange Compare Value Register scratch

UNAT User NaT Collection Register according to GR class

FPSR Floating-point Status Register preserved

ITC Interval Time Counter unchangedb

PFS Previous Function State preserved

LC Loop Counter Register preserved

EC Epilog Counter Register preserved

a. BSP, BSPSTORE, and RNAT may not be changed by PAL, but the value at exit may be different due to RSE
activity. PAL_TEST_PROC is an exception to this rule, and the RSE contents may not be relied on after
making this procedure call.

b. No PAL procedure writes to the ITC. The value at exit is the value at entry plus the elapsed time of the
procedure call.

Table 11-24. Application Register Conventions (Continued)

Register Description Class
2:294 Volume 2: Processor Abstraction Layer

PAL_BUS_GET_FEATURES
Get Processor Bus Dependent Configuration Features

Purpose: Provides information about configurable processor bus features.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: Table 11-25 defines the set of possible bus interface features and their bit position in the return
vector. Different busses will implement similar features in different ways. For example, data error
detection may be implemented by ECC or parity. In other cases, certain features may be tied
together. In this case, enabling any one feature in a group will enable all features in the group, and
similarly, disabling any one feature in a group will disable all features. Caller algorithms should be
written to obtain desired results in these instances. Only those configuration features for which a 1
is returned in feature_control can be changed via PAL_BUS_SET_FEATURES.

For all values in Table 11-25, the Class field indicates whether a feature is required to be available
(Req.) or is optional (Opt.). The Control field indicates which features are required to be
controllable. These features will either be controllable through this PAL call or through other
hardware means like forcing bus pins to a certain value during processor reset. The control field
applies only when the feature is available. PALE_CHECK and PALE_INIT should not modify
these features. An operating system should not modify bus features without detailed information
about the platform it is running on.

Argument Description
index Index of PAL_BUS_GET_FEATURES within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_BUS_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-25. (1-implemented, 0=not

implemented)
feature_status 64-bit vector of current feature settings. See Table 11-25.
feature_control 64-bit vector of features controllable by software. (1=controllable, 0= not controllable)

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-25. Processor Bus Features

Bit Class Control Description

63 Opt. Req. Disable Bus Data Error Checking. When 0, bus data errors are detected and
single bit errors are corrected. When 1, no error detection or correction is done.

62 Opt. Req. Disable Bus Address Error Signalling. When 0, bus address errors are signalled
on the bus. When 1, no bus errors are signalled on the bus. If Disable Bus
Address Error Checking is 1, this bit is ignored.

61 Opt. Req. Disable Bus Address Error Checking. When 0, bus errors are detected, single
bit errors are corrected., and a CMCI or MCA is generated internally to the
processor. When 1, no bus address errors are detected or corrected.

60 Opt. Req. Disable Bus Initialization Event Signaling. When 0, bus protocol errors (BINIT#)
are signaled by the processor on the bus. When 1, bus protocol errors (BINIT#)
are not signaled on the bus. If Disable Bus Initialization Event Checking is 1,
this bit is ignored.
Volume 2: Processor Abstraction Layer 2:295

PAL_BUS_GET_FEATURES
59 Opt. Req. Disable Bus Initialization Event Checking. When 0, bus protocol errors (BINIT#)
are detected and sampled and an MCA is generated internally to the processor.
When 1, the processor will ignore bus protocol error conditions (BINIT#).

58 Opt. Req. Disable Bus Requester Bus Error Signalling. When 0, BERR# is signalled if a
bus error is detected. When 1, bus errors are not signalled on the bus.

57 Opt. Req. Disable Bus Requester Internal Error Signalling. When 0, BERR# is signalled
when internal processor requestor initiated bus errors are detected. When 1,
internal requester bus errors are not signalled on the bus.

56 Opt. Req. Disable Bus Error Checking. When 0, the processor takes an MCA if BERR# is
asserted. When 1, the processor ignores the BERR# signal.

55 Opt. Req. Disable Response Error Checking. When 0, the processor asserts BINIT# if it
detects a parity error on the signals which identify the transactions to which this
is a response. When 1, the processor ignores parity on these signals.

54 Opt. Req. Disable Transaction Queuing. When 0, the in-order transaction queue is limited
only by the number of hardware entries. When 1, the processor’s in-order
transactions queue is limited to one entry.

53 Opt. Req. Enable a bus cache line replacement transaction when a cache line in the
exclusive state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

52 Opt. Req. Enable a bus cache line replacement transaction when a cache line in the
shared state is replaced from the highest level processor cache and is not
present in the lower level processor caches. When 0, no bus cache line
replacement transaction will be seen on the bus. When 1, bus cache line
replacement transactions will be seen on the bus when the above condition is
detected.

51-32 N/A N/A Reserved

31 Opt. Opt. Enable Half transfer rate. When 0, the data bus is configured at the 2x data
transfer rate.When 1, the data bus is configured at the 1x data transfer rate,

30 Opt. Req. Disable Bus Lock Mask. When 0, the processor executes locked transactions
atomically. When 1, the processor masks the bus lock signal and executes
locked transactions as a non-atomic series of transactions.

29 Req. Req. Request Bus Parking. When 0, the processor will deassert bus request when
finished with each transaction. When 1, the processor will continue to assert
bus request after it has finished, if it was the last agent to own the bus and if
there are no other pending requests.

28-0 N/A N/A Reserved

Table 11-25. Processor Bus Features (Continued)

Bit Class Control Description
2:296 Volume 2: Processor Abstraction Layer

PAL_BUS_SET_FEATURES
Set Processor Bus Dependent Configuration Features

Purpose: Enables/disables specific processor bus features.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: PAL_BUS_GET_FEATURES should be called to ascertain the implemented processor bus
configuration features, their current setting, and whether they are software controllable, before
calling PAL_BUS_SET_FEATURES. The list of possible processor features is defined in
Table 11-25. Attempting to enable or disable any feature that cannot be changed will be ignored.

Argument Description
index Index of PAL_BUS_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_BUS_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error
Volume 2: Processor Abstraction Layer 2:297

PAL_CACHE_FLUSH
Flush Data or Instruction Caches

Purpose: Flushes the processor instruction or data caches.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: Flushes the instruction or data caches controlled by the processor as specified by the cache_type
parameter. Encoding for the cache_type parameter follows:

All other values of cache_type are reserved. If the cache is unified, both instruction and data lines
are flushed, regardless of the value of cache_type.

Flushing all caches containing instructions, causes the instruction and unified caches to be flushed.
Flushing all caches containing data, causes all data and unified caches to be flushed. Flushing all
caches causes all data, instruction, and unified caches to be flushed.

When the caller specifies to make local instruction caches coherent with the data caches, this
procedure will ensure that the local instruction caches will see the effects of stores of instruction
code done on the processor. Refer to Section 4.4.3, “Cacheability and Coherency Attribute” on
page 2:65 for more information on stores and their coherency requirements with local instruction
caches.

The effects of flushing data and unified caches is broadcast throughout the coherence domain. The
effects of flushing instruction caches may or may not be broadcast throughout the coherence
domain. The procedure will perform the necessary serialization and synchronization as required by
the architecture.

Argument Description
index Index of PAL_CACHE_FLUSH within the list of PAL procedures.
cache_type Unsigned 64-bit integer indicating which cache to flush. See Table 11-26.
operation Formatted bit vector indicating the operation of this call. See Figure 11-19.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.

Return Value Description
status Return status of the PAL_CACHE_FLUSH procedure.
vector Unsigned 64-bit integer specifying the vector number of the pending interrupt.
progress_indicator Unsigned 64-bit integer specifying the starting position of the flush operation.
Reserved 0

Status Value Description
2 Call completed without error, but a PMI was taken during the execution of this

procedure.
1 Call has not completed flushing due to a pending interrupt
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-26. cache_type Encoding

Value Description

1 Flush all caches containing instructions.

2 Flush all caches containing data.

3 Flush all caches (instruction and data).

4 Make local instruction caches coherent with the data caches.
2:298 Volume 2: Processor Abstraction Layer

PAL_CACHE_FLUSH
This call does not ensure that data in the processors coalescing buffers are flushed to memory. See
Section 4.4.5 on page 2:66 on how to flush the coalescing buffers.

The operation parameter controls how this call will operate. The operation parameter has the
following format:

Figure 11-19. operation Parameter Layout

• inv – 1 bit field indicating whether to invalidate clean lines in the cache.

If this bit is 0, all modified cache lines for the specified cache_type are copied back to memory.
Optimally, modified and non-modified cache lines are left valid in the specified cache in a
clean (non-modified) state. However, based on the processor implementation, cache lines in
the specified cache may alternatively be invalidated.

If this bit is 1, all modified cache lines for the specified cache_type are flushed by copying the
cache line to memory. All cache lines in the specified cache are then invalidated.

If cache_type is equal to 4 (make local instruction caches coherent with the data caches) the inv
bit will be ignored.

Table 11-27 will clarify the effects of the inv bit. The modified state represents a cache line that
contains modified data. The clean state represents a cache line that contains no modified data.

• int – 1 bit field indicating if the processor will periodically poll for external interrupts while
flushing the specified cache_type(s).

If this bit is a 0, unmasked external interrupts will not be polled. The processor will ignore all
pending unmasked external interrupts until all cache lines in the specified cache_type(s) are
flushed. Depending on the size of the processor’s caches, bus bandwidth and implementation
characteristics, flushing the caches can take a long period of time, possibly delaying interrupt
response times and potentially causing I/O devices to fail.

If this bit is a 1, external interrupts will be polled periodically and will exit the procedure if one
is seen. If an unmasked external interrupt becomes pending, this procedure will return and
allow the caller to service the interrupt before all cache lines in the specified cache_type(s) are
flushed.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved int inv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-27. Cache Line State when inv = 0

Old State New State Comments

Invalid Invalid

Clean Cleana

a. Based on the processor implementation the cache line can be invalidated or left in a model-specific clean
state

Modified Cleana Modified data is copied back to memory

Table 11-28. Cache Line State when inv = 1

Old State New State Comments

Invalid Invalid

Clean Invalid

Modified Invalid Modified data is copied back to memory.
Volume 2: Processor Abstraction Layer 2:299

PAL_CACHE_FLUSH
The progress_indicator is an unsigned 64-bit integer specifying the starting position of the flush
operation. Values in this parameter are model specific and will vary across processor
implementations.

The first time this procedure is called, the progress_indicator must be set to zero. If this procedure
exits due to an external interrupt and this procedure is then again called to resume flushing, the
progress_indicator must be set to the value previously returned by PAL_CACHE_FLUSH.
Software must program no value other than zero or the value previously returned by
PAL_CACHE_FLUSH otherwise behavior is undefined.

This procedure makes one flush pass through all caches specified by cache_type and all sets and
associativities within those caches. The specified cache_type(s) are ensured to be flushed only of
cache lines resident in the caches prior to PAL_CACHE_FLUSH initially being called with the
progress_indicator set to 0.

This procedure ensures that prefetches initiated prior to making this call with progress_indicator
set to 0 are flushed based on the cache_type argument passed.

• If cache_type specifies to flush all instruction caches then the call ensures all prior instruction
prefetches are flushed.

• If cache_type specifies to flush all data caches then the call ensures all prior data prefetches are
flushed.

• If cache_type specifies to flush all caches then the call ensures all prior instruction and data
prefetches are flushed from the caches.

• If cache_type specifies to make local instruction caches coherent with the data caches, then the
call will ensure all prior instruction prefetches are flushed.

Due to the following conditions, software cannot assume that when this procedure completes the
entire flush pass that the specified cache_type(s) are empty of all clean and/or modified cache lines.

• After an interruption, the flush pass resumes at the interruption point (specified by
progress_indicator). Due to execution of the interrupt handlers during the flush pass, the
specified caches may contain new and possibly modified cache lines in sections of the caches
already flushed. The caller specifies if this procedure should poll for interrupts via the int bit of
the operation parameter.

• Prior prefetches initiated before this procedure is called are disabled and flushed from the
cache as described above. However, if a speculative translation exists in either the ITLB or
DTLB, speculative instruction or data prefetch operation could immediately reload a
non-modified cache line after it was flushed. To ensure prefetches do not occur, software must
remove all speculative translation before calling this routine. Alternatively, software can
disable the TLBs by setting PSR.it, PSR.dt, and PSR.rt to 0.

• The specified caches may also contain PAL firmware code cache entries required to flush the
cache.

• The specified caches may contain PAL and SAL PMI code if this call was made with PSR.ic =
1 and a PMI interrupt is seen during the execution of the call.

• The specified caches may contain SAL or OS machine check or INIT code if these handlers
run in a cacheable mode and a machine check or INIT event is seen.

• In a processor that contains multiple logical processors, the specified caches may contain new
and possibly modified cache lines in sections of the cache already flushed due to execution of
instructions on other logical processors that share the specified caches. Information about how
caches are shared among logical processors is described in the
PAL_CACHE_SHARED_INFO procedure on page 2:311. Information about logical
2:300 Volume 2: Processor Abstraction Layer

PAL_CACHE_FLUSH
processors on the same physical processor die are described in the
PAL_LOGICAL_TO_PHYSICAL procedure on page 2:335.

This procedure does ensure that all cache lines resident in the specified cache_type(s) prior to this
procedure being initially called are flushed regardless of intervening external interrupts. It also
ensures that prefetches initiated prior to the initial call to this procedure that affect the caches
specified in cache_type, as described above, are flushed regardless of intervening external
interrupts.

To ensure forward progress, PAL_CACHE_FLUSH advances through the cache flush sequence at
least by one cache line before sampling for pending external interrupts. The amount of flushing that
occurs before interrupts are polled will vary across implementations.

PAL_CACHE_FLUSH will return the following values to indicate to the caller the status of the
call.

• Status – When the call returns a 1, it indicates that the call did not have any errors but is
returning due to a pending unmasked external interrupt. To continue flushing the caches, the
caller must call PAL_CACHE_FLUSH again with the value returned in the progress_indicator
return value.

When the call returns a 0, it indicates that the call completed without any errors. All cache lines
that were present in the cache (when the most recent call to PAL_CACHE_FLUSH with a
progress_indicator of zero) are flushed and possibly invalidated. All intermediate calls must
have used the proper progress_indicator, otherwise behavior is undefined.

When the call returns a 2, it indicates that the call completed without any errors but that a PMI
was taken during the execution of this call. This indicates to the caller that all cache lines that
were present in the cache (when the most recent call to PAL_CACHE_FLUSH with a
progress_indicator of zero) are flushed but that code and data related to handling PMIs may be
present in the cache.

• vector – If the return status is 1 and this procedure exited due to a pending unmasked external
interrupt, this field returns the interrupt vector number. The external interrupt will have been
removed. The interrupt is considered to be “in-service” and software must service this interrupt
for the specified vector and then issue EOI. If the return status is not 1, the values returned is
undefined.

• progress_indicator – When the return status is 1, specifies the current position in the flush
pass. The value returned is model specific and will vary across processor implementations. If
the return status is not 1, the value returned is undefined.
Volume 2: Processor Abstraction Layer 2:301

PAL_CACHE_INFO
Get Detailed Cache Information

Purpose: Returns information about a particular processor instruction or data cache at a specified level in the
cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This call describes in detail the characteristics of a given processor controlled cache in the cache
hierarchy. It returns information in the config_info_1 and config_info_2 returns parameters.

The config_info_1 return value has the following structure:

• u – bit that is 1 if the cache is unified and 0 if the cache is split.

• at – 2-bit field denoting cache memory attributes, as follows:

Argument Description
index Index of PAL_CACHE_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_CACHE_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-20.
config_info_2 The format of config_info_2 is shown in Figure 11-21.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-20. config_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

stride line_size associativity reserved at u

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

load_hints store_hints load_latency store_latency
2:302 Volume 2: Processor Abstraction Layer

PAL_CACHE_INFO
• associativity – unsigned 8-bit integer denoting the associativity of the cache. A value of 0
indicates a fully associative cache. A value of 1 indicates a direct mapped cache.

• line_size – unsigned 8-bit integer denoting the binary logarithm (log2) of the minimum write
back size of a flush operation to memory or the line size of the cache if the cache contents
never get flushed to memory (for example an instruction cache).

• stride – unsigned 8-bit integer denoting the binary log of the most effective stride in bytes for
flushing the cache.

• store_latency – unsigned 8-bit integer denoting the number of cycles after issue until the value
is written into the cache. If the cache cannot accept a store (like an instruction cache) the value
returned will be 256 (0xff).

• load_latency – unsigned 8-bit integer denoting the number of processor cycles after issue until
the value may be used if it is found in the cache.

• store_hints – 8-bit vector denoting hints implemented by the processor store instruction. For
instruction caches this bit vector will be zero indicating no store hints are supported.

• load_hints – 8-bit vector denoting hints implemented by the processor load instruction.

The config_info_2 return value has the following structure:

Table 11-29. Cache Memory Attributes

Value Description

0 Write through cache

1 Write back cache

2-3 Reserved

Table 11-30. Cache Store Hints

Bit # Description

0 Temporal, level 1

1-2 Reserved

3 Non-temporal, all levels

4-7 Reserved

Table 11-31. Cache Load Hints

Bit # Hint

0 Temporal, level 1

1 Non-temporal, level 1

2 Reserved

3 Non-temporal, all levels

4-7 Reserved
Volume 2: Processor Abstraction Layer 2:303

PAL_CACHE_INFO
• cache_size – unsigned 32-bit integer denoting the size of the cache in bytes.

• alias_boundary – unsigned 8-bit integer indicating the binary log of the minimum number of
bytes which must separate aliased addresses in order to obtain the highest performance.

• tag_ls_bit – unsigned 8-bit integer denoting the least-significant address bit of the tag.

• tag_ms_bit – unsigned 8-bit integer denoting the most-significant address bit of the tag.

Figure 11-21. config_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved tag_ms_bit tag_ls_bit alias_boundary
2:304 Volume 2: Processor Abstraction Layer

PAL_CACHE_INIT
Initialize Caches

Purpose: Initializes the processor controlled caches.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: Initializes one or all the processor’s caches. The effect of this procedure is to initialize the caches
without causing writebacks. This procedure cannot be used where coherency is required because
any data in the caches will be lost.

The level argument must either be -1, indicating all cache levels, or a non-negative number
indicating the specific level to initialize. In the latter case, level must be in the range from 0 up to
one less than the cache_levels return value from PAL_CACHE_SUMMARY:

The restrict argument specifies how to handle potential side-effects, where:

All other values of restrict are reserved.

Argument Description
index Index of PAL_CACHE_INIT within the list of PAL procedures.
level Unsigned 64-bit integer containing the level of cache to initialize. If the cache level can be

initialized independently, only that level will be initialized. Otherwise
implementation-dependent side-effects will occur.

cache_type Unsigned 64-bit integer with a value of 1 to initialize the instruction cache, 2 to initialize the
data cache, or 3 to initialize both. All other values are reserved.

restrict Unsigned 64-bit integer with a value of 0 or 1. All other values are reserved. If restrict is 1
and initializing the specified level and cache_type of the cache would cause side-effects,
PAL_CACHE_INIT will return -4 instead of initializing the cache.

Return Value Description
status Return status of the PAL_CACHE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-4 Call could not initialize the specified level and cache_type of the cache without side-effects

and restrict was 1.

Table 11-32. PAL_CACHE_INIT level Argument Values

Value Description

-1 Initializes all cache levels (cache_type and restrict are ignored)

0 to N Initialize only the specified cache level.

Table 11-33. PAL_CACHE_INIT restrict Argument Values

Value Description

0 No restriction: initialize the specified level and cache_type of the cache, even if doing so will
cause side effects in other caches.

1 Restrict initialization to the specified level and cache_type without side effects to other cache
levels. If this cannot be done, return -4.
Volume 2: Processor Abstraction Layer 2:305

PAL_CACHE_LINE_INIT
Initialize a Data Cache line

Purpose: Initializes the tags and data of a data or unified cache line of a processor controlled cache to known
values without the availability of backing memory.

Calling Conv: Static

Mode: Physical

Arguments:

Returns:

Status:

Description: A line in the data or unified cache is initialized to the values passed in the arguments of this
procedure. The physical page number of the line is derived from the address value passed. The tags
of the line are set to Private, Dirty, and Valid. The cache line is initialized using data_value
repeated until it fills the line. This procedure replicates data_value to a size equal to the largest line
size in the processor-controlled cache hierarchy.

This procedure call cannot be used where coherency is required.

Argument Description
index Index of PAL_CACHE_LINE_INIT within the list of PAL procedures.
address Unsigned 64-bit integer value denoting the physical address from which the physical page

number is to be generated. The address must be an implemented physical address, bit 63
must be zero.

data_value 64-bit data value which is used to initialize the cache line.
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_LINE_INIT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error
2:306 Volume 2: Processor Abstraction Layer

PAL_CACHE_PROT_INFO
Get Detailed Cache Protection Information

Purpose: Returns protection information about a particular processor instruction or data cache at a specified
level in the cache hierarchy.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: PAL_CACHE_PROT_INFO returns information about the data and tag protection method for the
specified cache. The three returns compose a six-element array of 32-bit protection information
structures.

The config_info_1 return value has the following structure:

The config_info_2 return value has the following structure:

The config_info_3 return value has the following structure:

Argument Description
index Index of PAL_CACHE_PROT_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified cache.
All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_CACHE_PROT_INFO procedure.
config_info_1 The format of config_info_1 is shown in Figure 11-22.
config_info_2 The format of config_info_2 is shown in Figure 11-23.
config_info_3 The format of config_info_3 is shown in Figure 11-24.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-22. config_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[0]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[1]

Figure 11-23. config_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[2]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[3]

Figure 11-24. config_info_3 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cache_protection[4]

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

cache_protection[5]
Volume 2: Processor Abstraction Layer 2:307

PAL_CACHE_PROT_INFO
Each cache_protection element has the following structure:

• data_bits – unsigned 8-bit integer denoting the number of data bits that each unit of protection
covers. For example, if the cache hardware generates 8 bits of ECC per 64 bits of data,
data_bits would be 64. This field is only valid if t_d is 0, 2, or 3.

• tagprot_lsb – unsigned 6-bit integer denoting the least-significant tag address bit that this
protection method covers. This field is only valid if t_d is 1, 2, or 3.

• tagprot_msb – unsigned 6-bit integer denoting the most-significant tag address bit that this
protection method covers. This field is only valid if t_d is 1, 2, or 3.

• prot_bits – unsigned 6-bit integer denoting the number of protection bits generated for the field
specified by the t_d element.

• method – unsigned 4-bit integer denoting the protection method, where:

All other values of method are reserved.

• t_d – 2-bit field denoting whether this protection method applies to the tag, the data, or both. If
over both, the tag and data unit could be concatenated with the tag either to the left (more
significant) or to the right (less significant) than a unit of data. For the values of 2 and 3, the
difference of tagprot_msb and tagprot_lsb indicates the number of tag bits that are protected
with the data bits. The data bits are described by the data_bits field below. This field is
encoded as follows:

When obtaining cache information via this call, information for the data cache should be obtained
first, then if the u bit of the config_info_1 parameter is not set, obtain the information for the
instruction cache.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

t_d method prot_bits tagprot_msb tagprot_lsb data_bits

Value Description

0 no ECC or parity protection

1 odd parity protection

2 even parity protection

3 ECC protection

Value Description

0 Data protection

1 Tag protection

2 Tag+data protection (tag is more significant)

3 Data+tag protection (data is more significant)
2:308 Volume 2: Processor Abstraction Layer

PAL_CACHE_READ
Read Values from the Processor Cache

Purpose: Reads the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Arguments:

Returns:

Status:

Description: A value is read from the specified cache line, if present. This procedure allows reading cache data,
tag, protection, or status bits.

The line_id argument is an 8-byte quantity in the following format:

• cache_type – unsigned 8-bit integer denoting whether to read from instruction (1) or data/
unified (2) cache. All other values are reserved.

• level – unsigned 8-bit integer specifying which cache within the cache hierarchy to read. This
value must be in the range from 0 up to one less than the cache_levels return value from
PAL_CACHE_SUMMARY.

• way – unsigned 8-bit integer denoting within which cache way to read. If the cache is
direct-mapped this argument is ignored.

• part – unsigned 8-bit integer denoting which portion of the specified cache line to read:

Argument Description
index Index of PAL_CACHE_READ within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to read the data.
address 64-bit 8-byte aligned physical address from which to read the data. The address must be an

implemented physical address on the processor model with bit 63 set to zero.
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_READ procedure.
data Right-justified value returned from the cache line.
length The number of bits returned in data.
mesi The status of the cache line.

Status Value Description
1 The word at address was found in the cache, but the line was invalid.
0 Call completed without error.

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-5 The word at address was not found in the cache.
-7 The operation requested is not supported for this cache_type and level.

Figure 11-25. Layout of line_id Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

part way level cache_type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved
Volume 2: Processor Abstraction Layer 2:309

PAL_CACHE_READ
All other values of part are reserved.

The data return value contains the value read from the cache. Its contents are interpreted according
to the line_id.part field as follows:

The length return value contains the number of valid bits returned in data.

The mesi return value contains the status bits of the cache line. Values are defined as follows:

All other values of mesi are reserved.

To guarantee correct behavior for this procedure, it is required that there shall be no RSE activity
that may cause cache side effects.

Value Description

0 data

1 tag

2 data protection bits

3 tag protection bits

4 combined protection bits for data and tagsa

a. Note that for this part no data is returned. Only protection bits are
returned.

Part Data

0 64-bit data.

1 right-justified tag of the specified line.

2 right-justified protection bits corresponding to the 64 bits of data at address. If
the cache uses less than 64-bits of data to generate protection, data will contain
more than one value. For example if a cache generates parity for every 8-bits of
data, this return value would contain 8 parity values. The
PAL_CACHE_PROT_INFO call returns information on how a cache generates
protection information in order to decode this return value. If a cache uses
greater than 64-bits of data to generate protection, data will contain the value to
use for the portion of the cache line indicated by address.

3 right-justified protection bits for the cache line tag.

4 right-justified protection bits for the cache line tag and 64 bits of data at address.

Value Description

0 invalid

1 shared

2 exclusive

3 modified
2:310 Volume 2: Processor Abstraction Layer

PAL_CACHE_SHARED_INFO
Get Information on Caches Shared by Logical Processors

Purpose: Returns information on caches shared between logical processors.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This procedure will return information about how the processor caches are shared among logical
processors (See “Get Information on Logical to Physical Processor Mappings” on page 2:335 for a
definition of a logical processor). If the caller is only interested in how many logical processors are
sharing a particular cache level, this procedure will only need to be called once. If the caller is
interested in identifying which logical processors are sharing the processor caches, this procedure
will need to be called a number of times equal to the value returned in num_shared to gather
identification information for all the logical processors sharing the particular cache for which
information is being requested.

Identification information about the logical processors sharing the cache is in the return values
proc_n_cache_info1 and proc_n_cache_info2. The format of these return values is shown in
Figure 11-26 and Figure 11-27.

Argument Description
index Index of PAL_CACHE_SHARED_INFO within the list of PAL procedures.
cache_level Unsigned 64-bit integer specifying the level in the cache hierarchy for which information is

requested. This value must be between 0 and one less than the value returned in the
cache_levels return value from PAL_CACHE_SUMMARY.

cache_type Unsigned 64-bit integer with a value of 1 for instruction cache and 2 for data or unified
cache. All other values are reserved.

proc_number Unsigned 64-bit integer that specifies for which logical processor information is being
requested. This input argument must be zero for the first call to this procedure and can be a
maximum value of one less than the number of logical processors sharing this cache, which
is returned by the num_shared return value.

Return Value Description
status Return status of the PAL_CACHE_SHARED_INFO procedure.
num_shared Unsigned integer that returns the number of logical processors that share the processor

cache level and type, for which information was requested.
proc_n_log_info1 The format of proc_n_log_info1 is shown in Figure 11-26.
proc_n_log_info2 The format of proc_n_log_info2 is shown in Figure 11-27.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:311

PAL_CACHE_SHARED_INFO
• tid – thread id: The thread identifier of the logical processor for which information is being
returned. This value will be unique on a per core basis.

• rv – Reserved

• cid – core id: The core identifier of the logical processor for which information is being
returned. This value will be unique on a per physical processor die basis.

• rv – Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given physical
processor die.

• la – logical address: geographical address of the logical processor for which information is
being returned. This is the same value that is returned by the PAL_FIXED_ADDR procedure
when it is called on the logical processor.

• rv – Reserved

This procedure must be supported on all implementations that contain more than one logical
processor on a physical processor die and returns an unimplemented procedure error code
otherwise.

Figure 11-26. Layout of proc_n_log_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv cid

Figure 11-27. Layout of proc_n_log_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv
2:312 Volume 2: Processor Abstraction Layer

PAL_CACHE_SUMMARY
Get Cache Hierarchy Summary

Purpose: Returns summary information about the hierarchy of caches controlled by the processor.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: Software is expected to call PAL_CACHE_SUMMARY before calling PAL_CACHE_INFO to
determine the number of times PAL_CACHE_INFO should be called and the amount of storage
that must be allocated to hold all of the information returned by PAL_CACHE_INFO.

Argument Description
index Index of PAL_CACHE_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_CACHE_SUMMARY procedure.
cache_levels Unsigned 64-bit integer denoting the number of levels of cache implemented by the

processor. Strictly, this is the number of levels for which the cache controller is integrated
into the processor (the cache SRAMs may be external to the processor).

unique_caches Unsigned 64-bit integer denoting the number of unique caches implemented by the
processor. This has a maximum of 2*cache_levels, but may be less if any of the levels in
the cache hierarchy are unified caches or do not have both instruction and data caches.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:313

PAL_CACHE_WRITE
Write Values into the Processor Cache

Purpose: Writes the data and tag of a processor-controlled cache line for diagnostic testing.

Calling Conv: Stacked Registers

Mode: Physical

Arguments:

Returns:

Status:

Description: The value of data is written into the specified level, way, and part of the cache. This procedure
allows writing cache data, tag, protection, or status bits.

This procedure may also be used to seed errors into a cache line. It calculates the protection bits
based on the value of data, then inverts a specified bit field before writing data to the cache. Bit
field inversion is only used for writes to the cache data or tag.

If seeding an error into the instruction cache or seeding an unrecoverable error, then return back to
the caller may not be possible.

This procedure call cannot be used where coherency is required.

The line_id argument is an 8-byte quantity in the following format:

• cache_type – unsigned 8-bit integer denoting whether to write to instruction (1) or data/unified
(2) cache. All other values are reserved.

• level – unsigned 8-bit integer specifying which cache within the cache hierarchy to write data.
This value must be in the range from 0 up to one less than the cache_levels return value from
PAL_CACHE_SUMMARY.

• way – unsigned 8-bit integer denoting within which cache way to write data. If the cache is
direct-mapped this argument is ignored.

• part – unsigned 8-bit integer denoting where to write data into the cache:

Argument Description
index Index of PAL_CACHE_WRITE within the list of PAL procedures.
line_id 8-byte formatted value describing where in the cache to write the data.
address 64-bit 8-byte aligned physical address at which the data should be written. The address must

be an implemented physical address on the processor model with bit 63 set to 0.
data unsigned 64-bit integer value to write into the specified part of the cache.

Return Value Description
status Return status of the PAL_CACHE_WRITE procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error.
-7 The operation requested is not supported for this cache_type and level.

Figure 11-28. Layout of line_id Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

part way level cache_type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

trigger length start mesi
2:314 Volume 2: Processor Abstraction Layer

PAL_CACHE_WRITE
All other values of part are reserved.

• mesi – unsigned 8-bit integer denoting whether the line should be written as clean or dirty,
shared or exclusive. Though there may be multiple calls to PAL_CACHE_WRITE to the same
cache line, the last call’s mesi will be in effect. Values are defined as follows:

All other values of mesi are reserved.

• start – unsigned 8-bit integer denoting the least-significant bit of the field in data to invert. If
length is 0 or part is not 0 or 1, this field is ignored.

• length – unsigned 8-bit integer denoting the number of bits to invert. If length is 0, no bits are
inverted and start is ignored. If part is not 0 or 1, this field is ignored.

• trigger – unsigned 8-bit integer denoting whether to trigger the error while in procedure. If
trigger is 0, the procedure writes data and returns. If trigger is 1 and cache_type is data/
unified, the procedure writes data and executes a 64-bit load from address before returning. If
trigger is 1 and cache_type is set to instruction, the procedure writes data and branches to the
address. All other values are reserved.

The data argument contains the value to write into the cache. Its contents are interpreted based on
the part field as follows:

To guarantee correct behavior for this procedure, it is required that there shall be no RSE activity
that may cause cache side effects.

Value Description

0 data

1 tag

2 data protection

3 tag protection

4 combined data and tag protection

Value Description

0 invalid

1 shared

2 exclusive

3 modified

Part Data

0 64-bit data to write to the specified line (with optional bit field inversion).

1 right-justified tag to write into the specified line (with optional bit field inversion).

2 right-justified protection bits corresponding to the 64 bits of data at address. If the cache uses less
than 64-bits of data to generate protection, data will contain more than one value. For example if a
cache generates parity for every 8-bits of data, this return value would contain 8 parity values. The
PAL_CACHE_PROT_INFO call returns information on how a cache generates protection
information in order to decode this return value. If a cache uses greater than 64-bits of data to
generate protection, data will contain the value to use for the portion of the cache line indicated by
address.

3 right-justified protection bits for the cache line tag.

4 right-justified protection bits for the cache line tag and 64 bits of data at address.
Volume 2: Processor Abstraction Layer 2:315

PAL_COPY_INFO
Return Parameters to Copy PAL Code to Memory

Purpose: Returns the parameters needed to copy relocatable PAL code from the firmware address space to
memory.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: This procedure is called to obtain the information needed to relocate runtime PAL procedures, PAL
PMI code, and PAL code needed to support IA-32 operating systems from the firmware address
space to memory. The information returned in this call is used by SAL to allocate a memory region
on the required alignment, and call PAL_COPY_PAL to copy the relocatable PAL code.

The copy_type input argument indicates which type of procedure for which copying information is
requested. A value of 0 denotes procedures required for SAL, PMI, and Itanium-based operating
systems. A value of 1 denotes procedures required for IA-32 operating systems. All other values
are reserved. If the copy_type is 0, then SAL shall call PAL_COPY_PAL call subsequently to copy
the PAL procedures and PAL PMI code to the allocated memory region. If the copy_type is 1, SAL
shall pass the allocated memory size and start address through the PAL_ENTER_IA_32_ENV call
before booting an IA-32 OS.

The platform_info input argument is required only when copy_type = 1. If copy_type = 0,
platform_info should be 0. Platform_info has the following format.

• num_iopics is the number of interrupt controllers currently enabled on the system.

• num_procs is the number of processors currently enabled on the system.

The buffer_align return value must be a power of two between 4 KB and 256 KB.

Argument Description
index Index of PAL_COPY_INFO within the list of PAL procedures.
copy_type Unsigned integer denoting type of procedures for which copy information is requested.
platform_info 8-byte formatted value describing the number of processors and the number of interrupt

controllers currently enabled on the system.
mca_proc_state_i
nfo

Unsigned integer denoting the number of bytes that SAL needs for the min-state save area
for each processor.

Return Value Description
status Return status of the PAL_COPY_INFO procedure.
buffer_size Unsigned integer denoting the number of bytes of PAL information that must be copied to

main memory.
buffer_align Unsigned integer denoting the starting alignment of the data to be copied.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-29. Layout of platform_info Input Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

num_iopics

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

num_procs
2:316 Volume 2: Processor Abstraction Layer

PAL_COPY_PAL
Copy PAL Code to Memory

Purpose: Copy relocatable PAL code from the firmware address space to memory.

Calling Conv: Stacked Registers

Mode: Physical

Arguments:

Returns:

Status:

Description: This procedure is called to relocate runtime PAL procedures and PAL PMI code from the firmware
address space to main memory. This procedure also updates the PALE_PMI entrypoint in
hardware. If the call is made on an application processor the copy is not performed. The processor
argument denotes whether the call is being made on the boot processor (value of 0) or an
application processor (value of 1). All other values are reserved.

PAL_COPY_INFO should be called first to determine the size and alignment requirements of the
memory buffer to which the PAL code will be copied. Bit 63 of target_addr must be set
consistently with the cacheability attribute of the memory buffer being copied to. It is PAL’s
responsibility to ensure that the firmware address space contents that are being copied from, are not
in any processor caches. It is the caller’s responsibility to ensure that the contents of the memory
buffer copied to, are flushed out of the internal processor's data caches if target_addr has a
cacheable memory attribute.

If a PAL procedure makes calls to internal PAL functions that execute only out of the firmware
address space, that portion of code will continue to execute out of the firmware address space, even
though the main procedure has been copied to RAM. This is true only for some PAL procedures
that can be called only in physical mode.

PAL_COPY_PAL call is mandatory as part of the system boot process. Higher level firmware
should guarantee that PAL_COPY_PAL is called on all processors before OS launch. This is to
guarantee that full processor functionality is available. This procedure can be called more than
once.

Argument Description
index Index of PAL_COPY_PAL within the list of PAL procedures.
target_addr Physical address of a memory buffer to copy relocatable PAL procedures and PAL PMI code.
alloc_size Unsigned integer denoting the size of the buffer passed by SAL for the copy operation.
processor Unsigned integer denoting whether the call is being made on the boot processor or an

application processor

Return Value Description
status Return status of the PAL_COPY_PAL procedure.
proc_offset Unsigned integer denoting the offset of PAL_PROC in the relocatable segment copied.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:317

PAL_DEBUG_INFO
Get Debug Registers Information

Purpose: Returns the number of instruction and data debug register pairs.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: This call returns the number of pairs of registers. Even numbered registers contain breakpoint
addresses and odd numbered registers contain breakpoint mask conditions. For example if i_regs is
4, there are 8 instruction debug registers of which 4 are breakpoint address registers (IBR0,2,4,6) and
4 are breakpoint mask registers (IBR1,3,5,7). The minimum value for both i_regs and d_regs is 4.

On some implementations, a hardware debugger may use two or more debug register pairs for its
own use. When a hardware debugger is attached, PAL_DEBUG_INFO may return a value for
i_regs and/or d_regs less than the implemented number of debug registers. When a hardware
debugger is attached, PAL_DEBUG_INFO may return a minimum value of 2 for d_regs and a
minimum of 2 for i_regs.

Argument Description
index Index of PAL_DEBUG_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_DEBUG_INFO procedure.
i_regs Unsigned 64-bit integer denoting the number of pairs of instruction debug registers

implemented by the processor.
d_regs Unsigned 64-bit integer denoting the number of pairs of data debug registers implemented

by the processor.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
2:318 Volume 2: Processor Abstraction Layer

PAL_ENTER_IA_32_ENV
Enter IA-32 System Environment

Purpose: This call configures the processor for execution of an IA-32 operating system and switches from
the Itanium System Environment to the IA-32 System Environment.

Calling Conv: Static Registers Only*

Note: Since this is a special call, it does not follow the PAL static register calling convention.
GR28 contains the index of PAL_ENTER_IA_32_ENV within the list of PAL procedures.
All other input arguments including GR29-GR31 are setup by SAL to values as required
by the IA-32 operating system defined in Table 11-34. The registers that are designated as
preserved, scratch, input arguments and procedure return values by the static procedure
calling convention are not followed by this call. For instance, GR5 and GR6 need not be
preserved since these are regarded as scratch by the IA-32 operating system.

Note: In an MP system, this call must be COMPLETED on the first CPU to enter the IA-32 sys-
tem environment (may or may not be the BSP) prior to being called on the remaining pro-
cessors in the MP system.

Mode: Physical

Arguments: GR28 contains the index of the PAL_ENTER_IA_32_ENV call within the list of PAL procedures.
All other input arguments are defined in Table 11-34.

Returns: This procedure continues to execute indefinitely in the IA-32 System Environment until power
down, reset, an error condition, or a jmpe instruction is executed at privilege level 0. In case of an
error condition or jmpe, the procedure transitions the processor back to Itanium System
Environment and continues execution at the physical Itanium termination IP specified in GR3 by
SAL as defined in Table 11-34. The register state at the physical Itanium termination IP is defined
in Table 11-38.

Status: The status is returned in GR4 as defined in Table 11-38.

Description: This PAL firmware call configures the processor for execution of an IA-32 operating system and
switches from the Itanium System Environment to the IA-32 System Environment.

Any required PAL firmware for supporting IA-32 operating systems is copied to the memory buffer
pointed to by GR36. Firmware then configures the processor for execution in the IA-32 System
Environment. This includes:

• Purging the TLB of all entries (both TRs and TCs)

• Programming all Itanium resources – general registers, floating-point registers, predicate,
branch, RSE registers (RSC, BSP, BSPSTORE, RNAT), CCV, UNAT, FPSR, PFS, LC, EC,
GPTA, ITM, TPR, RR and PKR, IBR, DBR, PMC, PMD registers to a state consistent with
IA-32 System Environment.

The configuration of this state is implementation specific, based on implemented Itanium
resources.

This PAL firmware call registers with SAL “call back” points for the following system related
interrupts that may occur during the execution of the IA-32 system environment: OS_MCA and
OS_INIT. SAL code MUST pass these events back through the “call back” points when these
platform related interruptions occur. The PAL firmware also registers the machine check
rendezvous and wake-up mechanisms to be used during machine check processing.

The firmware then initializes the processor state as supplied in the parameter list.
Volume 2: Processor Abstraction Layer 2:319

PAL_ENTER_IA_32_ENV
The IA-32 APIC is initially hardware enabled when the IA-32 System Environment is entered. The
initial state of all APIC registers is extracted from the current interruption register values.

Note: Only NMI and ExtINT pending interrupts will be delivered per the IA-32 definition. All
other existing pending interrupts in IRR0-3 are discarded.

MTRR physical memory attribute values and ranges are initialized to the same physical memory
values specified by the SAL System Table.

Note: When the IA-32 System Environment is terminated, the SAL System Table will not reflect
changes made to the MTRR physical attribute values by IA-32 code.

The processor will begin execution at the instruction and IA-32 mode (e.g. Real Mode, Protected
Mode, VM86, 16/32-bit) as defined by the entry parameters in Table 11-34.

Table 11-34 describes the Itanium register state required at entry to the IA-32 System Environment:

Table 11-34. IA-32 System Environment Entry Parameters

Intel® Itanium®
Register

IA-32 State Description

GR2{31:0} ip First IA-32 instruction set address. IA-32 physical address or
virtual address if CR0.pg is 1. The upper 32-bits are ignored.

GR3 Termination IP. On termination of the IA-32 System Environment
due to jmpe at ring 0 or an error condition, execution of Intel®
Itanium® instructions will continue at this 64-bit physical
address. GR4 indicates the reason for termination.

GR4 Configuration Flags -

flag{0} – if 1 indicates this call is being performed on the Boot
Strap Processor (BSP), if 0 this call is being performed on a
processor other than the BSP.

flag{4:1} – Indicates the entry order in which the processor has
been called to enter the IA-32 system environment. If first
processor, the value will be zero; if second, the value will be one;
and so on. Warning: If this flag value is incorrectly specified,
the system may crash. Also, this value must be unique on
each processor in an MP system.

flag{63:5} – Reserved.

GR5-6 ignored Ignored

GR7 fsd Initial state of the IA-32 fs segment descriptor

GR8-15{31:0} eax, ecx, edx, ebx, esp,
ebp, esi, edi

Initial 32-bit state of all general purpose registers

GR16-17 gs, fs, es, ds, tr, ldt, ss,
cs

Initial state of all IA-32 segment selectors

GR24,27 esd, dsd Initial state of the IA-32 es and ds segment descriptors.

GR28 PAL index PAL_ENTER_IA_32_ENV index value

GR29-GR31 gsd, ldtd, gdtd Initial state of the IA-32 gs, ldt, and gdt segment descriptors.

AR25,26 csd, ssd Initial state of the IA-32 cs and ss segment descriptors.

GR32 MP_Info_Table: Physical address of the MP Information Table described in Table 11-35
below.

GR33 System_Table: Physical address of the SAL System Table. See the SAL Specification for
details. The System Table defines the physical layout of the I/O Port Space, memory, and
all physical memory attributes required for each section of physical memory. The System
Table also defines regions of regular memory, I/O areas and where existing firmware
resides. This information is used to initialize the IA-32 System Environment’s MTRRs.

GR34 Reserved

GR35 Reserved
2:320 Volume 2: Processor Abstraction Layer

PAL_ENTER_IA_32_ENV
Table 11-35 describes the MP Information Table:

GR36 MEMORY_BUFFER: Physical address of the buffer allocated for copying the PAL
procedures to support IA-32 operating systems. Refer to PAL_COPY_INFO for details.

GR37 MEMORY_BUFFER_LEN: Unsigned 64-bit integer containing the size of the buffer
allocated for copying the PAL procedures to support IA-32 operating systems. Refer to
PAL_COPY_INFO for details.

GR38 mca_proc_state_info This is the value that results from calling the
SAL_GET_STATE_INFO_SIZE procedure with the arguments of
mca and proc.

GR39 SAL_IO_Intercept_Function: Physical address of the SAL I/O Intercept callback function.

GR40 SAL_IO_Intercept_Table: Physical address of the SAL I/O Intercept Table described in
Table 11-36 below.

FR8-15 fp0-7,mm0-7 Initial IA-32 FP, Intel® MMX™ technology register values

FR16-31 xmm0-7 Initial IA-32 Streaming SIMD Extension register state

AR21 (fcr) fcw, mxcsr Initial IA-32 numeric and Streaming SIMD Extension control
values

AR24 (eflag) eflags Initial state of IA-32 flags

AR27 (cflg) cr0/cr4 Initial values for CR0 and CR4

AR28 (fsr) fsw, ftw, mxcsr Initial IA-32 numeric and Streaming SIMD Extension status
values

AR29 (fir) fip, fcs, fop Initial IA-32 numeric environment opcode, selector, and IP

AR30 (fdr) fea, fds Initial IA-32 numeric environment data selector and offset

KR1 tssd Initial value for IA-32 TSSD

KR2 cr3/cr2 Initial values for CR3 and CR2

KR3 idtd Initial value for IA-32 IDTD

CR9 cr0/cr4 Initial values for CR0 and CR4

PSR -- PSR.ic =0, interrupt collection off

PSR.i = 0, interrupts off

PSR.it, PSR.dt, PSR.rt = 0a
PSR.mc = 0, machine checks un-masked

PSR.bn = 1, register bank 1 selected

all other bits must be zero

DCR -- All bits must be zero

PTA, GPTA -- PTA.ve = 0, GPTA.ve=0, VHPT disabled

LID -- Unique processor ID, EID address for this processor

ITC tsc ITC = time stamp counter

a. virtual translations are off, ALL translations in the TRs and TCs will be ignored and invalidated

Table 11-34. IA-32 System Environment Entry Parameters (Continued)

Intel® Itanium®
Register

IA-32 State Description
Volume 2: Processor Abstraction Layer 2:321

PAL_ENTER_IA_32_ENV
Table 11-36 describes the SAL I/O Intercept Table. This table must be 8-byte aligned, with a
minimum size of 8 bytes and a maximum size of 128 bytes. Also, the memory allocated for this
table must be allocated in multiples of 8 bytes.

Table 11-35. MP Information Table

Offset
(in bytes)

Length
(in bytes)

Description

0 8 Address of Local APIC for use by IA-32 operating systemsa

a. SAL must ensure that this address does not conflict with other device addresses on the platform.

8 4 Number of I/O SAPICs on the system.

12 4 Number of processors on the system

16 7 Reserved (must be zero)

23 1 Checksum. This modulo sum of all the bytes in this table, including
Checksum and Reserved bytes must add up to zero.

24 16 A 16-byte entry for each I/O SAPIC on the system containing the
following information:

Byte 0:

• bits 0-3: I/O APIC ID of the I/O SAPIC for use by
IA-32 operating systemsb

• bits 4-7: Must be zero
Byte 1:

• bit 0: 1 if the I/O SAPIC is enabled

• bits 1-7: Must be 0
Bytes 2-7: Reserved

Bytes 8-15:

• Address of I/O APIC for use by IA-32 operating
systemsa

b. SAL must generate a unique ID value and store the same ID in the MP table, for use by IA-32 operating
systems. This must by the physical ID.

24+(16 * Number
of I/O SAPICs)

8 A 8-byte entry for each processor on the system containing the following
information:

Byte 0: EID of the processorc

Byte 1: ID of the processorc

Byte 2:

• bits 0-3: Local APIC ID of the processor for use by
IA-32 operating systemsb

• bits 4-7: Must be zero
Byte 3:

• bit 0: 1 if the processor is enabled

• bits 1-7: Must be 0
Bytes 4-7: Reserved

c. This is the value set by SAL in the LID register of the processor (CR64).
2:322 Volume 2: Processor Abstraction Layer

PAL_ENTER_IA_32_ENV
Table 11-37 describes the IA-32 resource state set at entry to the IA-32 System Environment.

Note: SAL must initialize all the IA-32 resources to a known state, otherwise these resources
may contain reset values based on the Itanium architecture and the IA-32 operating system
and applications may not function properly.

All other register values are ignored on input and may be modified by processor/firmware during
execution within the IA-32 System Environment.

Table 11-36. SAL I/O Intercept Table

Offset
(in bytes)

Length
(in bytes)

Description

0 2 Number of I/O Ports to be intercepted. This value must be between 0
and 63 inclusively.

2 2 A 2-byte entry for each intercepting port, specifying the intercepting
port number. This word is little endian.

2+(2*Number of
Intercepting Ports)

6 - (Number of
intercepting

Ports[1:0] * 2)

Reserved. This ensures that the table is a multiple of 8 bytes long.

Table 11-37. IA-32 Resources at IA-32 System Environment Entry

IA-32 Resource Initial State

eflags = AR24

eax-edi = GR8-15{31:0}

cs:eip = AR25:GR2

cr0, cr4 = AR27

cr2, cr3 = KR2

es, cs, ss, ds, fs, gs, ldt, tr selector = GR16-17{63:0}

descriptor = GR24,AR25,AR26,GR27-31{63:0}

Descriptor values for gs, fs, es, ds, ldt, gdt, ss, cs =GR29,GR28,GR24,GR27,GR30,GR31,AR26,AR25{63:0}

idt descriptor = KR3

fp st0-7, mm0-7 = FR8-15

xmm0-7 = FR16-31

fcw, mxcsr(control) = fcr

fsw, mxcsr(status), ftw = fsr

fop, fip, fcs = fir

fea, fds = fdr

dr0-3 = 0x0000, disabled debug registers

dr6 = 0xFFFF0FF0, disabled debug registers

dr7 = 0x00000400

TSC = equal to interval timer (ITC)

Perf Monitors = cleared

TLBs = flushed

MCHK registers = cleared

MTRRs = MTRRs of IA-32 state are initialized to be consistent with
the memory entries of the SAL System Table.

APIC = disabled, initial support is for Intel 8259A compatible
external interrupt controller
Volume 2: Processor Abstraction Layer 2:323

PAL_ENTER_IA_32_ENV
During the execution of the IA-32 System Environment, platform events for PAL_MCA,
PAL_INIT, PAL_RESET and PAL_PMI will interrupt the IA-32 System Environment and vector to
PAL firmware.

Execution continues indefinitely in the IA-32 System Environment until power down, an error
condition occurs or until a jmpe instruction is executed at privilege level 0.

The state of all Itanium registers are left in an undefined state, code can only rely on the register
state defined in Table 11-38 following termination. Allocated memory may be reclaimed by SAL or
the Itanium-based OS.

When the IA-32 System Environment is terminated, the SAL System Table will not reflect changes
made to the memory attribute values by IA-32 code.

Current pending interrupts are left pending.

When the IA-32 system mode is terminated, the auxiliary processors (APs) will exit the IA-32
system environment first, followed by the boot-strap processor (BSP). Upon termination, the APs
will start execution in the Itanium instruction set at the termination address specified by the caller.
The BSP will then start executing at the termination IP address after all of the APs have exited the
IA-32 system environment. The SAL code at the termination address must ensure synchronization
of all the processors in an MP system and then continue with the OEM dictated procedure.

Table 11-38 describes the Itanium register values at IA-32 System Environment termination:

Table 11-38. Register Values at IA-32 System Environment Termination

Intel® Itanium®
Register

IA-32 State Description

GR1 Undefined

GR2 ip Address of the IA-32 JMPE instruction that caused
termination. IA-32 physical address or virtual address if
CR0.pg is 1.

GR3 Number of processors that exited the IA-32 system
environment.
2:324 Volume 2: Processor Abstraction Layer

PAL_ENTER_IA_32_ENV
GR4 IA-32 System Environment Termination Reason:
-1 Un-implemented procedure

0 JMPE detected at privilege level 0

1 SAL allocated buffer for IA-32 System Environment
operation is too small

2 IA-32 Firmware Checksum Error

3 SAL allocated buffer for IA-32 system environment
operation is not properly aligned

4 Error in SAL MP Info Table

5 Error in SAL Memory Descriptor Table

6 Error in SAL System Table

7 Inconsistent IA-32 state

8 IA-32 Firmware Internal Error

9 IA-32 Soft Reset (Note: remaining register state is
undefined for this termination reason)

10 Machine Check Error

11 Error in SAL I/O Intercept Table

12 Processor exit due to other processor in MP system
terminating the IA32 system environment. (Note:
remaining register state is undefined for this termination
reason.)

13 Itanium®-based state corruption by either SAL PMI
handler or I/O Intercept callback function.

GR5-6 Undefined

GR7 apic id The defined apic id for the processor from the apic lid register

GR8-15{31:0} eax, ecx, edx, ebx, esp,
ebp, esi, edi

Final 32-bit state of all general purpose registers

GR16-17 es, cs, ss, ds, fs, gs, ldt,
tr

Final state of all IA-32 segment selectors (bank 1)

GR24,AR25,

AR26, GR27-31

esd, csd, ssd, dsd,
fsd, gsd, ldtd, gdtd

Final state of all IA-32 segment descriptors (bank 1)

GR18-23,25-26,
32-127

Undefined (bank 1)

GR16-31 Bank Register 0 - Undefined

FR8-15 fp0-7, mm0-7 Final IA-32 FP, Intel® MMX™ technology register values

FR16-31 xmm0-7 Final IA-32 Streaming SIMD Extension register values

FR2-7,32-127

Undefined

PR0-63

BR0-7

RSC, BSP,
BSPSTORE, RNAT,
CCV, UNAT, FPSR,
PFS, LC, EC

AR21 (fcr) fcw, mxcsr Final IA-32 numeric and Streaming SIMD Extension control
values

AR24 (eflag) eflags Final state of IA-32 flags

AR27 (cflg) cr0/cr4 Final values for CR0 and CR4

Table 11-38. Register Values at IA-32 System Environment Termination (Continued)

Intel® Itanium®
Register

IA-32 State Description
Volume 2: Processor Abstraction Layer 2:325

PAL_ENTER_IA_32_ENV
AR28 (fsr) fsw, ftw, mxcsr Final IA-32 numeric and Streaming SIMD Extension values

AR29 (fir) fip, fcs. fop Final IA-32 numeric environment opcode, selector, and IP

AR30 (fdr) fea, fds Final IA-32 numeric environment data selector and offset

KR1 tssd Final value for IA-32 TSSD

KR2 cr3/cr2 Final values for CR3 and CR2

KR3 idtd Final value for IA-32 IDTD

KR0,4-7 Undefined

PSR -- PSR.ic =0, interrupt collection off

PSR.i = 0, interrupts off

PSR.it, PSR.dt, PSR.rt = 0a
PSR.mc = 0, machine checks un-masked

PSR.bn = 1, register bank 1 selected

all other bits are 0

DCR -- Zeros

PTA -- PTA.ve= 0, VHPT is disabled

GPTA -- GPTA.ve = 0

LID -- Received unique ID, EID value for this processor

ITC tsc ITC = final time stamp counter value

IFA, IIP, IPSR, ISR,
IIM, IIPA, ITTR, IHA,
IFS, IVA, GPTA,
ITM, IVR, TPR,
IRR0-3, ITV, PMV,
LRR0, LRR1, CMCV

Undefined

TRs, TCs (TLBs)

Undefined

RR

PKR

IBR, DBR

PMC, PMD

a. Virtual translations are off, ALL original translations in the TRs and TCs have been invalidated

Table 11-38. Register Values at IA-32 System Environment Termination (Continued)

Intel® Itanium®
Register

IA-32 State Description
2:326 Volume 2: Processor Abstraction Layer

PAL_FIXED_ADDR
Get Fixed Geographical Address of Processor

Purpose: Returns a unique geographical address of this processor on its bus.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: The address return value will contain a unique unsigned integer denoting the position of this
processor on the current bus. This is an arbitrary number which is expected to have geographical
significance and be unique for the bus to which the processor is connected. If the processor is
connected to multiple busses, the address return value must be unique among all such busses. For
each implementation, the value should be the smallest unique value that can be returned on that
implementation. For example, on a bus which could support 6 processors, the address return value
should occupy no more than 3 bits. In any case, it will never be more than 16 bits.

Argument Description
index Index of PAL_FIXED_ADDR call within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FIXED_ADDR procedure.
address Fixed geographical address of this processor.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:327

PAL_FREQ_BASE
Get Processor Base Frequency

Purpose: Returns the frequency of the output clock for use by the platform is generated by the processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: If the processor outputs a clock for use by the platform, the base_freq return parameter will be the
frequency of this output clock in ticks per second. If the processor does not generate an output
clock for use by the platform, this procedure will return with a status of -1.

Argument Description
index Index of PAL_FREQ_BASE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FREQ_BASE procedure.
base_freq Base frequency of the platform if generated by the processor chip.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Can not complete call without error
2:328 Volume 2: Processor Abstraction Layer

PAL_FREQ_RATIOS
Get Processor Frequency Ratios

Purpose: Returns the ratios of the processor frequency, bus frequency, and interval timer to the input clock of
the processor, if the platform clock is generated externally or to the output clock to the platform, if
the platform clock is generated by the processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: Each of the ratios returns is an unsigned 64-bit value, where the upper 32 bits contain the numerator
and the lower 32 bits contain the denominator of the ratio.

Argument Description
index Index of PAL_FREQ_RATIOS within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_FREQ_RATIOS procedure.
proc_ratio Ratio of the processor frequency to the input clock of the processor, if the platform clock is

generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

bus_ratio Ratio of the bus frequency to the input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

itc_ratio Ratio of the interval timer counter rate to input clock of the processor, if the platform clock is
generated externally or to the output clock to the platform, if the platform clock is generated
by the processor.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Can not complete call without error
Volume 2: Processor Abstraction Layer 2:329

PAL_HALT
Halt Processor

Purpose: Causes the processor to enter the HALT state, or one of the implementation-dependent low-power
states.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: This call places the processor in a low power state designated by halt_state. This procedure can
optionally let the platform know it is about to enter the low power state via an I/O transaction.

halt_state is an unsigned 64-bit integer denoting the low power state requested. The value passed
must be a valid halt state in the range from 1 to 7, for which information is returned by
PAL_HALT_INFO. All other values are reserved.

The processor informs the platform that it has entered the requested low-power state in an
implementation-specific manner.

Argument Description
index Index of PAL_HALT within the list of PAL procedures.
halt_state Unsigned 64-bit integer denoting low power state requested.
io_detail_ptr 8-byte aligned physical address pointer to information on the type of I/O (load/store)

requested.
Reserved 0

Return Value Description
status Return status of the PAL_HALT procedure.
load_return Value returned if a load instruction is requested in the io_detail_ptr
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
2:330 Volume 2: Processor Abstraction Layer

PAL_HALT
The layout of the information pointed to by the io_detail_ptr is shown Table 11-39.

• I/O size and type information has the format shown in Figure 11-30.

• I/O type is an unsigned 8-bit integer denoting the type of I/O transaction to complete.

All other values for I/O type are reserved.

• I/O size is an unsigned 8-bit integer denoting the size of the I/O transaction to complete.

All other values for I/O size are reserved.

• Address for the I/O transaction is a physical pointer for the load or store. The address passed
should be aligned according to the size of the I/O transaction requested. The most significant
bit (63) of the physical address should be set according to the cacheability attribute wanted for
the I/O transaction.

• The data value to store is the value that will be stored out if the io_type is 2. If io_type is not
equal to a 2, then this value is a don’t care.

If an I/O transaction is requested by the caller, the processor will wait until this transaction has been
received by the platform before entering the low power state.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt (including NMI),
PAL transitions the processor to the normal state. An unmasked external interrupt is defined to be
an interrupt that is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fields in the TPR control register. PAL sets the value in the load_return return
parameter if the io_type is 1, otherwise this value is set to zero.

Table 11-39. I/O Detail Pointer Description

Offset Description

0x0 I/O size and type information

0x8 Address for I/O

0x10 Data value to store

Figure 11-30. I/O Size and Type Information Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved I/O size I/O type

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-40. I/O Type Definition

Value Description

0 No transaction

1 Perform a load

2 Perform a store

Table 11-41. I/O Size Definition

Value Description

0 No transaction

1 1 byte size

2 2 byte size

4 4 byte size

8 8 byte size
Volume 2: Processor Abstraction Layer 2:331

PAL_HALT
If the processor transitions to normal state via an unmasked external interrupt, execution resumes to
the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if PMIs are
masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution resumes to
the caller if machine checks and INITs are masked, otherwise execution will resume to the
corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will reset itself and
start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6 on page 2:281.
2:332 Volume 2: Processor Abstraction Layer

PAL_HALT_INFO
Get Halt State Information for Power Management

Purpose: Returns information about the processor’s power management capabilities.

Calling Conv: Stacked Registers

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: The power information requested is returned in the data buffer referenced by power_buffer. Power
information is returned about the 8 power states. The low power states are LIGHT_HALT, HALT,
plus 6 other low power states. The LIGHT_HALT state is index 0 in the buffer, and the HALT state
is index 1. All 8 low power states need not be implemented

The information returned is in the format of Figure 11-31. The information about the HALT states
will be in ascending order of the index values.

• exit latency – 16-bit unsigned integer denoting the minimum number of processor cycles to
transition to the NORMAL state.

• entry_latency – 16-bit unsigned integer denoting the minimum number of processor cycles to
transition from the NORMAL state.

• power_consumption – 28-bit unsigned integer denoting the typical power consumption of the
state, measured in milliwatts.

• im – 1-bit field denoting whether this low power state is implemented or not. A value of 1
indicates that the low power state is implemented, a value of 0 indicates that it is not
implemented. If this value is 0 then all other fields are invalid.

• co – 1-bit field denoting if the low power state maintains cache and TLB coherency. A value of
1 indicates that the low power state keeps the caches and TLBs coherent, a value of 0 indicates
that it does not.

The latency numbers given are the minimum number of processor cycles that will be required to
transition the states. The maximum or average cannot be determined by PAL due to its dependency
on outstanding bus transactions.

For more information on power management, please refer to Section 11.6 on page 2:281.

Argument Description
index Index of PAL_HALT_INFO within the list of PAL procedures.
power_buffer 64-bit pointer to a 64-byte buffer aligned on an 8-byte boundary.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_INFO procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-31. Layout of power_buffer Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

entry_latency exit_latency

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv co im power_consumption
Volume 2: Processor Abstraction Layer 2:333

PAL_HALT_LIGHT
Cause Processor to Enter Coherent Halt State

Purpose: Causes the processor to enter the LIGHT HALT state, where prefetching and execution are
suspended, but cache and TLB coherency is maintained.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This call places the processor in the LIGHT HALT state in an implementation-dependent fashion
where cache and TLB coherency is maintained, but power consumption is minimized.

The processor acknowledges to the platform that it has entered the LIGHT HALT low-power state
in an implementation-specific manner.

On receipt of a PMI, machine check, INIT, reset, or unmasked external interrupt (including NMI),
PAL transitions the processor to the normal state. An unmasked external interrupt is defined to be
an interrupt that is permitted to interrupt the processor based on the current setting of the TPR.mic
and TPR.mmi fields in the TPR control register.

If the processor transitions to normal state via an unmasked external interrupt, execution resumes to
the caller.

If the processor transitions to normal state via a PMI, execution resumes to the caller if PMIs are
masked, otherwise execution will resume to the PMI handler.

If the processor transitions to the normal state via a machine check or INIT, execution resumes to
the caller if machine checks and INITs are masked, otherwise execution will resume to the
corresponding handler.

If the processor transitions to the normal state via a reset event, the processor will reset itself and
start execution at the PAL reset address.

For more information on power management, please refer to Section 11.6 on page 2:281.

Argument Description
index Index of PAL_HALT_LIGHT within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_HALT_LIGHT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
2:334 Volume 2: Processor Abstraction Layer

PAL_LOGICAL_TO_PHYSICAL
Get Information on Logical to Physical Processor Mappings

Purpose: Returns information on the logical to physical processor mapping.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This procedure will return information about the logical processors contained on the physical
processor die that the procedure call is made on. A physical processor die can contain one or more
logical processors, organized into threads and cores. A logical processor is a
compute-capability-centric view of the CPU that allows the physical processor die to execute from
more than one instruction stream. A physical processor die that can execute from n instruction
streams has n logical processors. Threads are logical processors that share core pipeline execution
resources. Cores are defined as a collection of hardware that implements the main execution
pipeline of the processor. Multiple cores on a physical processor die do not share core pipeline
resources but may share caches and bus interfaces. A core may support multiple threads of
execution.

The log_overview return value provides an overview of the logical processors on the physical
processor die this procedure call was made on. The format of the log_overview return argument is
shown in Figure 11-32.

Argument Description
index Index of PAL_LOGICAL_TO_PHYSICAL within the list of PAL procedures.
proc_number Unsigned 64-bit integer that specifies for which logical processor information is being

requested. When this input argument is zero, in addition to information about the first logical
processor, log_overview contains the overview information as well. This input argument must
be in the range of zero up to one less than the number of logical processors returned by
num_log in the log_overview return value.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_LOGICAL_TO_PHYSICAL procedure.
log_overview The format of log_overview is shown in Figure 11-32. This value is only valid if the

proc_number input argument was zero when the procedure was called, otherwise it returns
zero.

proc_n_log_info1 The format of proc_n_log_info1 is shown in Figure 11-33.
proc_n_log_info2 The format of proc_n_log_info2 is shown in Figure 11-34.

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:335

PAL_LOGICAL_TO_PHYSICAL
• num_log – Total number of logical processors on this physical processor die that were
successfully booted.

• tpc – Threads per core. Number of threads per core.

• rv – Reserved

• cpp – Cores per processor. Total number of cores on this physical processor die.

• rv – Reserved

• ppid – Physical processor die ID. Physical processor die identifier which was assigned at reset
by the platform or bus controller. This value may or may not be unique across the entire
platform since it depends on the platform vendor's policy.

• rv – Reserved

As part of the processor boot flow, some testing of the processor occurs. There is a chance that a
thread experienced a testing failure that did not allow it to successfully boot. Due to this reason, it is
not ensured that num_log will always be equal to cpp multiplied by tpc.

The caller uses the value returned in num_log to gather additional information about the other
logical processors on the same physical processor die. This procedure will need to be called
multiple times (equal to the number of logical processors returned in num_log) to gather all
additional information about the logical processors on the physical processor die this procedure call
was made on. This procedure may be called from any logical processor on the physical processor
die to gather information about all the logical processors. Information about the logical processors
is in the return values proc_n_log_info1 and proc_n_log_info2. The format of these return values is
shown in Figure 11-33 and Figure 11-34.

• tid – thread id: The thread identifier of the logical processor for which information is being
returned. This value will be unique on a per core basis.

• rv – Reserved

• cid – core id: The core identifier of the logical processor for which information is being
returned. This value will be unique on a per physical processor die basis.

• rv – Reserved

There is no guarantee that the core id's and thread id's will be contiguous on a given physical
processor die.

Figure 11-32. Layout of log_overview Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tpc num_log

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv ppid rv cpp

Figure 11-33. Layout of proc_n_log_info1 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv tid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv cid
2:336 Volume 2: Processor Abstraction Layer

PAL_LOGICAL_TO_PHYSICAL
• la – logical address: geographical address of the logical processor for which information is
being returned. This is the same value that is returned by the PAL_FIXED_ADDR procedure
when it is called on the logical processor.

• rv – Reserved

This procedure must be supported on all implementations that contain more than one logical
processor on a physical processor die and returns an unimplemented procedure error code
otherwise.

Figure 11-34. Layout of proc_n_log_info2 Return Value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rv la

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rv
Volume 2: Processor Abstraction Layer 2:337

PAL_MC_CLEAR_LOG
Clear Processor Error Logging Registers

Purpose: Clears all processor error logging registers and reset the indicator that allows the error logging
registers to be written. This procedure also checks the pending machine check bit and pending INIT
bit and reports their states.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This procedure is called to clear processor error logging registers after all error information has
been obtained. This procedures re-enables the logging registers in the case of a subsequent error. It
clears any information that would be returned by either the PAL_MC_ERROR_INFO or
PAL_MC_DYNAMIC_STATE procedures.

This procedure does not clear any pending machine checks. The pending return parameter returns a
value of 0 if no subsequent event is pending, a 1 in bit position 0, if a machine check is pending,
and/or a 1 in bit position 1 if an INIT is pending. All other values are reserved.

Argument Description
index Index of PAL_MC_CLEAR_LOG within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_CLEAR_LOG procedure.
pending 64-bit vector denoting whether an event is pending.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-35. Pending Return Parameter
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved in mc

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved

Table 11-42. Pending Return Parameter Fields

Field name Description

mc Pending machine check

in Pending initialization event
2:338 Volume 2: Processor Abstraction Layer

PAL_MC_DRAIN
Complete Outstanding Transactions

Purpose: Ensures that all outstanding transactions in a processor are completed or that any MCA due to these
outstanding transactions is taken.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This call causes all outstanding transactions in the processor to be completed (i.e., loads get their
data returned, stores get issued to the bus, and prefetches are either completed or cancelled). As a
result of completing these outstanding transactions Machine Check Aborts (MCAs) may be taken.
This call is typically issued by code that needs to guarantee that no MCAs due to outstanding
transactions will occur after a given point.

Argument Description
index Index of PAL_MC_DRAIN within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_DRAIN procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:339

PAL_MC_DYNAMIC_STATE
Returns Dynamic Processor State

Purpose: Returns the Machine Check Dynamic Processor State.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: Returns the 8 bytes of Processor Dynamic State from the location specified by the offset argument.
This data is returned in an 8-byte return values, pds. The offset argument specifies the offset from
the start of the processor dependent error information area. The size return argument specifies the
number of bytes actually returned. In order to obtain all of the error information, software must call
PAL_MC_DYNAMIC_STATE with an initial offset value of 0, adding the size returned from the
previous call, until it returns a Status of -2 or the size is equal to 0.

The Processor Dynamic State is implementation dependent.

The information returned by this procedure is cleared by PAL_MC_CLEAR_LOG.

Argument Description
index Index of PAL_MC_DYNAMIC_STATE within the list of PAL procedures.
offset Offset of the next 8 bytes of Dynamic Processor State to return. (multiple of 8)
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_DYNAMIC_STATE procedure.
size Unsigned 64-bit integer denoting bytes of Dynamic Processor State returned.
pds Next 8 bytes of Dynamic Processor State.
Reserved 0

Status Value Description
0 Call completed without error

-1 Unimplemented procedure
-2 Invalid argument
-3 Call completed with error
2:340 Volume 2: Processor Abstraction Layer

PAL_MC_ERROR_INFO
Get Processor Error Information

Purpose: Returns the Processor Machine Check Information

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This procedure returns error information for machine checks as specified by info_index,
level_index and err_type_index. Higher level software is informed that additional machine check
information is available when the processor state parameter mi bit is set to one. See Table 11-5,
“Processor State Parameter Fields,” on page 2:268 for more information on the processor state
parameter and the mi bit description.

The info_index argument specifies which error information is being requested. See Table 11-43 for
the definition of the info_index values.

Argument Description
index Index of PAL_MC_ERROR_INFO within the list of PAL procedures.
info_index Unsigned 64-bit integer identifying the error information that is being requested. (See

Table 11-43).
level_index 8-byte formatted value identifying the structure to return error information on.(See Figure).
err_type_index Unsigned 64-bit integer denoting the type of error information that is being requested for the

structure identified in level_index.

Return Value Description
status Return status of the PAL_MC_ERROR_INFO procedure.
error_info Error information returned. The format of this value is dependant on the input values passed.
inc_err_type If this value is zero, all the error information specified by err_type_index has been returned. If

this value is one, more structure specific error information is available and the caller needs to
make this procedure call again with level_index unchanged and err_type_index,
incremented.

Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-6 Argument was valid, but no error information was available
Volume 2: Processor Abstraction Layer 2:341

PAL_MC_ERROR_INFO
All other values of info_index are reserved. When info_index is equal to 0 or 1, the level_index and
err_type_index input values are ignored. When info_index is equal to 2, the level_index and
err_type_index define the format of the error_info return value.

The caller is expected to first make this procedure call with info_index equal to zero to obtain the
processor error map. This error map informs the caller about the processor core identification, the
processor thread identification and indicates which structure(s) caused the machine check. If more
than one structure generated a machine check, multiple structure bits will be set. The caller then
uses this information to make sub-sequent calls to this procedure for each structure identified in the
processor error map to obtain detailed error information.

The level_index input argument specifies which processor core, processor thread and structure for
which information is being requested. See Table on page 2:343 for the definition of the level_index
fields. This procedure call can only return information about one processor structure at a time. The
caller is responsible for ensuring that only one structure bit in the level_index input argument is set
at a time when retrieving information, otherwise the call will return that an invalid argument was
passed.

Table 11-43. info_index Values

info_index Error Information Type Description

0 Processor Error Map This info_index value will return the processor
error map. This return value specifies the
processor core identification, the processor
thread identification, and a bit-map indicating
which structure(s) of the processor generated the
machine check. This bit-map has the same layout
as the level_index. A one in the structure bit-map
indicates that there is error information available
for the structure. The layout of the level_index is
described in Figure on page 2:342.

1 Processor State Parameter This info_index value will return the same
processor state parameter that is passed at the
PALE_CHECK exit state for a machine check
event (provided a valid min-state save area has
been registered) or will construct a processor
state parameter for a corrected machine check
events. This parameter describes the severity of
the error and the validity of the processor state
when the machine check or CMCI occurred. This
procedure will not return a valid PSP for INIT
events. The Processor State Parameter is
described in Figure 11-11, “Processor State
Parameter,” on page 2:268.

2 Structure Specific Error Information This info_index value will return error information
specific to a processor structure. The structure is
specified by the caller using the level_index and
err_type_index input parameters. The value
returned in error_info is specific to the structure
and type of information requested.

Figure 11-36. level_index Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

erf ebh edt eit edc eic tid cid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

rsvd ems
2:342 Volume 2: Processor Abstraction Layer

PAL_MC_ERROR_INFO
The convention for levels and hierarchy in the level_index field is such that the least significant bit
in the error information bit-fields represent the lowest level of the structures hierarchy. For example
bit 8 if the eic field represents the first level instruction cache.

The erf field is 4-bits wide to allow reporting of 4 concurrent register related machine checks at one
time. One bit would be set for each error. The ems field is 16-bits wide to allow reporting of
16-concurrent micro-architectural structures at one time. There is no significance in the order of
these bits. If only one register file related error occurred, it could be reported in any one of the
4-bits.

The err_type_index specifies the type of information will be returned in error_info for a particular
structure. See Table 11-45 for the values of err_type_index

Table 11-44. level_index Fields

Field Name Bit Description

cid 3:0 Processor core ID (default is 0 for processors with a single core)

tid 7:4 Logical thread ID (default is 0 for processors that execute a single thread)

eic 11:8 Error information is available for 1st, 2nd, 3rd, and 4th level instruction caches

edc 15:12 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified caches

eit 19:16 Error information is available for 1st, 2nd, 3rd, and 4th level instruction TLB

edt 23:20 Error information is available for 1st, 2nd, 3rd, and 4th level data/unified TLB

ebh 27:24 Error information is available for the 1st, 2nd, 3rd, and 4th level processor bus
hierarchy

erf 31:28 Error information is available on register file structures

ems 47:32 Error information is available on micro-architectural structures

rsvd 63:48 Reserved

Table 11-45. err_type_index Values

err_type_index
value mod 8

Return Value Description

0 Structure specific error information
specified by level_index

The information returned in error_info is dependant
on the structure specified in level_index. See
Table 11-46 for the error_info return formats.

1 Target address The target address is a 64-bit integer containing the
physical address where the data was to be
delivered or obtained. The target address also can
return the incoming address for external snoops
and TLB shoot-downs that generated a machine
check. The structure specific error information
informs the caller if there is a valid target address to
be returned for the requested structure.

2 Requester identifier The requester identifier is a 64-bit integer that
specifies the bus agent that generated the
transaction responsible for generating the machine
check. The structure specific error information
informs the caller if there is a valid requester
identifier.

3 Responder identifier The responder identifier is a 64-bit integer that
specifies the bus agent that responded to a
transaction that was responsible for generating the
machine check. The structure specific error
information informs the caller if there is a valid
responder identifier.
Volume 2: Processor Abstraction Layer 2:343

PAL_MC_ERROR_INFO
See Table 11-46 for the format of error_info when structure specific information is requested.

The structure specified by the level_index may have the ability to log distinct multiple errors. This
can occur if the structure is accessed at the same time by more than one instruction and the
processor can log machine check information for each access. To inform the caller of this
occurrence, this procedure will return a value of one in the inc_err_type return value.

It is important to note, that when the caller sees that the inc_err_type return value is one, it should
make a sub-sequent call with the err_type_index value incremented by 8. If the structure specific
error information returns that there is a valid target address, requester identifier, responder
identifier or precise instruction pointer these can be returned as well by incrementing the
err_type_index value in the same manner. Refer to the following example for more information.

For example, to gather information on the first error of a structure that can log multiple errors,
err_type_index would be called with the value of 0 first. The caller examines the information
returned in error_info to know if there is a valid target address, requester identifier, responder
identifier, or precise instruction pointer available for logging. If there is, it makes sub-sequent calls
with err_type_index equal to 1, 2, 3 and/or 4 depending on which valid bits are set. Additionally if
the inc_err_type return value was set to one, the caller knows that this structure logged multiple
errors. To get the second error of the structure it sets the err_type_index = 8 and the structure
specific information is returned in error_info. The caller examines this error_info to know if there
is a valid target address, requester identifier, responder identifier, or precise instruction pointer
available for logging on the second error. If there is, it makes sub-sequent calls with err_type_index
equal to 9, 10, 11, and/or 12 depending on which valid bits are set. The caller continues
incrementing the err_type_index value in this fashion until the inc_err_type return value is zero.

As shown in Table 11-46, the information returned in error_info varies based on which structure
information is being requested on. The next sections describe the error_info return format for the
different structures.

4 Precise instruction pointer The precise instruction pointer is a 64-bit virtual
address that points to the bundle that contained the
instruction responsible for the machine check. The
structure specific error information informs the caller
if there is a valid precise instruction pointer.

5-7 Reserved Reserved

Table 11-46. error_info Return Format when info_index = 2 and err_type_index = 0

level_index
field input

error_info return format

eic cache_check return format

edc cache_check return format

eit tlb_check return format

edt tlb_check return format

ebh bus_check return format

erf reg_file_check return format

ems uarch_check return format

Table 11-45. err_type_index Values (Continued)

err_type_index
value mod 8

Return Value Description
2:344 Volume 2: Processor Abstraction Layer

PAL_MC_ERROR_INFO
Cache_Check Return Format: The cache check return format is returned in error_info when the
user requests information on any instruction or data/unified caches in the level_index input
argument. The cache_check return format is a bit-field that is described in Figure 11-37 and
Table 11-47.

Figure 11-37. Cache_Check Layout

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

rsvd wiv way mv mesi ic dc tl dl rsvd level op

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is rsvd index

Table 11-47. Cache_Check Fields

Field
name

Bits Description

op 3:0 Type of cache operation that caused the machine check:

0 - unknown or internal error

1 - load

2 - store

3 - instruction fetch or instruction prefetch

4 - data prefetch (both hardware and software)

5 - snoop (coherency check)

6 - cast out (explicit or implicit write-back of a cache line)

7 - move in (cache line fill)

All other values are reserved.

level 5:4 Level of cache where the error occurred. A value of 0 indicates the first level of cache.

rsvd 7:6 Reserved

dl 8 Failure located in the data part of the cache line.

tl 9 Failure located in the tag part of the cache line.

dc 10 Failure located in the data cache

ic 11 Failure located in the instruction cache

mesi 14:12 0 - cache line is invalid.

1 - cache line is held shared.

2 - cache line is held exclusive.

3 - cache line is modified.

All other values are reserved.

mv 15 The mesi field in the cache_check parameter is valid.

way 20:16 Failure located in the way of the cache indicated by this value.

wiv 21 The way and index field in the cache_check parameter is valid.

rsvd 31:22 Reserved

index 51:32 Index of the cache line where the error occurred.

rsvd 53:52 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the cache_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the cache_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.
Volume 2: Processor Abstraction Layer 2:345

PAL_MC_ERROR_INFO
TLB_Check Return Format: The tlb_check return format is returned in error_info when the user
requests information on any instruction or data/unified TLB in the level_index input argument. The
tlb_check return format is a bit-field that is described in Figure 11-38 and Table 11-48.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Figure 11-38. TLB_Check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved op itc dtc itr dtr reserved level rv trv tr_slot

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-48. TLB_Check Fields

Field
name

Bits Description

tr_slot 7:0 Slot number of the translation register where the failure occurred.

trv 8 The tr_slot field in the TLB_check parameter is valid.

rv 9 Reserved

level 11:10 The level of the TLB where the error occurred. A value of 0 indicates the first level of TLB

reserved 15:12 Reserved

dtr 16 Error occurred in the data translation registers

itr 17 Error occurred in the instruction translation registers

dtc 18 Error occurred in data translation cache

itc 19 Error occurred in the instruction translation cache

op 23:20 Type of cache operation that caused the machine check:

0 - unknown

1 - TLB access due to load instruction

2 - TLB access due to store instruction

3 - TLB access due to instruction fetch or instruction prefetch

4 - TLB access due to data prefetch (both hardware and software)

5 - TLB shoot down access

6 - TLB probe instruction (probe, tpa)

7 - move in (VHPT fill)

8 - purge (insert operation that purges entries or a TLB purge instruction)

All other values are reserved.

reserved 53:24 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the TLB_check parameter is valid.

Table 11-47. Cache_Check Fields (Continued)

Field
name

Bits Description
2:346 Volume 2: Processor Abstraction Layer

PAL_MC_ERROR_INFO
Bus_Check Return Format: The bus_check return format is returned in error_info when the user
requests information on any level of hierarchy of the processor bus structures as specified in the
level_index input argument. The bus_check return format is a bit-field that is described in
Figure 11-39 and Table 11-49.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the TLB_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Figure 11-39. Bus Check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bsi rv hier sev type cc eb ib size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved

Table 11-49. Bus Check Fields

Field
name

Bits Description

size 4:0 Size in bytes of the transaction that caused the machine check abort.

ib 5 Internal bus error

eb 6 External bus error

cc 7 Error occurred during a cache to cache transfer.

type 15:8 Type of transaction that caused the machine check abort.

0 - unknown

1 - partial read

2 - partial write

3 - full line read

4 - full line write

5 - implicit or explicit write-back operation

6 - snoop probe

7 - incoming or outgoing ptc.g

8 - write coalescing transactions

9 - I/O space read

10 - I/O space write

11 - inter-processor interrupt message (IPI)

12 - interrupt acknowledge or external task priority cycle

All other values are reserved

Table 11-48. TLB_Check Fields (Continued)

Field
name

Bits Description
Volume 2: Processor Abstraction Layer 2:347

PAL_MC_ERROR_INFO
Reg_File_Check Return Format: The reg_file_check return format is returned in error_info
when the user requests information on any of the registers as specified in the level_index input
argument. The reg_file_check return format is a bit-field that is described in Figure 11-40 and
Table . When the reg_file_check return format is returned, the target address, the requester
identifier and the responder identifier will always be invalid.

sev 20:16 Bus error severity. The encodings of error severity are platform specific.

hier 22:21 This value indicates which level or bus hierarchy the error occurred in. A value of 0
indicates the first level of hierarchy.

reserved 23 Reserved

bsi 31:24 Bus error status information. It describes the type of bus error. This field is processor bus
specific.

reserved 53:32 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating the
machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier has
been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier has
been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise instruction
pointer has been logged.

Figure 11-40. Reg_File_Check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved rnv reg_num op id

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rsvd mcc pv pl iv is reserved

Table 11-49. Bus Check Fields (Continued)

Field
name

Bits Description
2:348 Volume 2: Processor Abstraction Layer

PAL_MC_ERROR_INFO
Uarch_Check Return Format: The uarch_check return format is returned in error_info when the
user requests information on any of the micro-architectural structures as specified in the level_index
input argument. The uarch_check return format is a bit-field that is described in Figure 11-41 and
Table 11-51.

Table 11-50. Reg_File_Check Fields

Field
name

Bits Description

id 3:0 Register file identifier:

0 - unknown/unclassified

1 - General register (bank1)

2 - General register (bank 0)

3 - Floating-point register

4 - Branch register

5 - Predicate register

6 - Application register

7 - Control register

8 - Region register

9 - Protection key register

10 - Data breakpoint register

11 - Instruction breakpoint register

12 - Performance monitor control register

13 - Performance monitor data register

All other values are reserved

op 7:4 Identifies the operation that caused the machine check

0 - unknown

1 - read

2 - write

All other values are processor specific

reg_num 14:8 Identifies the register number that was responsible for generating the machine check

rnv 15 Specifies if the reg_num field is valid

reserved 53:16 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the reg_file_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the reg_file_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

reserved 62:60 Reserved

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.
Volume 2: Processor Abstraction Layer 2:349

PAL_MC_ERROR_INFO
Figure 11-41. uarch_check Layout
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved xv wv way op array_id level sid

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

pi rp rq tv mcc pv pl iv is reserved index

Table 11-51. uarch_check Fields

Field
name

Bits Description

sid 4:0 Structure identification. These bits identify the micro-architectural structure where the
error occurred. The definition of these bits are implementation specific.

level 7:5 Level of the micro-architectural structure where the error was generated. A value of 0
indicates the first level.

array_id 11:8 Identification of the array in the micro architectural structure where the error was
generated.

0 - unknown/unclassified

All other values are implementation specific

op 15:12 Type of operation that caused the error

0 - unknown

1 - read or load

2 - write or store

All other values are implementation specific

way 21:16 Way of the micro-architectural structure where the error was located.

wv 22 The way field in the uarch_check parameter is valid.

xv 23 The index field in the uarch_check parameter is valid.

reserved 31:24 Reserved

index 39:32 Index or set of the micro-architectural structure where the error was located.

reserved 53:40 Reserved

is 54 Instruction set. If this value is set to zero, the instruction that generated the machine
check was an Intel® Itanium® instruction. If this bit is set to one, the instruction that
generated the machine check was IA-32 instruction.

iv 55 The is field in the bus_check parameter is valid.

pl 57:56 Privilege level. The privilege level of the instruction bundle responsible for generating
the machine check.

pv 58 The pl field of the bus_check parameter is valid.

mcc 59 Machine check corrected: This bit is set to one to indicate that the machine check has
been corrected.

tv 60 Target address is valid: This bit is set to one to indicate that a valid target address has
been logged.

rq 61 Requester identifier: This bit is set to one to indicate that a valid requester identifier
has been logged.

rp 62 Responder identifier: This bit is set to one to indicate that a valid responder identifier
has been logged.

pi 63 Precise instruction pointer. This bit is set to one to indicate that a valid precise
instruction pointer has been logged.
2:350 Volume 2: Processor Abstraction Layer

PAL_MC_EXPECTED
Set/Reset Expected Machine Check Indicator

Purpose: Informs PALE_CHECK whether a machine check is expected so that PALE_CHECK will not
attempt to correct any expected machine checks.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: If the argument expected contains a value of 1, an implementation-dependent hardware resource is
set to inform PALE_CHECK to expect a machine check. If the argument expected is 0, the resource
is reset, so that PALE_CHECK does not expect any following machine checks. All other values of
expected are reserved.

The implementation-dependent hardware resource should be, by default, in the “not expected”
state. Software or firmware should only call PAL_MC_EXPECTED immediately prior to issuing
an instruction which might generated an expected machine check. It should then immediately reset
the bit to the “not expected” state after checking the results of the operation.

The previous return parameter indicates the previous state of the hardware resource to inform
PALE_CHECK of an expected machine check. A value of 0 indicates that a machine check was not
expected. A value of 1 indicated that a machine check was expected. All other values of previous
are reserved.

Argument Description
index Index of PAL_MC_EXPECTED within the list of PAL procedures.
expected Unsigned integer with a value of 0 or 1 to set or reset the hardware resource PALE_CHECK

examines for expected machine checks.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_EXPECTED procedure.
previous Unsigned integer denoting whether a machine check was previously expected.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:351

PAL_MC_REGISTER_MEM
Register Memory with PAL for Machine Check and Init

Purpose: Registers a platform dependent location with PAL to which it can save minimal processor state in
the event of a machine check or initialization event.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: PAL places the address passed in the XR0 register, which is used by PAL as the min-state save area
in the event of a machine check or initialization event. The size and layout of the area referenced by
the address parameter is defined in Section 11.3.2.3. The address must be aligned on a 512 byte
boundary. The min-state save area must be in uncacheable memory.

Argument Description
index Index of PAL_MC_REGISTER_MEM within the list of PAL procedures.
address Physical address of the buffer to be registered with PAL.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MC_REGISTER_MEM procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
2:352 Volume 2: Processor Abstraction Layer

PAL_MC_RESUME
Restore Minimal Architected State and Return

Purpose: Restores the minimal architectural processor state, sets the CMC interrupt if necessary, and
resumes execution.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: This procedure will restore the processor minimal architected state and optionally set the CMC
interrupt.

If the set_cmci argument is set to one, this procedure will set the CMC interrupt and return to the
interrupted context. The CMC interrupt handler will be invoked sometime after returning to the
interrupted context.

The save_ptr argument specifies the processor min-state save area buffer from which the processor
state will be restored. This pointer has the same alignment and size restrictions as the address
passed to PAL_MC_REGISTER_MEM procedure on page 2:352.

This procedure is used to resume execution of the interrupted context for both machine check and
initialization events. This procedure can resume execution to the same context or a new context. If
software attempts to resume execution for these events without using this call, processor behavior
is undefined.

If the caller is resuming to the same context, the new_context argument must be set to 0 and the
save_ptr argument has to point to a copy of the min-state save area written by PAL when the event
occurred.

If the caller is resuming to a new context, the new_context argument must be set to 1 and the
save_ptr argument must point to a new min-state save area set up by the caller.

Please see Section 11.3.3 on page 2:273 3for more information on resuming to the interrupted
context.

Argument Description
index Index of PAL_MC_RESUME within the list of PAL procedures.
set_cmci Unsigned 64 bit integer denoting whether to set the CMC interrupt. A value of 0 indicates not

to set the interrupt, a value of 1 indicated to set the interrupt, and all other values are
reserved.

save_ptr Physical address of min-state save area used to used to restore processor state.
new_context Unsigned 64-bit integer denoting whether the caller is returning to a new context. A value of

0 indicates the caller is returning to the interrupted context, a value of 1 indicates that the
caller is returning to a new context.

Return Value Description
status Return status of the PAL_MC_RESUME procedurea.

a. This procedure returns to the caller only in an error situation.

Reserved 0
Reserved 0
Reserved 0

Status Value Description
-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:353

PAL_MEM_ATTRIB
Get Memory Attributes

Purpose: Returns the memory attributes implemented by processor.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: Returns a 8-bit vector in the low order 8 bits of the return register that specifies the set of memory
attributes implemented by the processor. The return register is formatted as follows:

Each bit in the bit field ma represents one of the eight possible memory attributes implemented by
the processor. The bit field position corresponds to the numeric memory attribute encoding defined
in Section 4.4, “Memory Attributes.”

Argument Description
index Index of PAL_MEM_ATTRIB within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_MEM_ATTRIB procedure.
attrib 8-bit vector of memory attributes implemented by processor.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-42. Layout of attrib Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved ma

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved
2:354 Volume 2: Processor Abstraction Layer

PAL_PERF_MON_INFO
Get Processor Performance Monitor Information

Purpose: Returns Performance Monitor information about what can be counted and how to configure the
monitors to count the desired events.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: PAL_PERF_MON_INFO is called to determine the number of performance monitors and the
events which can be counted on the performance monitors. For more information on performance
monitoring, see Section 7.2, “Performance Monitoring.” pm_info is a formatted 64-bit return
register, as shown in Figure 11-43.

.

The pm_buffer argument points to a 128-byte memory area where mask information is returned.
The layout of pm_buffer is shown in Table 11-53.

Argument Description
index Index of PAL_PERF_MON_INFO within the list of PAL procedures.
pm_buffer An address to an 8-byte aligned 128-byte memory buffer.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PERF_MON_INFO procedure.
pm_info Information about the performance monitors implemented.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-43. Layout of PM_info Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

retired cycles width generic

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-52. PM_info Fields

Field name Description

generic Unsigned 8-bit number defining the number of generic PMC/PMD pairs.

width Unsigned 8-bit number in the range 0:60 defining the number of implemented counter bits.

cycles Unsigned 8-bit number defining the event type for counting processor cycles.

retired Unsigned 8-bit number defining the event type for retired instruction bundles.

Table 11-53. PM_buffer Layout

Offset Description

0x0 256-bit mask defining which PMC registers are implemented.

0x20 256-bit mask defining which PMD registers are implemented.

0x40 256-bit mask defining which registers can count cycles.

0x60 256-bit mask defining which registers can count retired bundles.
Volume 2: Processor Abstraction Layer 2:355

PAL_PLATFORM_ADDR
Set Processor Interrupt Block Address and I/O Port Space Address

Purpose: Specifies the physical address of the processor Interrupt Block and I/O Port Space.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: PAL_PLATFORM_ADDR specifies the physical address that the processor shall interpret as
accesses to the SAPIC memory or the I/O Port space areas.

The default value for the Interrupt block pointer is 0x00000000 FEE00000. If an alternate address
is selected by this call, it must be aligned on a 2 MB boundary, else the procedure will return an
error status. The address specified must also not overlay any firmware addresses in the 16 MB
region immediately below the 4GB physical address boundary.

The default value for the I/O block pointer is to the beginning of the 64 MB block at the highest
physical address supported by the processor. Therefore, its physical address is implementation
dependent. If an alternate address is selected by this call, it must be aligned on a 64MB boundary,
else the procedure will return an error status. The address specified must also not overlay any
firmware addresses in the 16 MB region immediately below the 4GB physical address boundary.

The Interrupt and I/O Block pointers should be initialized by firmware before any Inter-Processor
Interrupt messages or I/O Port accesses. Otherwise the default block pointer values will be used.

Argument Description
index Index of PAL_PLATFORM_ADDR within the list of PAL procedures.
type Unsigned 64-bit integer specifying the type of block. 0 indicates that the processor interrupt

block pointer should be initialized. 1 indicates that the processor I/O block pointer should be
initialized.

address Unsigned 64-bit integer specifying the address to which the processor I/O block or interrupt
block shall be set. The address must specify an implemented physical address on the
processor model, bit 63 is ignored.

Reserved 0

Return Value Description
status Return status of the PAL_PLATFORM_ADDR procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
2:356 Volume 2: Processor Abstraction Layer

PAL_PMI_ENTRYPOINT
Setup SAL PMI Entrypoint in Memory

Purpose: Sets the SAL PMI entrypoint in memory.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: This procedure is called to set the SAL PMI entrypoint so that the SAL PMI code shall be executed
out of main memory instead of the firmware address space. Some processor implementations will
allow initialization of the PMI entrypoint only once. Under those situations, this procedure may be
called only once after a boot to initialize the PMI entrypoint register. Subsequent calls will return a
status of -3. This call must be made before PMI is enabled by SAL.

Argument Description
index Index of PAL_PMI_ENTRYPOINT within the list of PAL procedures.
SAL_PMI_entry 256-byte aligned physical address of SAL PMI entrypoint in memory.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PMI_ENTRYPOINT procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:357

PAL_PREFETCH_VISIBILITY
Make Processor Prefetches Visible

Purpose: Used in the architected sequences for memory attribute transitions described in Section 4.4.11,
“Memory Attribute Transition” to transition a page (or set of pages) from a one memory attribute to
another.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: This call is intended to be used only in the architected sequences described in Section 4.4.11,
“Memory Attribute Transition.” Use of this procedure outside the context of this sequence results
in undefined behavior.

The trans_type input indicates if a user is transitioning virtual addressing memory attributes (input
value of 0) or physical addressing memory attributes (input value of 1). All other values are
reserved.

This procedure, when used for transitioning virtual memory attributes, will ensure that all
prefetches that were initiated by the processor to the cacheable, speculative memory prior to the
call, will either not be cached; have been aborted; or are visible to subsequent fc instructions.
(from both the local processor and from remote processors).

This procedure when used for transitioning physical memory attributes will ensure that all
prefetches that were initiated by the processor to the cacheable, limited speculative memory prior to
the call, will either not be cached; have been aborted; or are visible to subsequent fc instructions
(from both the local processor and from remote processors). It will also terminate the ability for the
processor to make speculative references to any limited speculation pages. For the processor to
make any speculative reference to a limited speculation page after this call, there must be a
non-speculative reference made to that page after this call.

If the processor implementation does not require this procedure call to be made on remote
processors in the sequences, this procedure will return a 1 upon successful completion.

A return value of 0 upon successful completion of this procedure is an indication to software that
the processor implementation requires that this call be performed on all processors in the coherence
domain to make prefetches visible in the sequences.

These return code can be used to tune the architected sequence to the particular system on which is
running; see Section 4.4.11, “Memory Attribute Transition” for details.

Argument Description
index Index of PAL_PREFETCH_VISIBILITY within the list of PAL procedures.
trans_type Unsigned integer specifying the type of memory attribute transition that is being performed
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PREFETCH_VISIBILITY procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; this call is not necessary on remote processors
0 Call completed without error; this call must also be performed on all remote processors in the

coherence domain
-2 Invalid argument
-3 Call completed with error
2:358 Volume 2: Processor Abstraction Layer

PAL_PROC_GET_FEATURES
Get Processor Dependent Features

Purpose: Provides information about configurable processor features.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES and PAL_PROC_SET_FEATURES procedure calls are used
together to describe current settings of processor features and to allow modification of some of
these processor features.

The feature_set input argument for PAL_PROC_GET_FEATURES describes which processor
feature_set information is being requested. Table 11-54 describes processor feature_set zero. The
feature_set values are split into two categories: architected and implementation-specific. The
architected feature_sets have values from 0-15. The implementation-specific feature_sets are
values 16 and above. The architected feature_sets are described in this document. The
implementation-specific feature_sets are described in processor-specific documentation.

This procedure will return an invalid argument if an unsupported architectural feature_set is passed
as an input. Implementation-specific feature_sets will start at 16 and will expand in an ascending
order as new implementation-specific feature_sets are added. The return status is used by the caller
to know which implementation-specific feature_sets are currently supported on a particular
processor.

For each valid feature_set, this procedure returns which processor features are implemented in the
features_avail return argument, the current feature setting is in feature_status return argument, and
the feature controllability in the feature_control return argument. Only the processor features which
are implemented and controllable can be changed via PAL_PROC_SET_FEATURES.

In Table 11-54, the class field indicates whether a feature is required to be available (Req.) or is
optional (Opt.). The control field indicates which features are required to be controllable. Req.
indicates that the feature must be controllable, Opt. indicates that the feature may optionally be
controllable, and No indicates that the feature cannot be controllable. The control field applies only
when the feature is available. The sense of the bits is chosen so that for features which are
controllable, the default hand-off value at exit from PALE_RESET should be 0. PALE_CHECK
and PALE_INIT will not modify these features.

Argument Description
index Index of PAL_PROC_GET_FEATURES within the list of PAL procedures.
Reserved 0
feature_set Feature set information is being requested for.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_GET_FEATURES procedure.
features_avail 64-bit vector of features implemented. See Table 11-54.
feature_status 64-bit vector of current feature settings. See Table 11-54.
feature_control 64-bit vector of features controllable by software.

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported
Volume 2: Processor Abstraction Layer 2:359

PAL_PROC_GET_FEATURES
Table 11-54. Processor Features

Bit Class Control Description

63 Opt. Req. Enable BERR promotion. When 1, the Bus Error (BERR) signal is promoted to the
Bus Initialization (BINIT) signal, and the BINIT pin is asserted on the occurrence of
each Bus Error. Setting this bit has no effect if BINIT signalling is disabled. (See
PAL_BUS_GET/SET_FEATURES)

62 Opt. Req. Enable MCA promotion. When 1, machine check aborts (MCAs) are promoted to the
Bus Error signal, and the BERR pin is assert on each occurrence of an MCA. Setting
this bit has no effect if BERR signalling is disabled. (See PAL_BUS_GET/
SET_FEATURES)

61 Opt. Req. Enable MCA to BINIT promotion. When 1, machine check aborts (MCAs) are
promoted to the Bus Initialization signal, and the BINIT pin is assert on each
occurrence of an MCA. Setting this bit has no effect if BINIT signalling is disabled.
(See PAL_BUS_GET/SET_FEATURES)

60 Opt. Req. Enable CMCI promotion When 1, Corrected Machine Check Interrupts (CMCI) are
promoted to MCAs. They are also further promoted to BERR if bit 39, Enable MCA
promotion, is also set and they are promoted to BINIT if bit 38, Enable MCA to BINIT
promotion, is also set. This bit has no effect if MCA signalling is disabled (see
PAL_BUS_GET/SET_FEATURES)

59 Opt. Req. Disable Cache. When 0, the processor performs cast outs on cacheable pages and
issues and responds to coherency requests normally. When 1, the processor
performs a memory access for each reference regardless of cache contents and
issues no coherence requests and responds as if the line were not present. Cache
contents cannot be relied upon when the cache is disabled.

WARNING: Semaphore instructions may not be atomic or may cause Unsupported
Data Reference faults if caches are disabled.

58 Opt. Req. Disable Coherency. When 0, the processor uses normal coherency requests and
responses. When 1, the processor answers all requests as if the line were not
present.

57 Opt. Req. Disable Dynamic Power Management (DPM). When 0, the hardware may reduce
power consumption by removing the clock input from idle functional units. When 1,
all functional units will receive clock input, even when idle.

56 Opt. Req. Disable a BINIT on internal processor time-out. When 0, the processor may generate
a BINIT on an internal processor time-out. When 1, the processor will not generate a
BINIT on an internal processor time-out. The event is silently ignored.

55 Opt. Req. Enable external notification when the processor detects hardware errors caused by
environmental factors that could cause loss of deterministic behavior of the
processor. When 1, this bit will enable external notification, when 0 external
notification is not provided. The type of external notification of these errors is
processor-dependent. A loss of processor deterministic behavior is considered to
have occurred if these environmentally induced errors cause the processor to
deviate from its normal execution and eventually causes different behavior which can
be observed at the processor bus pins. Processor errors that do not have this effects
(i.e., software induced machine checks) may or may not be promoted depending on
the processor implementation.

54-
48

N/A N/A reserved

47 Opt. Opt. Disable Dynamic branch prediction. When 0, the processor may predict branch
targets and speculatively execute, but may not commit results. When 1, the
processor must wait until branch targets are known to execute.

46 Opt Opt. Disable Dynamic Instruction Cache Prefetch. When 0, the processor may prefetch
into the caches any instruction which has not been executed, but whose execution is
likely. When 1, instructions may not be fetched until needed or hinted for execution.
(Prefetch for a hinted branch is allowed even when dynamic instruction cache
prefetch is disabled.)
2:360 Volume 2: Processor Abstraction Layer

PAL_PROC_GET_FEATURES
45 Opt. Opt. Disable Dynamic Data Cache Prefetch. When 0, the processor may prefetch into the
caches any data which has not been accessed by instruction execution, but which is
likely to be accessed. When 1, no data may be fetched until it is needed for
instruction execution or is fetched by an lfetch instruction.

44 Opt. Req. Disable Spontaneous Deferral. When 1, the processor may optionally defer
speculative loads that do not encounter any exception conditions, but that trigger
other implementation-dependent conditions (e.g., cache miss). This behavior is
gated by the programming model described in Section 5.5.5, “Deferral of Speculative
Load Faults” on page 2:88. When 0, spontaneous deferral is disabled.

43 Opt. Opt. Disable Dynamic Predicate Prediction. When 0, the processor may predict predicate
results and execute speculatively, but may not commit results until the actual
predicates are known. When 1, the processor shall not execute predicated
instructions until the actual predicates are known.

42 Opt. No XR1 through XR3 implemented. Denotes whether XR1 - XR3 are implemented for
machine check recovery. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

41 Opt. No XIP, XPSR, and XFS implemented. Denotes whether XIP, XPSR, and XFS are
implemented for machine check recovery. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

40-
0

N/A N/A reserved

38 Opt. No Simple implementation of unimplemented instruction addresses. Denotes how an
unimplemented instruction address is recorded in IIP on an Unimplemented
Instruction Address trap. When 1, the full unimplemented address is recorded in IIP;
when 0, the address is sign extended (virtual addresses) or zero extended (physical
addresses). See Section 3.3.5.3, “Interruption Instruction Bundle Pointer (IIP –
CR19)” for details. This feature may only be interrogated by
PAL_PROC_GET_FEATURES. It may not be enabled or disabled by
PAL_PROC_SET_FEATURES. The corresponding argument is ignored.

Table 11-54. Processor Features (Continued)

Bit Class Control Description
Volume 2: Processor Abstraction Layer 2:361

PAL_PROC_SET_FEATURES
Set Processor Dependent Features

Purpose: Enables/disables specific processor features.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: PAL_PROC_GET_FEATURES should be called to ascertain the implemented processor features
and their current setting before calling PAL_PROC_SET_FEATURES. The list of possible
processor features is defined in Table 11-54. Any attempt to set processor features which cannot be
set will be ignored.

Argument Description
index Index of PAL_PROC_SET_FEATURES within the list of PAL procedures.
feature_select 64-bit vector denoting desired state of each feature (1=select, 0=non-select).
feature_set Feature set to apply changes to. See PAL_PROC_GET_FEATURES for more information on

feature sets.
Reserved 0

Return Value Description
status Return status of the PAL_PROC_SET_FEATURES procedure.
Reserved 0
Reserved 0
Reserved 0

Status Value Description
1 Call completed without error; The feature_set passed is not supported but a feature_set of a

larger value is supported
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
-8 feature_set passed is beyond the maximum feature_set supported
2:362 Volume 2: Processor Abstraction Layer

PAL_PTCE_INFO
Get PTCE Purge Loop Information

Purpose: Returns information required for the architected loop used to purge (initialize) the entire TC.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: No explicit hardware support is required by this call. See the purge loop example in the description
of the ptc.e instruction in Chapter 2, “Instruction Reference” in Volume 3.

Argument Description
index Index of PAL_PTCE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_PTCE_INFO procedure.
tc_base Unsigned 64-bit integer denoting the beginning address to be used by the first PTCE

instruction in the purge loop.
tc_counts Two unsigned 32-bit integers denoting the loop counts of the outer (loop 1) and inner (loop 2)

purge loops. count1 (loop 1) is contained in bits 63:32 of the parameter, and count2 (loop 2)
is contained in bits 31:0 of the parameter.

tc_strides Two unsigned 32-bit integers denoting the loop strides of the outer (loop 1) and inner (loop 2)
purge loops. stride1 (loop 1) is contained in bits 63:32 of the parameter, and stride2 (loop 2)
is contained in bits 31:0 of the parameter.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
Volume 2: Processor Abstraction Layer 2:363

PAL_REGISTER_INFO
Return Information about Implemented Processor Registers

Purpose: Returns information about implemented Application and Control Registers.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

This procedure is called to obtain information about the implementation of Application Registers
and Control Registers. Table 11-55 shows the information that is returned for each request.

Argument Description
index Index of PAL_REGISTER_INFO within the list of PAL procedures.
info_request Unsigned 64-bit integer denoting what register information is requested.
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_REGISTER_INFO procedure.
reg_info_1 64-bit vector denoting information for registers 0-63. Bit 0 is register 0, bit 63 is register 63.
reg_info_2 64-bit vector denoting information for registers 64-127. Bit 0 is register 64, bit 63 is register

127.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Table 11-55. info_request Return Value

info_request Meaning of Return Bit Vector

0 A 0-bit in the return vector indicates that the corresponding Application Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Application
Register is implemented.

1 A 0-bit in the return vector indicated that the corresponding Application Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Application
registers may cause side effects when read.

2 A 0-bit in the return vector indicates that the corresponding Control Register is not
implemented, a 1-bit in the return vector indicates that the corresponding Control Register is
implemented.

3 A 0-bit in the return vector indicated that the corresponding Control Register can be read
without side effects, a 1-bit in the return vector indicated that the corresponding Control
Register may cause side effects when read.

All others Reserved.
2:364 Volume 2: Processor Abstraction Layer

PAL_RSE_INFO
Get RSE Information

Purpose: Returns information about the register stack and RSE for this processor implementation.

Calling Conv: Static Registers Only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: The return parameter phys_stacked contains a 64-bit unsigned integer that specifies the number of
physical registers implemented by the processor for the stacked general registers, r32-r127.
phys_stacked will be an integer multiple of 16 greater than or equal to 96.

The return parameter hints contains a 2-bit field that specifies which RSE load/store hints are
implemented.

A bit field value of 1 specifies that the corresponding mode is implemented; a value of 0 specifies
that the mode is not implemented. The bit field encodings are:

“Lazy” is the default RSE mode and must be implemented. Hardware is not required to implement
any of the other modes.

Argument Description
index Index of PAL_RSE_INFO within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_RSE_INFO procedure.
phys_stacked Number of physical stacked general registers.
hints RSE hints supported by processor.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-44. Layout of hints Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved li si

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved

Table 11-56. RSE Hints Implemented

li si RSE Hints Class

0 0 enforced lazy Required

0 1 eager stores Optional

1 0 eager loads Optional

1 1 eager stores and loads Optional
Volume 2: Processor Abstraction Layer 2:365

PAL_TEST_INFO
Information for Processor Self-test

Purpose: Returns the alignment and size requirements needed for the memory buffer passed to the
PAL_TEST_PROC procedure as well as information on self-test control words for the processor
self-tests.

Calling Conv: Static Registers Only

Mode: Physical

Arguments:

Returns:

Status:

Description: PAL_TEST_INFO returns the size and alignment requirements for the memory buffer that is
passed to the PAL_TEST_PROC procedure and returns information on the implementation of the
self-test control word based on the test_phase input argument. Please see Section 11.2.3, “PAL
Self-test Control Word” on page 2:264 for more information on the self-test control word.

When test_phase is equal to zero, information is returned about phase two of the processor self-test.
These are the tests that require external memory to execute properly. When test_phase is equal to
one, information is returned about phase one of the processor self-test. These are the tests that are
normally run during PALE_RESET and do not require external memory to properly execute. When
information is requested about phase one of the processor self-test a memory buffer and alignment
argument will be returned as well since these tests may need to save and restore processor state to
this memory buffer if executed from the PAL_TEST_PROC procedure.

Argument Description
index Index of PAL_TEST_INFO within the list of PAL procedures.
test_phase Unsigned integer that specifies which phase of the processor self-test information is being

requested on. A value of 0 indicates the phase two of the processor self-test and a value of 1
indicates phase one of the processor self-test. All other values are reserved.

Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_TEST_INFO procedure.
bytes_needed Unsigned 64-bit integer denoting the number of bytes of main memory needed to perform

the second phase of processor self-test.
alignment Unsigned 64-bit integer denoting the alignment required for the memory buffer.
st_control 48-bit wide bit-field indicating if control of the processor self-tests is supported and which bits

of the test_control field are defined for use.

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error
2:366 Volume 2: Processor Abstraction Layer

PAL_TEST_PROC
Perform a Processor Self-test

Purpose: Performs the second phase of processor self test.

Calling Conv: Stacked Registers

PAL_TEST_PROC may modify some registers marked unchanged in the Stacked Register calling
convention. See additional description below.

Mode: Physical

Arguments:

Returns:

Status:

Description: The PAL_TEST_PROC procedure will perform a phase of the processor self-tests as directed by
the test_info and the test_control input parameters.

test_address points to a contiguous memory region to be used by PAL_TEST_PROC. This memory
region must be aligned as specified by the alignment return value from PAL_TEST_INFO,
otherwise this procedure will return with an invalid argument return value. The PAL_TEST_PROC
routine requires that the memory has been initialized and that there are no known uncorrected
errors in the allocated memory.

The test_info input parameter specifies the size of the memory buffer passed to the procedure and
which phase of the processor self-test is requested to be run (either phase one or phase two).

• buffer_size indicates the size in bytes of the memory buffer that is passed to this procedure.
buffer_size must be greater than or equal in size to the bytes_needed return value from
PAL_TEST_INFO, otherwise this procedure will return with an invalid argument return value.

• test_phase defines which phase of the processor self-tests are requested to be run. A value of
zero indicates to run phase two of the processor self-tests. Phase two of the processor self-tests
are ones that require external memory to execute correctly. A value of one indicates to run
phase one of the processor self-tests. Phase one of the processor self-tests are tests run during

Argument Description
index Index of PAL_TEST_PROC within the list of PAL procedures.
test_address 64-bit physical address of main memory area to be used by processor self-test. The memory

region passed must be cacheable, bit 63 must be zero.
test_info Input argument specifying the size of the memory buffer passed and the phase of the

processor self-test that should be run. See Figure 11-45.
test_params Input argument specifying the self-test control word and the allowable memory attributes that

can be used with the memory buffer. See Figure 11-46.

Return Value Description
status Return status of the PAL_TEST_PROC procedure.
self-test_state Formatted 8-byte value denoting the state of the processor after self-test. The format is

described in Section 11.2.2.2, “Definition of Self Test State Parameter” on page 2:262.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error
-2 Invalid argument
-3 Call completed with error

Figure 11-45. Layout of test_info Argument
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

buffer_size

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_phase buffer_size
Volume 2: Processor Abstraction Layer 2:367

PALE_RESET and do not depend on external memory to run correctly. When the caller
requests to have phase one of the processor self-test run via this procedure call, a memory
buffer may be needed to save and restore state as required by the PAL calling conventions. The
procedure PAL_TEST_INFO informs the caller about the requirements of the memory buffer.

The test_params input argument specifies which memory attributes are allowed to be used with the
memory buffer passed to this procedure as well as the self-test control word. The self-test control
word test_control controls the run-time and coverage of the processor self-test phase specified in
the test_phase parameter.

• attributes specifies the memory attributes that are allowed to be used with the memory buffer
passed to this procedure. The attributes parameter is a vector where each bit represents one of
the virtual memory attributes defined by the architecture. The bit field position corresponds to
the numeric memory attribute encoding defined in Section 4.4, “Memory Attributes.” The
caller is required to support the cacheable attribute for the memory buffer, otherwise an invalid
argument will be returned.

• test_control is the self-test control word corresponding to the test_phase passed. This
test_control directs the coverage and run-time of the processor self-tests specified by the
test_phase input argument. Information about the self-test control word can be found in
Section 11.2.3, “PAL Self-test Control Word” on page 2:264 and information on if this feature
is implemented and the number of bits supported can be obtained by the PAL_TEST_INFO
procedure call. If this feature is implemented by the processor, the caller can selectively skip
parts of the processor self-test by setting test_control bits to a one. If a bit has a zero, this test
will be run. The values in the unimplemented bits are ignored. If PAL_TEST_INFO indicated
that the self-test control word is not implemented, this procedure will return with an invalid
argument status if the caller sets any of the test_control bits.

PAL_TEST_PROC will classify the processor after the self-test in one of four states:
CATASTROPHIC FAILURE, FUNCTIONALLY RESTRICTED, PERFORMANCE
RESTRICTED, or HEALTHY. These processor self-test states are described in Figure 11-9 on
page 2:262. If PAL_TEST_PROC returns in the FUNCTIONALLY RESTRICTED or
PERFORMANCE RESTRICTED states the self-test_status return value can provide additional
information regarding the nature of the failure. In the case of a CATASTROPHIC FAILURE, the
procedure does not return.

The procedure will only perform memory accesses to the buffer passed to it using the memory
attributes indicated in the attributes bit-field. The caller must ensure that the memory region passed
to the procedure is in a coherent state.

PAL_TEST_PROC may modify PSR bits or system registers as necessary to test the processor.
These bits or registers must be restored upon exit from PAL_TEST_PROC with the exception of
the translation caches, which are evicted as a result of testing. PAL_TEST_PROC is free to
invalidate all cache contents. If the caller depends on the contents of the cache, they should be
flushed before making this call. PAL_TEST_PROC requires that the RSE is set up properly to
handle spills and fills to a valid memory location if the contents of the register stack are needed.
PAL_TEST_PROC requires that the memory buffer passed to it is not shared with other processors
running this procedure in the system at the same time. PAL_TEST_PROC will use this memory
region in a non-coherent manner.

Figure 11-46. Layout of test_param Argument
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

test_control reserved attributes

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

test_control
2:368 Volume 2: Processor Abstraction Layer

PAL_VERSION
Get PAL Version Number Information

Purpose: Returns PAL version information.

Calling Conv: Static registers only

Mode: Physical or Virtual

Arguments:

Returns:

Status:

Description: PAL_VERSION provides the caller the minimum PAL version needed for proper operation of the
processor as well as the current PAL version running on the processor.

The min_pal_ver and current_pal_ver return values are 8-byte values in the following format:

• PAL_B_version is a 16-bit binary coded decimal (BCD) number that provides identification
information about the PAL_B firmware.

• PAL_vendor is an unsigned 8-bit integer indicating the vendor of the PAL code.

• PAL_A_version is a 16-bit binary coded decimal (BCD) number that provides identification
information about the PAL_A firmware. In the split PAL_A model, this return value is the
version number of the processor-specific PAL_A. The generic PAL_A version is not returned
by this procedure in the split PAL_A model.

The version numbers selected for the PAL_A and PAL_B firmware is specific to the PAL_vendor.
The version numbers selected will always have the property that later versions of firmware will
have a higher number than earlier versions of firmware.

Argument Description
index Index of PAL_VERSION within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VERSION procedure.
min_pal_ver 8-byte formatted value returning the minimum PAL version needed for proper operation of

the processor. See Figure 11-47.
current_pal_ver 8-byte formatted value returning the current PAL version running on the processor. See

Figure 11-47.
Reserved 0

Status Value Description
0 Call completed without error

-2 Invalid argument
-3 Call completed with error

Figure 11-47. Layout of min_pal_ver and current_pal_ver Return Values
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAL_vendor Reserved PAL_B_version

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved PAL_A_version
Volume 2: Processor Abstraction Layer 2:369

PAL_VM_INFO
Get Virtual Memory Information

Purpose: Return information about the virtual memory characteristics of the processor implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: The tc_info return is an 8-byte quantity in the following format:

• num_sets – unsigned 8-bit integer denoting the number of hash sets for the specified level
(1=fully associative)

• num_ways – unsigned 8-bit integer denoting the associativity of the specified level (1=direct).

• num_entries – unsigned 16-bit integer denoting the number of entries in the specified TC.

• pf – flag denoting whether the specified level is optimized for the region’s preferred page size
(1=optimized). tc_pages indicates which page sizes are usable by this translation cache.

• ut – flag denoting whether the specified TC is unified (1=unified).

• tr – flag denoting whether installed translation registers will reduce the number of entries
within the specified TC.

The num_entries will always equal num_ways * num_sets. For a direct mapped TC, num_ways = 1
and num_sets = num_entries. For a fully associative TC, num_sets = 1 and num_ways =
num_entries.

Argument Description
index Index of PAL_VM_INFO within the list of PAL procedures.
tc_level Unsigned 64-bit integer specifying the level in the TLB hierarchy for which information is

required. This value must be between 0 and one less than the value returned in the
vm_info_1.num_tc_levels return value from PAL_VM_SUMMARY.

tc_type Unsigned 64-bit integer with a value of 1 for instruction translation cache and 2 for data or
unified translation cache. All other values are reserved.

Reserved 0

Return Value Description
status Return status of the PAL_VM_INFO procedure.
tc_info 8-byte formatted value returning information about the specified TC.
tc_pages 64-bit vector containing a bit for each page size supported in the specified TC, where bit

position n indicates a page size of 2**n.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument.
-3 Call completed with error.

Figure 11-48. Layout of tc_info Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

num_entries num_ways num_sets

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved tr ut pf
2:370 Volume 2: Processor Abstraction Layer

PAL_VM_PAGE_SIZE
Get Virtual Memory Page Size Information

Purpose: Returns page size information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: The values returned from this call are all 64-bit bitmaps. One bit is set for each page size
implemented by the processor where bit n represents a page size of 2**n. Please refer to Table 4-4
on page 2:47 for the minimum page sizes that are supported.

The insertable_pages returns the page sizes that are supported for TLB insertions and region
registers.

The purge_pages returns the page sizes that are supported for the TLB purge operations.

Argument Description
index Index of PAL_VM_PAGE_SIZE within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VM_PAGE_SIZE procedure.
insertable_pages 64-bit vector containing a bit for each architected page size that is supported for TLB

insertions and region registers.
purge_pages 64-bit vector containing a bit for each architected page size supported for TLB purge

operations.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.
Volume 2: Processor Abstraction Layer 2:371

PAL_VM_SUMMARY
Get Virtual Memory Summary Information

Purpose: Returns summary information about the virtual memory characteristics of the processor
implementation.

Calling Conv: Static Registers Only

Mode: Physical and Virtual

Arguments:

Returns:

Status:

Description: The vm_info_1 return is an 8-byte quantity in the following format:

• vw – 1-bit flag indicating whether a hardware TLB walker is implemented (1 = walker
present).

• phys_add_size – unsigned 7-bit integer denoting the number of bits of physical address
implemented.

• key_size – unsigned 8-bit integer denoting the number of bits implemented in the PKR.key
field.

• max_pkr – unsigned 8-bit integer denoting the maximum PKR index (number of PKRs-1).

• hash_tag_id – unsigned 8-bit integer which uniquely identifies the processor hash and tag
algorithm.

• max_dtr_entry – unsigned 8 bit integer denoting the maximum data translation register index
(number of dtr entries - 1).

• max_itr_entry – unsigned 8 bit integer denoting the maximum instruction translation register
index (number of itr entries - 1).

• num_unique_tcs – unsigned 8-bit integer denoting the number of unique TCs implemented.
This is a maximum of 2*num_tc_levels.

• num_tc_levels – unsigned 8-bit integer denoting the number of TC levels.

The vm_info_2 return is an 8-byte quantity in the following format:

Argument Description
index Index of PAL_VM_SUMMARY within the list of PAL procedures.
Reserved 0
Reserved 0
Reserved 0

Return Value Description
status Return status of the PAL_VM_SUMMARY procedure.
vm_info_1 8-byte formatted value returning global virtual memory information.
vm_info_2 8-byte formatted value returning global virtual memory information.
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-49. Layout of vm_info_1 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

hash_tag_id max_pkr key_size phys_add_size vw

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

num_tc_levels num_unique_tcs max_itr_entry max_dtr_entry
2:372 Volume 2: Processor Abstraction Layer

PAL_VM_SUMMARY
• impl_va_msb – unsigned 8-bit integer denoting the bit number of the most significant virtual
address bit. This is the total number of virtual address bits - 1.

• rid_size – unsigned 8-bit integer denoting the number of bits implemented in the RR.rid field.

Figure 11-50. Layout of vm_info_2 Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved rid_size impl_va_msb

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved
Volume 2: Processor Abstraction Layer 2:373

PAL_VM_TR_READ
Read a Translation Register

Purpose: Reads a translation register.

Calling Conv: Stacked Registers

Mode: Physical

Arguments:

Returns:

Status:

Description: This procedure reads the specified translation register and returns its data in the buffer starting at
tr_buffer. The format of the data is returned in Translation Insertion Format, as described in
Figure 4-5, “Translation Insertion Format,” on page 2:44. In addition, bit 0 of the IFA in Figure 4-5
(an ignored field in the figure) will return whether the translation is valid. If bit 0 is 1, the
translation is valid.

Some fields of the translation register returned may be invalid. The validity of these fields is
indicated by the return argument TR_valid. If these fields are not valid, the caller should ignore the
indicated fields when reading the translation register returned in tr_buffer.

• av – denotes that the access rights field is valid

• pv – denotes that the privilege level field is valid

• dv – denotes that the dirty bit is valid

• mv – denotes that the memory attributes are valid.

A value of 1 denotes a valid field. A value of 0 denotes an invalid field. Any value returned in an
invalid field must be ignored.

The tr_buffer parameter should be aligned on an 8 byte boundary.

Warning: This procedure may have the side effect of flushing all the translation cache entries
depending on the implementation.

Argument Description
index Index of PAL_VM_TR_READ within the list of PAL procedures.
reg_num Unsigned 64-bit number denoting which TR to read.
tr_type Unsigned 64-bit number denoting whether to read an ITR (0) or DTR (1). All other values are

reserved.
tr_buffer 64-bit pointer to the 32-byte memory buffer in which translation data is returned.

Return Value Description
status Return status of the PAL_VM_TR_READ procedure.
TR_valid Formatted bit vector denoting which fields are valid. See Figure 11-51.
Reserved 0
Reserved 0

Status Value Description
0 Call completed without error.

-2 Invalid argument
-3 Call completed with error.

Figure 11-51. Layout of TR_valid Return Value
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved mv dv pv av

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Reserved
2:374 Volume 2: Processor Abstraction Layer

Part II: System Programmer’s
Guide

2
2

About the System Programmer’s
Guide 1

Part II: System Programmer’s Guide is intended as a companion section to the information
presented in Part I: System Architecture Guide. While Part I provides a crisp and concise
architectural definition of the Itanium instruction set, Part II provides insight into programming and
usage models of the Itanium system architecture. This section emphasizes how the various
architecture features fit together and explains how they contribute to high performance system
software.

The intended audience for this section is system programmers who would like to better understand
the Itanium system architecture. The goal of this document is to:

• Familiarize system programmers with Itanium system architecture principles and usage
models.

• Provide recommendations, code examples, and performance guidelines.

This section does not re-define the Itanium instruction set. Please refer to Part I: System
Architecture Guide as the authoritative definition of the system architecture.

The reader is expected to be familiar with the contents of Part I and is expected to be familiar with
modern virtual memory and multi-processing concepts. Furthermore, this document is platform
architecture neutral (i.e. no assumptions are made about platform architecture capabilities, such as
busses, chipsets, or I/O devices).

1.1 Overview of the System Programmer’s Guide

The Itanium architecture provides numerous performance enhancing features of interest to the
system programmer. Many of these instruction set features focus on reducing overhead in common
situations. The chapters outlined below discuss different aspects of the Itanium system architecture.

Chapter 2, “MP Coherence and Synchronization” describes Itanium-based multi-processing
synchronization primitives and the Itanium memory ordering model. This chapter also discusses
programming rules for self- and cross-modifying code. This chapter is useful for application and
system programmers who write multi-threaded code.

Chapter 3, “Interruptions and Serialization” discusses how the Itanium architecture, despite its
explicitly parallel instruction execution semantics, provides the system programmer with a precise
interruption model. This chapter describes how the processor serializes execution around
interruptions and what state is preserved and made available to low-level system code when
interruptions are taken. This chapter introduces the interrupt vector table and describes how
low-level kernel code is expected to transfer control to higher level operating system code written
in a high-level programming language. This chapter is useful for operating system and firmware
programmers.
Volume 2: About the System Programmer’s Guide 2:377

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents. In addition to spilling and filling a register’s data value, the Itanium architecture
also requires software to preserve control and data speculative state associated with that register,
i.e. its NaT bit and ALAT state. This chapter also discusses system architecture mechanisms that
allow an operating system to significantly reduce the number of registers that need to be
spilled/filled on interruptions, system calls, and context switches. These optimizations improve the
performance of an Itanium-based operating system by reducing the amount of required memory
traffic. This chapter is useful for operating system programmers.

Chapter 5, “Memory Management” introduces various memory management strategies in the
Itanium architecture: region register model, protection keys, and the virtual hash page table usage
models are described. This chapter is of interest to virtual memory management software
developers.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation. This chapter describes various speculation
software models and their associated operating system implications. This chapter is of interest to
operating system developers and compiler writers.

Chapter 7, “Instruction Emulation and Other Fault Handlers” describes a variety of instruction
emulation handlers that Itanium-based operating systems are expected to support. This chapter is
useful for operating system developers.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the Itanium-based software stack
provides complete IEEE-754 compliance. This includes a discussion of the floating-point software
assist firmware, the FP SWA EFI driver. This chapter also describes how Itanium-based operating
systems are expected to support IEEE floating-point exception filters. This chapter is useful for
operating system developers and floating-point numerics experts.

Chapter 9, “IA-32 Application Support” outlines how software needs to perform instruction set
transitions, and what low-level kernel handlers are required in an Itanium-based operating system
to support IA-32 applications. This chapter is useful for operating system developers.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software. Basic
interrupt prioritization, masking, and harvesting capabilities are discussed in this chapter. This
chapter is of interest to operating system developers and to device driver writers.

Chapter 11, “I/O Architecture” describes the I/O architecture with a focus on platform
considerations and support for the existing IA-32 I/O port space platform infrastructure. This
chapter is of interest to operating system developers and to device driver writers.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with a focus on what kind of operating system support is needed from Itanium-based operating
systems. This chapter is of interest to operating system and performance tool developers.

Chapter 13, “Firmware Overview” introduces the firmware model and how various firmware layers
(PAL, SAL, EFI) work together to enable processor and system initialization and operating system
boot. This chapter also discusses how firmware layers and the operating system work together to
provide error detection, error logging, as well as fault containment capabilities. This chapter is of
interest to platform firmware and operating system developers.
2:378 Volume 2: About the System Programmer’s Guide

1.2 Related Documents

The following documents are referred to fairly often in this document. For more details on software
conventions and platform firmware, please consult these manuals (available at
http://developer.intel.com).

[SWC]“Itanium® Software Conventions and Runtime Architecture Guide”

[EFI]“Extensible Firmware Interface (EFI) Specification”
Volume 2: About the System Programmer’s Guide 2:379

2:380 Volume 2: About the System Programmer’s Guide

2

MP Coherence and Synchronization 2

This chapter describes how to enforce an ordering of memory operations, how to update code
images, and presents examples of several simple multiprocessor synchronization primitives on a
processor based on the Itanium architecture. These topics are relevant to anyone who writes either
user- or system-level software for multiprocessor systems based on the Itanium architecture.

The chapter begins with a brief overview of Itanium memory access instructions intended to
summarize the behaviors that are relevant to later discussions in the chapter. Next, this chapter
presents the Itanium memory ordering model and compares it to a sequentially-consistent ordering
model. It then explores versions of several common synchronization primitives. This chapter closes
by describing how to correctly update code images to implement self-modifying code,
cross-modifying code, and paging of code using programmed I/O.

2.1 An Overview of Intel® Itanium® Memory Access
Instructions

The Itanium architecture provides load, store, and semaphore instructions to access memory. In
addition, it also provides a memory fence instruction to enforce further ordering relationships
between memory accesses. As Section 4.4.7, “Memory Access Ordering” on page 1:63 describes,
memory operations in the Itanium architecture come with one of four semantics: unordered,
acquire, release, or fence. Section 2.2 on page 2:384 describes how the memory ordering model
uses these semantics to indicate how memory operations can be ordered with respect to each other.

Section 2.1.1 defines the four memory operation semantics. Section 2.2, Section 2.3, and
Section 2.4 present brief outlines of load and store, semaphore, and memory fence instructions in
the Itanium architecture. Refer to Section 2, “Instruction Reference” on page 3:9 for more
information on the behavior and capabilities of these instructions.

2.1.1 Memory Ordering of Cacheable Memory References

The Itanium architecture has a relaxed memory ordering model which provides unordered memory
opcodes, explicitly ordered memory opcodes, and a fencing operation that software can use to
implement stronger ordering. Each memory operation establishes an ordering relationship with
other operations through one of four semantics:

• Unordered semantics imply that the instruction is made visible in any order with respect to
other orderable instructions.

• Acquire semantics imply that the instruction is made visible prior to all subsequent orderable
instructions.

• Release semantics imply that the instruction is made visible after all prior orderable
instructions.

• Fence semantics combine acquire and release semantics (i.e. the instruction is made visible
after all prior orderable instructions and before all subsequent orderable instructions).
Volume 2: MP Coherence and Synchronization 2:381

In the above definitions “prior” and “subsequent” refer to the program-specified order. An
“orderable instruction” is an instruction that the memory ordering model can use to establish
ordering relationships1. The term “visible” refers to all architecturally-visible (from the standpoint
of multi-processor coherency) effects of performing an instruction. Specifically,

• Accesses to uncacheable or write-coalescing memory regions are visible when they reach the
processor bus.

• Loads from cacheable memory regions are visible when they hit a non-programmer-visible
structure such as a cache or store buffer.

• Stores to cacheable memory regions are visible when they enter a snooped (in a
multi-processor coherency sense) structure.

Memory access instructions typically have an ordered and an unordered form (i.e. a form with
unordered semantics and a form with either acquire, release, or fence semantics). The Itanium
architecture does not provide all possible combinations of instructions and ordering semantics. For
example, the Itanium instruction set does not contain a store with fence semantics.

Section 4.4.7, “Memory Access Ordering” on page 1:63 and Section 4.4.7, “Sequentiality Attribute
and Ordering” on page 2:69 discuss ordering, orderable instructions, and visibility in greater depth.

Section 2.2 on page 2:384 describes how the ordering semantics affect the Itanium memory
ordering model.

2.1.2 Loads and Stores

In the Itanium architecture, a load instruction has either unordered or acquire semantics while a
store instruction has either unordered or release semantics. By using acquire loads (ld.acq) and
release stores (st.rel), the memory reference stream of an Itanium-based program can be made to
operate according to the IA-32 ordering model. The Itanium architecture uses this behavior to
provide IA-32 compatibility. That is, an Itanium acquire load is equivalent to an IA-32 load and an
Itanium release store is equivalent to an IA-32 store, from a memory ordering perspective.

Loads can be either speculative or non-speculative. The speculative forms (ld.s, ld.sa, and
ld.a) support control and data speculation.

2.1.3 Semaphores

The Itanium architecture provides a set of three semaphore instructions: exchange (xchg), compare
and exchange (cmpxchg), and fetch and add (fetchadd). Both cmpxchg and fetchadd may have
either acquire or release semantics depending on the specific opcode chosen. The xchg instruction
always has acquire semantics. These instructions read a value from memory, modify this value
using an instruction-specific operation, and then write the modified value back to memory. The
read-modify-write sequence is atomic by definition.

1. The ordering semantics of an instruction do not imply the orderability of the instruction. Specifically, unordered ordering semantics alone
do not make an instruction unorderable; there are orderable instructions with each of the four ordering semantics.
2:382 Volume 2: MP Coherence and Synchronization

2.1.3.1 Considerations for using Semaphores

The memory location on which a semaphore instruction operates on must obey two constraints.
First, the location must be cacheable (the fetchadd instruction is an exception to this rule; it may
also operate on exported uncacheable locations, UCE). Thus, with the exception of fetchadd to
UCE locations, the Itanium architecture does not support semaphores in uncacheable memory.
Second, the location must be naturally-aligned to the size of the semaphore access. If either of these
two constraints are not met, the processor generates a fault.

The exported uncacheable memory attribute, UCE, allows a processor based on the Itanium
architecture to export fetch and add operations to the platform. A processor that does not support
exported fetchadd will fault when executing a fetchadd to a UCE memory location. If the
processor supports exported fetchadd but the platform does not, the behavior is undefined when
executing a fetchadd to a UCE memory location.

Sharing locks between IA-32 and Itanium-based code does work with the following restrictions:

• Itanium-based code can only manipulate an IA-32 semaphore if the IA-32 semaphore is
aligned.

• Itanium-based code can only manipulate an IA-32 semaphore if the IA-32 semaphore is
allocated in write-back cacheable memory.

An Itanium-based operating system can emulate IA-32 uncacheable or misaligned semaphores by
using the technique described in the next section.

2.1.3.2 Behavior of Uncacheable and Misaligned Semaphores

A processor based on the Itanium architecture raises an Unsupported Data Reference fault if it
executes a semaphore that accesses a location with a memory attribute that the semaphore does not
support.

If the alignment requirement for Itanium-based semaphores is not met, a processor based on the
Itanium architecture raises an Unaligned Data Reference fault. This fault is taken regardless of the
setting of the user mask alignment checking bit, UM.ac.

The DCR.lc bit controls how the processor behaves when executing an atomic IA-32 memory
reference under an external bus lock. When the DCR.lc bit (see Section 3.3.4.1, “Default Control
Register (DCR – CR0)”) is 1 and an IA-32 atomic memory reference requires a non-cacheable or
misaligned read-modify-write operation, an IA-32_Intercept(Lock) fault is raised. Such memory
references require an external bus lock to execute correctly. To preserve LOCK pin functionality, an
Itanium-based operating system can virtualize the bus lock by implementing a shared cacheable
global LOCK variable.

To support existing IA-32 atomic read-modify-write operations that require the LOCK pin, an
Itanium-based operating system can use the DCR.lc bit to intercept all external IA-32
read-modify-write operations. Then, the IA-32_Intercept(Lock) handler can emulate these
operations by first acquiring a cacheable virtualized LOCK variable, then performing the required
memory operations non-atomically, and then releasing the virtualized LOCK variable. This
emulation allows the read-modify-write sequence to appear atomic to other processors that use the
semaphore.
Volume 2: MP Coherence and Synchronization 2:383

2.1.4 Memory Fences

The memory fence instruction (mf) is the only instruction in the Itanium instruction set with fence
semantics. This instruction serializes the set of memory accesses before the memory fence in
program order with respect to the set of memory accesses that follow the fence in program order.

2.2 Memory Ordering in the Intel® Itanium® Architecture

Understanding a system’s memory ordering model is key to writing either user- or system-level
multiprocessor software that uses shared memory to communicate between processes and also that
executes correctly on a shared-memory multiprocessor system. For a general introduction to
memory ordering models, see Adve and Gharachorloo [AG95].

Four factors determine how a processor or system based on the Itanium architecture orders a group
of memory operations with respect to each other:

• Data dependencies define the relationship between operations from the same processor that
have register or memory dependencies on the same address1. This relationship need only be
honored by the local processor (i.e. the processor that executes the operations).

• The memory ordering semantics define the relationship between memory operations from a
particular processor that reference different addresses. For cacheable references, this
relationship is honored by all observers in the coherence domain.

• Aligned release stores and semaphore operations (both require and release forms) become
visible to all observers in the coherence domain in a single total order except each processor
may observe its own release stores (via loads or acquire loads) prior to their being observed
globally2.

• Non-programmer-visible state, such as store buffers, processor caches, or any
logically-equivalent structure, may satisfy read requests from loads or acquire loads on the
local processor before the data in the structure is made globally visible to other observers.

In the Itanium architecture, dependencies between operations by a processor have implications for
the ordering of those operations at that processor. The discussion in Section 2.2.1.6 on page 2:388
and Section 2.2.1.7 on page 2:389 explores this issue in greater depth.

The following sections examine the Itanium ordering model in detail. Section 2.2.1 presents several
memory ordering executions to illustrate important behaviors of the model. Section 2.2.2 discusses
how memory attributes and the ordering model interact. Finally, Section 2.2.3 describes how the
Itanium memory ordering model compares with other memory ordering models.

2.2.1 Memory Ordering Executions

Multiprocessor software that uses shared memory to communicate between processes often makes
assumptions about the order in which other agents in the system will observe memory accesses. As
Section 2.1.1 on page 2:381 describes, the Itanium architecture provides a rich set of ordering
semantics that allows software to express different ordering constraints on a memory operation,

1. That is, A precedes B in program order and A produces a value that B consumes. This relationship is transitive.
2. Consequently, each such operation appears to become visible to each observer in the coherence domain at the same time, with the exception

that a release store can become visible to the storing processor before others.
2:384 Volume 2: MP Coherence and Synchronization

such as a load. Writing correct multiprocessor software requires that the programmer (or compiler)
select the ordering semantic appropriate to enforce the expected behavior.

For example, an algorithm that requires two store operations A and B become visible to other
processors in the order {A, B} will use stores with different ordering semantics than an algorithm
that does not require any particular ordering of A and B. Although it is always safe to enforce
stricter ordering constraints than an algorithm requires, doing so may lead to lower performance. If
the ordering of memory operations is not important, software should use unordered ordering
semantics whenever possible for best possible performance.

This section presents multiprocessor executions to demonstrate the ordering behaviors that the
Itanium architecture allows and to contrast the Itanium ordering model with other ordering models.
The executions consist of sequences of memory accesses that execute on two or more processors
and highlight outcomes that the Itanium memory ordering model either allows or disallows once all
accesses on all processors complete. A programmer can use these executions as a guide to
determine which Itanium memory ordering semantics are appropriate to ensure a particular
visibility order of memory accesses.

Section 2.2.1.1 presents the assumptions and notational conventions that the upcoming discussions
use to examine the executions. The remaining eleven sections each explore a different facet of the
Itanium ordering model:

• Relaxed ordering of unordered memory operations (Section 2.2.1.2).

• Using acquire and release semantics to order operations (Section 2.2.1.3).

• Loads may pass stores (Section 2.2.1.4) and how to prevent this behavior (Section 2.2.1.5).

• When dependencies do or do not establish memory ordering (Section 2.2.1.6 and
Section 2.2.1.7).

• Satisfying loads from store buffers (Section 2.2.1.8) and how to prevent this behavior
(Section 2.2.1.9).

• Semaphore operations and local bypass (Section 2.2.1.10).

• Global visibility order of memory operations (Section 2.2.1.11 and Section 2.2.1.12).

This presentation is organized to begin with simple behaviors and move to increasingly complex
behaviors.

2.2.1.1 Assumptions and Notation

The discussions of the multiprocessor executions in the upcoming sections adopt two main
notational conventions.

First, the memory accesses in the executions in this document are written using a
pseudo-Itanium-based assembly language that allows a store to write an immediate operand to
memory. All memory locations are cacheable and aligned. Unless stated otherwise, memory
locations do not overlap. Initially, all registers and memory locations contain zero.

Second, given two different memory operations X and Y, specifies that X precedes Y in
program order and indicates that X is visible if Y is visible (i.e. X becomes visible
before Y).

Using this notation, Figure 2-1 expresses the Itanium ordering semantics from Section 2.1.1,
“Memory Ordering of Cacheable Memory References” on page 2:381 and also Section 4.4.7,

X Y»
X Y→
Volume 2: MP Coherence and Synchronization 2:385

“Memory Access Ordering” on page 1:63. There are no implications regarding the ordering of the
visibility for the following pairs of operations: a release followed by an unordered operation; a
release followed by an acquire; an unordered operation followed by another; or an unordered
operation followed by an acquire.

In Figure 2-1, “Acquire”, “Release”, and “Fence” represent an orderable instruction with the
corresponding memory ordering semantics whereas “X” and “Y” indicate any orderable
instruction.

2.2.1.2 The Intel® Itanium® Architecture Provides a Relaxed Ordering Model

The Itanium memory ordering model is a relaxed model. As a result, the Itanium architecture
permits any outcome when executing the code shown in Table 2-1.

Because all of the operations in Table 2-1 are unordered, the Itanium memory ordering model does
not place any constraints on the order in which a processor based on the Itanium architecture makes
the operations visible.

Observing a particular value in r2, for example, does not allow any inferences to be made about the
value of r1 because the pair of stores on Processor #0 may become visible in any order. Therefore,
all outcomes are possible as the system may interleave M1, M2, M3, and M4 in any order without
violating the memory ordering constraints.

2.2.1.3 Enforcing Basic Ordering

Using acquire and release ordering semantics enforces an ordering between both the Processor #0
operations M1 and M2 and the Processor #1 operations M3 and M4 from the Table 2-1 execution as
shown in Table 2-1.

Figure 2-1. Intel® Itanium® Ordering Semantics

Table 2-1. Intel® Itanium® Architecture Provides a Relaxed Ordering Model

Processor #0 Processor #1

st [x] = 1 // M1

st [y] = 1 // M2

ld r1 = [y] // M3

ld r2 = [x] // M4

Outcomes: all are allowed

Table 2-2. Acquire and Release Semantics Order Intel® Itanium® Memory Operations

Processor #0 Processor #1

st [x] = 1 // M1

st.rel [y] = 1 // M2

ld.acq r1 = [y] // M3

ld r2 = [x] // M4

Outcome: only r1 = 1 and r2 = 0 is not allowed

Acquire X Acquire X→⇒»

X Release X Release→⇒»

X Fence X Fence→⇒»

Fence Y Fence Y→⇒»
2:386 Volume 2: MP Coherence and Synchronization

The Itanium ordering model only disallows the outcome r1 = 1 and r2 = 0 in this execution. The
release semantics on M2 and acquire semantics on M3 affect the following ordering constraints:

Given the code in Table 2-2, these two ordering constraints along with the assumption that the
outcome is r1 = 1 and r2 = 0 together imply that:

This contradicts the postulated outcome r1 = 1 and r2 = 0 and thus the Itanium ordering model
disallows the r1 = 1 and r2 = 0 outcome.

In operational terms, if Processor #1 observes M2, the release store to y (i.e. r1 is 1), it must have
also observed M1, the unordered store to x (i.e. r2 is 1 as well), given the ordering constraints.
Therefore, the Itanium ordering model must disallow the outcome r1 = 1 and r2 = 0 in this
execution as this outcome violates these constraints.

Stronger ordering models that do not relax load-to-load and store-to-store ordering, such as
sequential consistency, impose these same ordering constraints on M1, M2, M3, and M4 and
therefore also do not allow the outcome r1 = 1 and r2 = 0.

2.2.1.4 Allow Loads to Pass Stores to Different Locations

The Itanium memory ordering model allows loads to pass stores as shown in the execution
sequence in Table 2-3. Permitting this behavior can improve performance by allowing the processor
to complete loads that follow a store that misses the cache.

The Itanium ordering semantics always allow a processor to make operations that follow a release
visible before the release and to make operations that precede an acquire visible after the acquire.

Like the execution shown in Table 2-1, the Itanium memory ordering model does not place any
constraints on the ordering of the operations on each processor in this execution either.

Therefore, for reasons similar to those given in Section 2.2.1.2 for the execution shown in
Table 2-1, the Itanium memory ordering model allows any outcome in this execution as well.
Further, the Itanium memory ordering model also allows all outcomes in similar executions that
differ only in the ordering semantics of the load and store operations (e.g. those that replace M1
with an unordered store, etc.). There is no combination of legal ordering semantics on these
operations (recall that the Itanium instruction set does not provide stores with acquire or fence
semantics) that enforce either or

Table 2-3. Loads May Pass Stores to Different Locations

Processor #0 Processor #1

st.rel [x] = 1 // M1

ld.acq r1 = [y] // M2

st.rel [y] = 1 // M3

ld.acq r2 = [x] // M4

Outcomes: all are allowed

M1 M2→
M3 M4→

r1 = 1 M2 M3→ M1 M4 (because M1 M2 and M3 M4)→ → → r2 = 1⇒ ⇒ ⇒

M1 M2→ M3 M4.→
Volume 2: MP Coherence and Synchronization 2:387

2.2.1.5 Preventing Loads from Passing Stores to Different Locations

The only way to prevent the loads from moving ahead of the stores in the Table 2-3 execution is to
separate them with a memory fence as the execution in Table 2-4 illustrates.

The Itanium memory ordering model only disallows the outcome r1 = 0 and r2 = 0 in this
execution. The memory fences on Processor #0 and Processor #1 (operations M2 and M5) force the
load and store memory accesses to be made visible in program order; no re-ordering is permitted
across the fence. Thus, the following ordering constraints must be met:

Given the code in Table 2-4, these two constraints along with the assumption that the outcome is r1
= 0 and r2 = 0 together imply that

This contradicts the postulated outcome r1 = 0 and r2 = 0 and thus the Itanium memory ordering
model disallows the r1 = 1 and r2 = 0 outcome. Specifically, if M3 reads 0, then M4, M5, and M6
may not yet be visible but M1 and M2 must be visible. Thus, when M6 becomes visible it must
observe x = 1 because M1 is already visible.

2.2.1.6 Data Dependency Does Not Establish MP Ordering

The dependency rules define the relationship between memory operations that access the same
address. Specifically, the Itanium architecture resolves read-after-write (RAW), write-after-read
(WAR), and write-after-write (WAW) dependencies through memory in program order on the local
processor. As Section 2.2 discusses, dependencies are fundamentally different from the ordering
semantics even though both affect ordering relationships between groups of memory accesses.

The execution shown in Table 2-5 illustrates this difference.

Table 2-4. Loads May Not Pass Stores in the Presence of a Memory Fence

Processor #0 Processor #1

st [x] = 1 // M1

mf // M2

ld r1 = [y] // M3

st [y] = 1 // M4

mf // M5

ld r2 = [x] // M6

Outcome: only r1 = 0 and r2 = 0 is not allowed

Table 2-5. Dependencies Do Not Establish MP Ordering (1)

Processor #0 Processor #1

st [x] = 1 ;; // M1

ld r1 = [x] ;; // M2

st [y] = r1 ;; // M3

ld.acq r2 = [y] // M4

ld r3 = [x] // M5

Outcomes: r1 = 1, r2 = 1, and r3 = 0 is allowed

M1 M2 M3→ →
M4 M5 M6→ →

r1 = 0 M3 M4→ M3 M6 because M4 M5 M6→ → →⇒ ⇒
r1= 0 M1 M3 because M1 M2 M3→ → →⇒

M1 M3 and M3 M6 M1 M6 r2 = 1⇒→⇒→ →
2:388 Volume 2: MP Coherence and Synchronization

The following discussion focuses on the outcome r1 = 1, r2 = 1, and r3 = 0. This outcome is
allowed only because the Itanium architecture treats data dependencies and the ordering semantics
differently.

The ordering semantics require , but do not place any constraints on the relative order of
operations M1, M2, or M3. Due to the register and memory dependencies between the instructions
on Processor #0, these operations complete in program order on Processor #0 and also become
locally visible in this order. However, the operations need not be made visible to remote processors
in program order. In this outcome it appears to Processor #0 as if while to Processor #1 it
appears that There are two things to note here. First, the behavior is another example of
the local bypass behavior that Section 2.2.1.8 presents on page 2:391. Second, there are no
dependencies directly between M1 and M3 that requires them to become globally visible in
program order.

Note: All processors will observe the order established by a particular processor in case of a
WAW memory dependency to the same location. For example, all processors in the coher-
ence domain eventually see a value of 1 in location x in the following code:

st [x] = 0 // M1: set [x] to 0
st [x] = 1 // M2: set [x] to 1, cannot move above M1 due to

WAW

because there is a WAW memory dependency between from M2 to M1 and the Itanium
architecture requires that the local processor resolves RAW, WAR, and WAW dependen-
cies between its memory accesses in program order. Thus, even though the
ordering semantics do not place any constraints on the relative ordering of M1 and M2.

2.2.1.7 Data Dependency Establishes Local Ordering

In the Itanium architecture, a dependency (e.g., a later operation reading the value written by an
earlier operation) can imply a local ordering relationship between the two operations. This section
focuses on dependencies through registers only. Section 2.2.1.6 discusses dependencies and MP
ordering.

The execution shown in Table 2-6 illustrates how data dependency and memory ordering interact in
a simple “pointer chase.”

In this example, Processor #0 could be executing code that updates a shared object with M1 and
then publishes a pointer to the object with M2. Processor #1 then loads the pointer and dereferences
it to read the contents of the shared object. The outcome r1 = x and r2 = 0 implies that Processor #1
observes the new value of the object pointer, y, but the old value of the data field, x.

The ordering semantics require but place no requirements on the relative ordering of M3
and M4.

Table 2-6. Memory Ordering and Data Dependency

Processor #0 Processor #1

st [x] = 1 // M1

st.rel [y] = x // M2

ld r1 = [y] ;; // M3

ld r2 = [r1] // M4

Outcome: r1 = x and r2 = 0 is not allowed

M4 M5→

M1 M3→
3 M1.→

M1 M2→

M1 M2→
Volume 2: MP Coherence and Synchronization 2:389

Thus, the memory semantics alone would allow the outcome r1 = x and r2 = 0 in the absence of
other constraints. Using an acquire load for M3 can avoid this outcome as doing so forces

 and thus prevents the outcome. However, this use of acquire is non-intuitive given the
RAW dependency through register r1 between M3 and M4. That is, M3 produces a value that M4
requires in order to execute so how should it be possible for them to go out of order? Further, using
an acquire in this case prevents any memory operation following M3 from moving above M3, even
if they are completely independent of M3.

To avoid this potential confusion and performance issue, the Itanium architecture treats data
dependency and memory ordering in the same fashion on the local processor. That is, if and
A produces a value that B consumes, then on the local processor. This relationship is also
transitive as the execution in Table 2-7 illustrates.

The Processor #0 code is the same as in Table 2-6. The Processor #1 now performs the following
operation: if the pointer value y is equal to x, load a value from x.

The Itanium architecture does not allow the outcome r1 = x and r2 = 0 in this execution either.
Unlike the execution in Table 2-6, there is no direct dependency between the values that M3
produces and the values that M4 consumes. However, there is a RAW through register r1 from M3
to C1 and a RAW through register p1 from C1 to M4. Thus, by transitivity, .

The execution in Table 2-8 illustrates a similar construct but introduces a control dependency.

This execution is semantically the same as the execution in Table 2-7; however, this execution uses
a control dependency rather than predication to conditionally execute M4. As a result, the outcome
r1 = x and r2 = 0 is not allowed in the Table 2-8 execution.

The execution of the load M4 is data-dependent on the value of p2 that the branch B1 uses to
resolve. Further, p2 is dependent on the value of r1 that the load M3 produces through the compare
C1. Thus, .

The execution in Table 2-9 is a variation on the execution from Table 2-8 where the loads are truly
independent.

Table 2-7. Memory Ordering and Data Dependency Through a Predicate Register

Processor #0 Processor #1

st [x] = 1 // M1

st.rel [y] = x // M2

ld r1 = [y] // M3

cmp.eq p1, p2 = r1, x ;; // C1

(p1) ld r2 = [x] // M4

Outcome: r1 = x and r2 = 0 is not allowed

Table 2-8. Memory Ordering and Data and Control Dependencies

Processor #0 Processor #1

st [x] = 1 // M1

st.rel [y] = x // M2

ld r1 = [y] ;; // M3

cmp.eq p1, p2 = r1, x // C1

(p2) br t // B1

ld r2 = [x] // M4

t:

Outcome: r1 = x and r2 = 0 is not allowed

M3 M4→

A B»
B→

M3 M4→

M3 M4→
2:390 Volume 2: MP Coherence and Synchronization

In this execution, there is no dependency between M3 and M4, and thus, there are no constraints on
the relative ordering of M3 and M4. Like the execution in Table 2-8, M4 is data-dependent on the
value of p2 that the branch B1 uses to resolve. However, p2 is independent of the value that the load
M3 produces (specifically, because the compare does not use the value of register r1 that the load
produces). Thus, there is no chain of dependencies between M3 and M4 and therefore there are no
constraints on the relative ordering of M3 and M4. As a result, all outcomes are allowed in this
execution.

2.2.1.8 Store Buffers May Satisfy Local Loads

In the Itanium memory ordering model, store buffers (or other logically-equivalent structures) may
satisfy local read requests from loads or acquire loads even if the stored data is not yet visible to
other agents in the coherence domain. Such bypassing must honor any ordering semantics in the
memory reference stream. Table 2-10 and Table 2-11 that Section 2.2.1.9 presents illustrate this
behavior.

.

In this sequence, each processor bypasses its locally-written value from a store buffer before the
value becomes visible to the other processor. This behavior may make accesses of different sizes
that have overlapping memory addresses appear to complete non-atomically.

The following discussion focuses on the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 because this
outcome is allowed if and only if store buffers can satisfy local loads (other outcomes are allowed
but do not depend on being able to satisfy local loads from a store buffer).

The Itanium memory ordering semantics only require that and . There are no
constraints on the relative ordering of M1 and M2 or M3 nor on the relative ordering of M4 and M5
or M6.

Remember that both dependencies and the memory ordering model place requirements on the
manner in which a processor based on the Itanium architecture may re-order accesses. Even though
the Itanium memory ordering model allows loads to pass stores, a processor based on the Itanium
architecture cannot re-order the following sequence:

st.rel [x] = r0 // M1: store 0 to [x]

ld.acq r1 = [x] // M2: cannot move above st.rel due to RAW

Table 2-9. Memory Ordering and Control Dependency

Processor #0 Processor #1

st [x] = 1 // M1

st.rel [y] = x // M2

ld r1 = [y] // M3

cmp p1, p2 = r3, x // C1

(p2) br t // B1

ld r2 = [x] // M4

t:

Outcome: all are allowed

Table 2-10. Store Buffers May Satisfy Loads if the Stored Data is Not Yet Globally Visible

Processor #0 Processor #1

st.rel [x] = 1 // M1

ld.acq r1 = [x] // M2

ld r2 = [y] // M3

st.rel [y] = 1 // M4

ld.acq r3 = [y] // M5

ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is allowed

M2 M3→ M5 M6→
Volume 2: MP Coherence and Synchronization 2:391

This is because there is a RAW dependency through memory between M1 and M2 and the Itanium
memory ordering model requires that the local processor resolve RAW, WAR, and WAW
dependencies between its memory accesses in program order. Thus, even though the
ordering semantics place no constraints on the relative ordering of M1 and M2.

Because there is a RAW dependency through memory between M1 and M2 and between M4 and
M5, the ordering constraints effectively become:1

to account for both the memory ordering semantics and dependencies. It is important to keep in
mind that the observance of a dependency between two operations does not imply an ordering
relationship (from the standpoint of the memory ordering model) between the operations as
Section 2.2.1.6 describes.

Assuming that a processor can bypass locally-written values before they are made globally-visible
implies that there is a local and a global visibility points for a memory operation where a value
always becomes locally visible before it becomes globally visible. Since M1 and M4 can have local
visibility with respect to M2 and M5 as well as global visibility,

where m1 and M1 represent local and global visibility of memory operation 1, respectively. There
are two things to note. First, the ordering of the local visibilities of operations M1 and M4 (m1 and
m4, respectively) allow each processor to honor its data dependencies. That is, Processor #2 honors
the RAW dependency through memory between M1 and M2 by requiring m1 to become visible
before M2. Second, that these requirements do not place any constraints on the relative ordering
perceived by a remote observer of operation M1 with M2 and M3 or of operation M4 with M5 and
M6 (as the local visibilities meet the local ordering constraints that the dependencies impose).

The code in Table 2-10 and these constraints together imply that

Thus, the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is allowed because these statements are
consistent with our definition of local and global visibility. Specifically, a value becomes locally
visible before it becomes globally visible. Similar reasoning can show that the constraints also
imply that

2.2.1.9 Preventing Store Buffers from Satisfying Local Loads

In the code shown in Table 2-10 from Section 2.2.1.8, there are no ordering constraints between the
store and acquire load from the standpoint of memory ordering semantics (however, there is a RAW
dependency through memory that forces the acquire load to follow the store). Bypassing may not
occur if doing so violates the memory ordering constraints of memory operations between the store
and the bypassing read. Table 2-11 presents a variation on the execution in Table 2-10 from
Section 2.2.1.8 that illustrates this behavior.

1. That is, the store operations must become visible to the local processors before their loads that read the stored value.

M1 M2→

M1 M2 M3→ →
M4 M5 M6→ →

m1 M2 M3; m1 M1→ → →
m4 M5 M6; m4 M4→ → →

r1 = 1 m1 M2→⇒
r3 = 1 m4 M5→⇒

r2 = 0 M3 M4 m1 M6 because m1 M3 and M3 M4 and M4 M6→ → → →⇒→⇒
r4 = 0 M6 M1→⇒

m1 M6 and M6 M1 m1 M1→⇒→ →

m4 M4.→
2:392 Volume 2: MP Coherence and Synchronization

Like Section 2.2.1.8, the discussion in this section focuses on the outcome r1 = 1, r3 = 1, r2 = 0, and
r4 = 0 because it is allowed if and only if store buffers can satisfy local loads. The line of reasoning
to show that the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed in Table 2-11 is similar to
the reasoning used to show that this outcome is allowed in the Table 2-10 execution from
Section 2.2.1.8 on page 2:391.

By the definition of the Itanium memory ordering semantics,

By allowing local and global visibility of operations M1 and M5 (similar to the discussion in
Section 2.2.1.8), this assumption, along with the above constraints, together imply that,

Consider these constraints on the Processor #0 operations m1, M1, M2, M3, and M4. Making m1
visible before M2, M3, and M4 correctly honors the data dependency through memory on
Processor #0. However, unless it constrains the global visibility of M1 to occur before M2, M3, and
M4, Processor #0 violates the Itanium ordering semantics. Specifically, the memory fence M2 must
always be made visible after the store M1. Allowing global and local visibilities of M1 in this case
violates this constraint, and thus, is not allowed. Essentially, by allowing M1 to become locally
visible early, M3 would see M1 before the fence semantics for M2 were met (namely, that M1 be
visible before M2 and thus M3). Without local and global visibility of M1 and M5, the ordering
constraints are as this example originally postulated.

The code in Table 2-11 and these constraints together imply that

This contradicts the r1 = 1, r3 = 1, r2 = 0, and r4 = 0 outcome. The visibility of the memory fence,
M2, implies that all prior operations including the store to x, M1, are globally visible. Thus, the
load from x on Processor #1, M8, must observe the new value of x and but the outcome
requires

2.2.1.10 Semaphores Do Not Locally Bypass

As Section 2.2.1.8 and Section 2.2.1.9 discuss, loads and acquire loads may be satisfied with values
placed in local store buffers (or other logically-equivalent structures) by stores or release stores
before the stored data becomes visible to other agents in the coherence domain. The Itanium
architecture explicitly prohibits such local bypass either to or from semaphore operations. That is,
semaphore operations cannot be satisfied in this way nor can the data they store be used to satisfy
loads or acquire loads in this way.

Table 2-11. Preventing Store Buffers from Satisfying Local Loads

Processor #0 Processor #1

st [x] = 1 // M1

mf // M2

ld.acq r1 = [x] // M3

ld r2 = [y] // M4

st [y] = 1 // M5

mf // M6

ld.acq r3 = [y] // M7

ld r4 = [x] // M8

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed

M1 M2 M3 M4→ → →
M5 M6 M7 M8→ → →

m1 M1→ m1⇒ M2 M3 M4→ → →
m5 M5→ m5⇒ M6 M7 M8→ → →

r2 = 0 M4 M5 M1 M8 because M1 M4 and M4 M5 and M5 M8 r4 = 1⇒→ → → →⇒→⇒

M1 M8→
8 M1.→
Volume 2: MP Coherence and Synchronization 2:393

The execution in Table 2-12 illustrates a variation on the execution in Table 2-10 where the acquire
loads have been replaced with exchange semaphore operations (which also have acquire
semantics).

Although each semaphore operation can be decomposed into a read access followed by a write
access, the Itanium architecture does not allow a read request by a semaphore to be satisfied from a
store buffer (or other logically-equivalent structure). As a result, the outcome r1 = 1, r3 = 1, r2 = 0,
and r4 = 0 is not allowed. The reasoning is similar to that presented in Section 2.2.1.9.

Specifically, by the definition of the Itanium memory ordering semantics, and
. The relative ordering between operation M1 and operations M2 or M3 is not

constrained. Likewise, the relative ordering between operation M4 and operations M5 and M6.

Now, assume the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0. Given that r1 = 1, r3 = 1, and r2 = 0, we
observe the following:

This conclusion contradicts the assumed outcome where r4 = 0 and thus the outcome r1 = 1, r3 = 1,
r2 = 0, and r4 = 0 is not allowed. Because M1 and M4 cannot become locally-visible to M2 and M5
before they become globally-visible to M6 and M3 (as read accesses from semaphores may not
bypass from store buffers or other logically-equivalent structures), it is not possible to avoid this
contradiction.

The Itanium architecture also prohibits local bypass from a semaphore operation to a local read
access from a load or acquire load as shown in the execution in Table 2-13.

A store buffer may not provide a local read operation early access to a value written by a semaphore
operation. Therefore, the outcome r1 = 1, r3 = 1, r2 = 0, r4 = 0, r5 = 0, and r6 = 0 in the Table 2-13
execution is not allowed. The reasoning is similar to that used in the previous execution.

Table 2-12. Bypassing to a Semaphore Operation

Processor #0 Processor #1

st.rel [x] = 1 // M1

xchg r1 = [x], r5 // M2

ld r2 = [y] // M3

st.rel [y] = 1 // M4

xchg r3 = [y], r6 // M5

ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, and r4 = 0 is not allowed

Table 2-13. Bypassing from a Semaphore Operation

Processor #0 Processor #1

fetchadd.rel r5 = [x], 1 // M1

ld.acq r1 = [x] // M2

ld r2 = [y] // M3

fetchadd.rel r6 = [y], 1 // M4

ld.acq r3 = [y] // M5

ld r4 = [x] // M6

Outcome: r1 = 1, r3 = 1, r2 = 0, r4 = 0, r5 = 0, and r6 = 0 is not allowed

M2 M3→
M5 M6→

r1 = 1 M1 M2→⇒
r3 = 1 M4 M5→⇒
r2 = 0 M3 M4→⇒

M3 M4→ M1 M6 because M1 M3 M4 M6→ → → →⇒
M1 M6 r4 = 1⇒→
2:394 Volume 2: MP Coherence and Synchronization

2.2.1.11 Ordered Cacheable Operations are Seen in the Same Order by All
Observers

The Itanium memory ordering model requires that release stores and semaphore operations (both
acquire and release forms) become visible to all observers in the coherence domain in a single total
order with the exception that each processor may observe (via loads or acquire loads) its own
update early. Thus, each observer in the coherence domain sees the same interleaving of release
stores and semaphores (both acquire and release forms) from the other processors in the coherence
domain except that each processor may observe its own release stores (via loads or acquire loads)
prior to their being observed globally. Table 2-14 illustrates this behavior.

The Itanium memory ordering model only disallows the outcome r1 = 1, r3 = 1, r2 = 0, and r4 = 0
in this execution. By the definition of the Itanium memory ordering semantics,

The Itanium memory ordering model does not permit the r1 = 1, r3 = 1, r2 = 0, and r4 = 0 outcome
as this would require that Processors #1 and #3 observe the release stores to x and y in different
orders. Specifically, assuming that the outcome is r1 = 1, r3 = 1, r2 = 0, and r4 = 0:

The final two statements are inconsistent since both and cannot be true unless
Processors #1 and #3 are allowed to see the release stores to x and y in different orders.

The Itanium memory ordering model allows the r1 = 1, r3 = 1, r2 = 0, and r4 = 0 outcome if either
one or both of the release stores M1 and M4 are unordered since unordered operations need not be
seen in the same total order by all observers in the coherence domain. Thus, in a version of the
execution shown in Table 2-14 with unordered stores, Processor #2 observes while
Processor #4 observes .

The Itanium memory ordering model also allows this outcome if the release stores M1 and M4 are
replaced with a memory fence followed by an unordered store. From the standpoint of a single
processor, a release store has equivalent ordering semantics on the local processor to a memory
fence followed by an unordered store. However, because the store in the memory fence/unordered
store pair is unordered, it does not have any ordering requirements with respect to a remote
processor. Even when processors are allowed to construct different interleavings, the ordering of an
individual processor’s memory references within the interleaving must always respect the ordering
constraints placed on those references.

Table 2-14. Enforcing the Same Visibility Order to All Observers in a Coherence Domain

Processor #0 Processor #1 Processor #2 Processor #3

st.rel [x] = 1 // M1
ld.acq r1 = [x] // M2

ld r2 = [y] // M3
st.rel [y] = 1 // M4

ld.acq r3 = [y] // M5

ld r4 = [x] // M6

Outcome: only r1 = 1, r3 = 1, r2 = 0, and r4 =0 is not allowed

M2 M3→
M5 M6→

r1 = 1 M1 M2→⇒
r3 = 1 M4 M5→⇒

r2 = 0 M3 M4 M1 M4 because M1 M2, M2 M3, and M3 M4→ → → →⇒→⇒
r4 = 0 M6 M1 M4 M1 because M4 M5, M5 M6, and M6 M1→ → → →⇒→⇒

M1 M4→ M4 M1→

M1 M4→
M4 M1→
Volume 2: MP Coherence and Synchronization 2:395

2.2.1.12 Obeying Causality

As noted in Section 2.2.1.11, the Itanium memory ordering model requires that release stores and
semaphore operations (both acquire and release forms) become visible to all observers in the
coherence domain in a single total order with the exception that each processor may observe (via
loads or acquire loads) its own update early. Thus, each observer in the coherence domain sees the
same interleaving of release stores, and semaphores operations from the other processors in the
coherence domain.

A consequence of this is the fact that the Itanium memory ordering model respects causality in a
certain way. Specifically, if a release store or semaphore operation causally precedes any store or
semaphore operation, then the two operations will become visible to all processors in the causality
order. Table 2-1 illustrates this behavior. Suppose that M2 reads the value written by M1. In this
case, there is a causal relationship from M1 to M3 (a control dependency could also establish such
a relationship). The fact that the store to x is a release store implies that, since there is a causal
relationship from M1 to M3, M1 must become visible to processor #2 before M3.

The Itanium memory ordering model disallows the outcome r1 = 1, r2 = 1, and r3 = 0 in this
execution (all other outcomes are allowed). To see this, we note the following. If r1 = 1, then

 at Processor #1. Because M2 is an acquire load and , , where m3
represents the local visibility of memory operation 1 (see Section 2.2.1.8). Thus, . Since
M1 is a release store, it appears to become visible to all processors at the same time. This fact and

 together imply .

If r2 = 1, . Because M4 is an acquire load, . If r3 = 0, then . Together,
these imply , which contradicts the observation from the previous paragraph. Thus, the
outcome r1 = 1, r2 = 1, and r3 = 0 is disallowed.

The indicated outcome would also be disallowed if M1 were a semaphore operation because, like
release stores, each semaphore must appear to become visible at all processors at the same time.
The indicated outcome would be allowed if M1 were a weak store, as a weak store may appear to
become visible at different times to different processors.

2.2.2 Memory Attributes

In addition to the ordering semantics and data dependencies, the memory attributes of the page that
is being referenced also influence access ordering and visibility. Using memory attributes allows
the Itanium architecture to match the performance and the usage model to the type of device
(e.g. main memory, memory-mapped I/O device, frame buffer, locations with side-effects, etc.) that
backs a page of memory. Typically, memory with side-effects is mapped uncacheable while
memory without side-effects is mapped as write-back cacheable.

Section 4.4, “Memory Attributes” describes memory attributes in the Itanium architecture in
greater depth.

Table 2-15. Intel® Itanium® Architecture Obeys Causality

Processor #0 Processor #1 Processor #2

st.rel [x] = 1 // M1
ld.acq r1 = [x] // M2

st [y] = 1 // M3

ld.acq r2 = [y] // M4

ld r3 = [x] // M5

Outcome: only r1 = 1, r2 = 1, and r3 = 0 is not allowed

M1 M2→ M2 M3» M2 m3→
M1 m3→

m3 M3→ M1 M3→

M3 M4→ M4 M5→ M5 M1→
M3 M1→
2:396 Volume 2: MP Coherence and Synchronization

Memory with the uncacheable UC or UCE attributes is sequential by definition. A processor based
on the Itanium architecture ensures that accesses to sequential memory locations reach a peripheral
domain (a platform-specific collection of uncacheable locations, colloquially known as “a device”)
in program order with respect to all other accesses to sequential locations in the same peripheral
domain. The sequential behavior of UC or UCE memory is independent of the ordering semantics
(i.e. acquire, release, fence, or unordered) attached to the accesses.

Other observers (e.g. processors or other peripheral domains) need not see references to UC or
UCE memory in sequential order if at all. When multiple agents are writing to the same device, it is
up to software to synchronize the accesses to the device to ensure the proper interleaving.

The ordering semantics of an access to sequential memory determines how the access becomes
visible to the peripheral domain with respect to other operations. For example, consider the code
sequence shown in Figure 2-2.

In this code, assume that data_0 and data_1 are cacheable locations and start and ready are an
uncacheable UC or UCE locations.

Sequentiality ensures that M3 and M4 reach the peripheral domain in program order (i.e. M3 before
M4). Further, the release semantics on M3 ensures that it is not made visible to the peripheral
domain until after M1 and M2 are made visible to the coherence domain. The M1 and M2 accesses
may become visible to the coherence domains in any order as they both have unordered semantics.
Even though the memory ordering semantics allow M4 to become visible before M3, the processor
must make M3 visible before M4 because both ready and start are sequential locations.

2.2.3 Understanding Other Ordering Models: Sequential
Consistency and IA-32

To provide a point of reference, it is helpful to understand other memory ordering models. These
ordering models affect not only the programmer’s view of the system, but also the overall system
performance and design. Processors with relaxed memory ordering models may achieve higher
performance than those with strict ordering models.

The most intuitive memory ordering model is “sequential consistency” (SC) which Lamport
formally defines in [L79]. In sequential consistency, all processors see the memory references from
a given processor in program order, and, in addition, all processors see the same system-wide
interleaving of memory references from each processor.

The SC model precludes many common optimizations made in modern microprocessors to enhance
performance. For example, in an SC system, a load may not pass a prior store until that store
becomes globally visible (because all memory operations must become visible in program order).
This requirement prevents the SC system from using a store buffer to hide the latency of store
traffic by allowing loads that hit the cache to be serviced under a prior store that miss the cache.

Figure 2-2. Interaction of Ordering and Accesses to Sequential Locations

sequential_example:

st [data_0] = 0 // M1: put data in cacheable mem

st [data_1] = 0 // M2: put data in cacheable mem

st.rel[ready] = 1 // M3: tell device to get ready

st [start] = 1 // M4: tell device to start
Volume 2: MP Coherence and Synchronization 2:397

To address such performance issues, many memory ordering models have been developed that
relax the constraints of sequential consistency. Adve categorizes these memory models by noting
how they relax the ordering requirements between reads and writes and if they allow writes to be
read early [AG95]. The Itanium architecture allows for relaxed ordering between reads and writes
and also allows writes to be read early under certain circumstances.

Aside from disallowing any relaxation of memory references, sequential consistency has two other
subtle differences from the Itanium memory ordering model. First, it requires a total order of
operations whereas the Itanium memory ordering model only requires a total order for release
stores and semaphores. Second, remote processors must always honor data dependencies since the
local processor does not have the option of re-ordering such accesses as can occur.

The IA-32 memory ordering relaxes write to read ordering and allows a processor to read its own
writes before they are globally visible. Further, IA-32 allows each processor in the coherence
domain to interleave the reference streams from other processors in the coherence domain in a
different order. The per-processor orders must meet some additional constraints to ensure they are
consistent with each other (enumerating and explaining these constraints is beyond the scope of this
document). For more information on the IA-32 ordering model see Section 6.3.2, “IA-32
Segmentation” on page 1:120.

2.3 Where the Intel® Itanium® Architecture Requires
Explicit Synchronization

The Itanium architecture requires a memory synchronization (sync.i) and a memory fence (mf)
during a context switch to ensure that all memory operations prior to the context switch are made
visible before the context changes. Without this requirement, the ordering constraints may be
violated if the process migrates to a different processor. For example, consider the example shown
in Figure 2-3.

.

In this example, Processor #1 may make the unordered store visible to the coherence domain before
Processor #0 makes the acquire load visible. This violates the ordering constraints. Executing a
memory fence during the context switch handler ensures that this violation can not occur.

See Section 4.5, “Context Switching” on page 2:426 on context management in a processor based
on the Itanium architecture.

Figure 2-3. Why a Fence During Context Switches is Required in the Intel® Itanium®

Architecture

// Process A begins executing on Processor #0...

ld.acqr1 = [x]// load executes on processor #0

// 1) Context switch occurs

// 2) O/S migrates Process A from Processor #0 to Processor #1

// 3) Process A resumes at the instruction following the ld.acq

st [y] = r2 // store executes on processor #1
2:398 Volume 2: MP Coherence and Synchronization

Interruptions do not affect memory ordering. On entry to an interrupt handler, memory operations
from the interrupted program may still be in-flight and not yet visible to other processors in the
coherence domain. A handler that expects that all memory operations that precede the interruption
to be visible must enforce this requirement by executing a memory fence at the beginning of the
handler.

2.4 Synchronization Code Examples

There are many synchronization primitives that software uses in multiprocessor or multi-threaded
environments to coordinate the activities of different code streams. In this section, we present
several typical examples to illustrate how some common constructs translate to the Itanium
instruction set. In addition, the discussions identify special considerations with various
implementations.

The examples use the syntax “[foo]” to indicate the memory location that holds the variable foo.
Actual Itanium-based assembly language would first move the address of foo into a register and
then use this register as an operand to a memory access instruction. The alternate syntax is chosen
to simplify and clarify the examples.

2.4.1 Spin Lock

Software commonly uses spin locks to guard access to a critical region of code. In these locks, the
software “spins” while waiting for a shared lock variable to indicate that the critical region can be
safely accessed. Typically, the lock code uses atomic operations such as compare and exchange or
fetch and add to update the shared lock variable. Figure 2-4 shows a spin lock based on the
cmpxchg instruction.

Figure 2-4. Spin Lock Code

// available. If it is 1, another process is in the critical
section.

//

spin_lock:

movar.ccv = 0 // cmpxchg looks for avail (0)

movr2 = 1 // cmpxchg sets to held (1)

spin:

ld8r1 = [lock] ;;// get lock in shared state

cmp.nep1, p0 = r1, r2// is lock held (ie, lock == 1)?

(p1)br.cond.spntspin ;;// yes, continue spinning

cmpxchg8.acqr1 = [lock], r2 ;;// attempt to grab lock

cmp.nep1, p0 = r1, r2// was lock empty?

(p1)br.cond.spntspin ;;// bummer, continue spinning

cs_begin:

// critical section code goes here...

cs_end:

st8.rel [lock] = r0 ;; // release the lock
Volume 2: MP Coherence and Synchronization 2:399

The spin lock code first initializes ar.ccv and a register with the values that indicate that the lock
is available and held, respectively. A compare and exchange obtains the lock by exchanging lock
with 1 if it currently holds 0. Next, the first loop ensures that the code spins in cache while the lock
is held by someone else. Once this loop finds that the lock is available, a compare and exchange
instruction attempts to obtain the lock. If this instruction fails (e.g. because someone else obtained
the lock in the meantime), the code resumes spinning in the first loop.

Spinning using only the cmpxchg/cmp/br loop may generate excessive coherency traffic. For
example, if the cmpxchg always stores to memory (even if the comparison fails) and the lock is
highly-contested, the platform may have to generate a number of read for ownership transactions
causing lock to move around the system. Using the first ld8/cmp/br loop avoids this problem by
obtaining lock in a shared state. In the worst case, when lock is not contested, this loop adds only
the overhead of the additional compare and branch.

The initial ld8 need not be an acquire load because of the control-flow in the spin loop: this load
must become visible before the cmpxchg8 because the load must return data in order for the
compare and branch to resolve. Further, the store that relinquishes the lock after the critical section
uses release semantics to prevent memory references from the critical from moving after the
reference that releases the lock. Finally, the branches use “static predict not taken” hints to optimize
for the case where the lock is not highly contested.

2.4.2 Simple Barrier Synchronization

A barrier is a common synchronization primitive used to hold a set of processes at a particular point
in the program (the barrier) until all processors reach the location. Once all processes arrive at the
barrier, they may all continue to execute. Figure 2-5 shows a sense-reversing barrier
synchronization based on the fetchadd instruction from Hennessy and Patterson [HP96].

This type of barrier prevents a process that races ahead to the next instance of the barrier from
trapping other (slow) processors that are in the process of leaving the barrier.

The barrier code begins by atomically updating the number of processors that are waiting at the
barrier, count, using a fetchadd instruction. For the last processor that reaches the barrier, the
fetchadd instruction returns the same value as the total shared variable, which is one less than
the number of processors that wait at the barrier. Other processors each get a unique value on the
interval [0, total) based on the order in which they arrive at the barrier.

All processors except the last processor wait in the wait_on_others loop for the signal that all
have arrived at the barrier. The last processor to arrive at the barrier provides this signal.

The signal to leave the barrier is deduced from the value of the release shared variable and the
local_sense local variable. Upon entering the barrier, each processor complements the value in
its private local_sense variable. Once in the barrier, all processors always have the same value in
their local_sense variables. This variable indicates the value that release must have before the
processor can leave the barrier. The last processor to arrive at the barrier releases the other
processors by setting release to the new local_sense value.

The mf instruction in Figure 2-5 is necessary only if the programmer wishes to ensure that memory
operations performed before the barrier code are visible to memory operations performed by any
processor after the barrier code.
2:400 Volume 2: MP Coherence and Synchronization

2.4.3 Dekker’s Algorithm

Dekker’s algorithm [D65] is a common synchronization construct that arbitrates for a resource
through the use of several shared variables that indicate which processor is using the resource. Each
processor has its own flag variable that it shares with all other processors in the system. When a
processor attempts to enter the critical section, it sets its flag to one and checks to make sure the
flags for the other processors are all zero.

The code in Figure 2-6 illustrates the core of this algorithm for a two-way multi-processor system.
In this example, a processor makes a single attempt to acquire the resource; typically, this code
would appear in a loop. Although there is an array of per-processor flag variables, the code uses
flag_me and flag_you to indicate to the flag variables for the processor attempting to obtain the
resource and the other remote processor, respectively.

Dekker’s algorithm assumes a sequential consistency ordering model. Specifically, it assumes that
loading zero from flag_you implies that a processor’s load and stores to the flag variables occur
before the other processor’s load and store to the flag variables. If this is not the case, both
processors can enter the critical section at the same time.

Using unordered loads or stores to access the flag_me and flag_you variables does not guarantee
correct behavior as the processor may re-order the accesses as it sees fit. Using an acquire load and
release store is also not sufficient to ensure correct behavior because the ordering semantics always

Figure 2-5. Sense-reversing Barrier Synchronization Code

// The total shared variable is one less than the number of
processors

// that wait at the barrier.

// The release shared variable indicates if the processor must wait
at

// the barrier (initially, this variable is 0).

// local_sense is a per-processor local variable that indicates the

// "sense" of the barrier (initially, this variable is 0).

sr_barrier:

fetchadd8.acq r1 = [count], 1// update counter

ld8 r2 = [total] // get number of procs - 1

ld8 r3 = [local_sense] ;;// get local “sense” variable

xor r3 = 1, r3 // local_sense =! local_sense

cmp.eqp1, p2 = r1, r2;;// p1 => last proc to arrive

st8 [local_sense] = r3 // save new value of local_sense

(p1)st8[count] = r0// last resets count to 0

(p1)st8.rel[release] = r3 ;;// last allows other to leave

wait_on_others:

(p2)ld8r1 = [release] ;;// p2 => more procs to come

(p2)cmp.ne.andp0, p2 = r1, r3// have all arrived yet?

(p2)br.cond.sptkwait_on_others ;;// nope, continue waiting

// This mf prevents memory operations that follow the barrier code

// from moving ahead of memory operations that precede the barrier

// code

mf ;;
Volume 2: MP Coherence and Synchronization 2:401

allow acquire loads to move earlier and release stores to move later. In the absence of the mf, it is
possible for the load from flag_you to occur before the store to flag_me; even with acquire and
release operations.

The first ld8 need not be an acquire load because of the control-flow that skips the critical section:
this load must become visible before any memory operations in the critical section because the load
must return data in order for the compare and branch to resolve.

2.4.4 Lamport’s Algorithm

Like Dekker’s Algorithm, Lamport’s Algorithm [L85] also provides mutual exclusion for critical
sections of code. Lamport’s algorithm is very simple and, in the case of non-contested locks, only
requires two read and two write memory accesses to enter the critical section. The algorithm uses
two shared variables, x and y, and a shared array, b, that identify the process entering and using the
critical section. Figure 2-7 presents Lamport’s Algorithm 2 [L85].

Lamport’s algorithm expects that a processor that enters the critical section performs the set of
operations: S = {store x, load y, store y, load x}1. To enforce this ordering, the Itanium architecture
requires a memory fence in the middle of the {store x, load y} sequence and the {store y, load x}
sequence. No combination of ordered semantics on the operations in each of these sequences will
guarantee the correct ordering.

It is not possible for the store y in the second sequence to pass the load y in the first sequence
because of the data dependency from the load y to the compare and branch. If the processor reaches
the store y in the second sequence, the load of y from the first sequence must be visible. Likewise,
it is not possible for memory operations in the critical section to move ahead of the final load x

Figure 2-6. Dekker’s Algorithm in a 2-way System

// The flag_me variable is zero if we are not in the
synchronization and

// critical section code and non-zero otherwise; flag_you is
similarly set

// for the other processor. This algorithm does not retry access to
the

// resource if there is contention.

//

dekker:

movr1 = 1 ;; // my flag = 1 (i want access!)

st8[flag_me] = r1

mf ;; // make st visible first

ld8r2 = [flag_you] ;;// is other’s flag 0?

cmp.eqp1, p0 = 0, r2

(p1)br.cond.spntcs_skip ;;// if not, resource in use

cs_begin:

// critical section code goes here...

cs_end:

cs_skip:

st8.rel[flag_me] = r0 ;;// release lock

1. There are some additional operations on the b array that are interposed in this sequence when contention for the resource occurs.
2:402 Volume 2: MP Coherence and Synchronization

because of the data dependency between this load and the compare and branch that guards the
critical section.

The accesses to the b array allow the algorithm to correctly handle contention for the lock. In such
cases, the algorithm backs off and re-trys.

Figure 2-7. Lamport’s Algorithm

// The proc_id variable holds a unique, non-zero id for the process that

// attempts access to the critical section. x and y are the synchronization

// variables that indicate who is in the critical section and who is attempting

// entry. ptr_b_1 and ptr_b_id point at the 1’st and id’th element of b[].

//

lamport:

ld8 r1 = [proc_id] ;;// r1 = unique process id

start:

st8[ptr_b_id] = r1// b[id] = “true”

st8[x] = r1 // x = process id

mf // MUST fence here!

ld8r2 = [y] ;;

cmp.nep1, p0 = 0, r2;;// if (y != 0) then...

(p1)st8[ptr_b_id] = r0// ... b[id] = “false”

(p1)br.cond.sptkwait_y// ... wait until y == 0

st8[y] = r1 // y = process id

mf // MUST fence here!

ld8r3 = [x] ;;

cmp.eqp1, p0 = r1, r3 ;;// if (x == id) then...

(p1)br.cond.sptkcs_begin// ... enter critical section

st8[ptr_b_id] = r0// b[id] = “false”

ld8r3 = [ptr_b_1]// r3 = &b[1]

movar.lc = N-1 ;;// lc = number of processors - 1

wait_b:

ld8r2 = [r3] ;;

cmp.nep1, p0 = r1, r2// if (b[j] != 0) then...

(p1)br.cond.spntwait_b ;;// ... wait until b[j] == 0

addr3 = 8, r3 // r3 = &b[j+1]

br.cloop.sptkwait_b ;;// loop over b[j] for each j

ld8r2 = [y] ;;

cmp.nep1, p0 = r2, r1 ;;// if (y != id) then...

(p1)br.cond.sptkcs_begin// ... enter critical section

wait_y:

ld8r2 = [y] ;; // wait until y == 0

cmp.nep1, p2 = 0, r2

(p1)br.cond.spntwait_y

brstart // back to start to try again

cs_begin:

// critical section code goes here...

cs_end:

st8[y] = r0 // release the lock

st8.rel[ptr_b_id] = r0;;// b[id] = “false”
Volume 2: MP Coherence and Synchronization 2:403

2.5 Updating Code Images

There are four general techniques for updating code images in order to modify the code stream of a
local or remote processor.

• Self-modifying code or code that modifies its own image.

• Cross-modifying code or code that modifies the image of code running concurrently on
another processor.

• Programmed I/O for paging of code pages.

• DMA for paging of code pages.

The next four sections discuss these techniques in greater depth.

To illustrate the code sequences for self- and cross-modifying code, the examples in this section use
the syntax “st [foo] = new” to represent a group of aligned stores that change the instruction at
address foo to the instruction “new”. The Itanium architecture requires that the instruction stream
see aligned stores atomically. In addition, the syntax “fc.i foo” represents a group of flush cache
instructions that ensures the cache line addressed by foo is coherent with all the instruction caches.
Updating more than one instruction simply requires the appropriate store/flush “pair” for each
updated instruction1.

2.5.1 Self-modifying Code

Figure 2-8 presents the Itanium instruction sequence necessary to update a code image location on
the local processor only.

This code fragment changes the instruction at the address code to the new instruction new_inst.
After executing this code, the change is visible to both the local processor’s caches and its pipeline.

The st instruction updates the code image and the fc.i instruction ensures the value stored is
coherent with the instruction cache. The fc.i is necessary because the Itanium architecture does
not require instruction caches to be coherent with data stores for Itanium-based code. Next, the
sync.i ensures that the code update is visible to the instruction stream of the local processor and
orders the cache flush with respect to subsequent operations by waiting for the prior fc.i
instructions to be made visible. Finally, the srlz.i instruction forces the pipeline to re-initiate any
instruction group fetches it performed after the srlz.i and also waits for the sync.i to complete;
effectively making the pipeline coherent with the updated code image.

1. This description hides some of the complexity involved. Specifically, the flush and store operations have different sizes. Whereas multiple
store instructions are necessary to update a 16 byte instruction, a single cache line flush invalidates at least two 16 byte instructions.

Figure 2-8. Updating a Code Image on the Local Processor

patch_local:

st[code] = new_inst// write new instruction

fc.i code ;; // flush new instruction

sync.i ;; // sync i stream with store

srlz.i ;; // serialize

// Local caches and pipeline are now coherent with new_inst...
2:404 Volume 2: MP Coherence and Synchronization

The serialization instruction is not necessary if software can guarantee that the processor
encounters an event that re-initiates code fetches performed after the sync.i, such as an
interruption or an rfi, before executing the new code. Events such as an interrupt or rfi both
perform an instruction serialization which in this example waits for the sync.i to complete and
then re-initiates code fetches.

2.5.2 Cross-modifying Code

Consider a multi-threaded program for a multiprocessor system that dynamically updates some
procedure that any processor in the system may execute. The program maintains several disjoint
buffers to hold the new code and requires a processor to execute an IP-relative branch instruction at
some address x to reach the code. In this scenario, the program updates the procedure by emitting
the new code into a different buffer and then patching the branch at address x to target this new
buffer. By carefully writing the update code, software can ensure that any processor in the system
sees either:

• The original branch at address x that targets the original code in the old buffer along with the
original code, or

• The new branch at address x that targets the new code in the new buffer along with the new
code.

The code in Figure 2-9 illustrates an optimized Itanium-based code sequence that implements the
cross-modifying code for this example.

To reach the new code at new_code, the processor executes the branch instruction at x. Initially,
this branch jumps to an address other than new_code.

The release store ensures a processor cannot see the new branch at address x and the original code
at address new_code. That is, if a processor encounters “branch <new_code>” at address x, then
the processor’s instruction cache must be coherent with the code image updates applied before the
release store that updates the branch.

Figure 2-9. Supporting Cross-modifying Code without Explicit Serialization

patch:

st[new_code] = new_inst// write new instruction

fc.i new_code ;; // flush new instruction

sync.i ;; // sync i stream with store

// Update the target of the branch that jumps to the updated code.
This

// branch MUST be ip-relative. Before executing the following
store,

// the branch jumps to somewhere other than “new_code”.

//

st.rel[x] = “branch <new_code>”

// If it is desired to propagate “branch <new_code>” to all other

// processors now, the following code is also necessary:

//

fc.i x ;; // flush branch

sync.i ;; // sync i stream with store

mf ;; // fence
Volume 2: MP Coherence and Synchronization 2:405

If remote processors may see either the old or new code sequence, the final three instructions in
Figure 2-9 are not necessary. In this case, the remote processors see the code image updates at some
point in the future. In the meantime, they continue to execute the old code.

The release store ensures that the code image updates are made visible to the remote processors in
the proper order (i.e. new_code is updated before the branch at address x is updated). Using the
final three instructions ensures that the remote processors will see the new code the next time they
execute the branch at address x.

On the local processor, the branch at address x also serves to force the pipeline to be coherent with
the code image update the machine without requiring an interrupt, rfi instruction, or srlz.i
instruction. Table 2-16 enumerates the potential pipeline behaviors to illustrate this point.

In the first and fourth scenarios, the pipeline fetches and executes either the old branch and old
target instruction or the new branch and new target instruction. Note that if the pipeline sees the
new branch, it must also see the new target instruction by virtue of the way the code in Figure 2-9 is
written. Either of these behaviors is consistent.

In the second and third scenarios, the pipeline obtains a mix of the old or new branch and the old or
new target instruction. In these cases, the pipeline must flush because the predicted target will not
agree with the branch instruction.

This behavior is not guaranteed unless the branch at address x is IP-relative and taken. The branch
must be IP-relative to ensure that both the instruction and target address can be atomically updated
(this is only possible with an IP-relative branch because in this type of branch, the target address is
part of the instruction).

2.5.3 Programmed I/O

Programmed I/O requires that the CPU copy data from the device controller to main memory using
load instructions to read from the device and store instructions to write data into cacheable memory
(page-in).

To ensure correct operation, Itanium-based software must exercise care in the presence of
Programmed I/O due to two features of the architecture. First, the Itanium architecture does not
require an implementation to maintain coherency between local instruction and data caches for
Itanium-based code. Second, the Itanium architecture allows aggressive instruction prefetching.
Specifically, an implementation can move any location from a cacheable page into its instruction
cache(s) any time a translation for the location indicates that the page is present (i.e. the p bit of the
translation is set).

Table 2-16. Potential Pipeline Behaviors of the Branch at x from Figure 2-9

Pipeline Operation Scenario #1 Scenario #2 Scenario #3 Scenario #4

Fetch branch at x Old branch Old branch New branch New branch

Predict branch at x Old target New target Old target New target

Code at target Old instruction “New” instruction
(but could be stale)

Old instruction New instruction

Retire branch at x Old retires Must flush due to
misprediction

Must flush due
to misprediction New retires
2:406 Volume 2: MP Coherence and Synchronization

A system that performs Programmed I/O can use a sequence similar to that shown in Figure 2-8 to
perform the data movement. Figure 2-10 presents a code sequence that updates a code image on
both the local and remote processors.

This code fragment changes the instruction at the address code to the new instruction new_inst.
After executing this code, the change is visible to the local and remote processor’s caches and to the
local processor’s pipeline, but may not be visible to remote processor’s pipelines.

The sequence in Figure 2-10 is similar to the code from Figure 2-8 except an mf instruction occurs
between the sync.i and srlz.i instructions. The fence is necessary if software must ensure that
the code image update is made visible to all remote processors before any subsequent memory
operations from the local processor. Although the sync.i, which orders the st/fc.i pair, has
unordered semantics, it is an orderable operation and thus obeys the release or fence semantics of
subsequent instructions (unlike an fc.i instruction; see Section 4.4.7, “Sequentiality Attribute and
Ordering” for more information).

Because the pipeline is not snooped, the code in Figure 2-10 cannot ensure that a remote
processor’s pipeline is coherent with the code image update. In the local case shown in Figure 2-8,
the srlz.i instruction enforces this coherency. As a result, the remote processor must serialize its
instruction stream before it executes the updated code in order to ensure that a stale copy of some of
the updated code is not present in the pipeline. This can be accomplished by explicitly executing a
srlz.i before executing the updated code or by forcing an event that re-initiates any code fetches
performed after the fc.i is observed to occur, such as an interruption or rfi.

Several optimizations to this code are possible depending on how software uses the updated code.
Specifically, the mf and srlz.i can be eliminated under certain circumstances.

The srlz.i is not necessary if the local processor that updates the code image does not ever
execute the new code. In this case, the local processor does not require its pipeline to be coherent
with the changes to the code image. The fence is not necessary if the code image update can be

Figure 2-10. Updating a Code Image on a Remote Processor

patch_l_and_r:

st[code] = new_inst// write new instruction

fc.i code ;; // flush new instruction

sync.i ;; // sync i stream with store

// If the local processor must ensure that remote processors see
the

// preceding memory updates before any subsequent memory
operations,

// the following code is also necessary.

//

mf ;; // make store visible to others

// If the local processor is going to execute the code and cannot

// cannot ensure instruction stream serialization, the following
code

// is also necessary,

//

srlz.i ;; // serialize my pipeline

// Local caches and pipeline are now coherent with new_inst, remote

// caches are now coherent with new_inst...
Volume 2: MP Coherence and Synchronization 2:407

made visible to remote processors in any relationship with subsequent memory operations from the
local processor.

Finally, software may also eliminate the mf or srlz.i instructions if it guarantees that these
operations will take place elsewhere (e.g. in the operating system) before the processor attempts to
execute the updated code. For example, context switch routines must contain a memory fence (see
Section 2.3 on page page 2:398). Thus, the fence is not required if a context switch always occurs
before any program can use the updated code.

2.5.4 DMA

Unlike Programmed I/O, which requires intervention from the CPU to move data from the device
to main memory, data movement in DMA occurs without help from the CPU. A processor based on
the Itanium architecture expects the platform to maintain coherency for DMA traffic. That is, the
platform issues snoop cycles on the bus to invalidate cacheable pages that a DMA access modifies.
These snoop cycles invalidate the appropriate lines in both instruction and data caches and thus
maintain coherency. This behavior allows an operating system to page code pages without taking
explicit actions to ensure coherency.

Software must maintain coherency for DMA traffic through explicit action if the platform does not
maintain coherency for this traffic. Software can provide coherency by using the flush cache
instruction, fc, to invalidate the instruction and data cache lines that a DMA transfer modifies.
Code such as that shown in Figure 2-8 on page 2:404 and Figure 2-10 on page 2:407 accomplish
this task.

2.6 References

[AG95]S. V. Adve and K. Gharachorloo. “Shared memory consistency models: A Tutorial,” Rice
University ECE Technical Report 9512, September 1995.

[L79]L. Lamport. “How to make a multiprocessor computer that correctly executes multiprocess
programs,” IEEE Transactions on Computers, C-28(9):690-691, September 1979.

[HP96]J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach,
second edition, Morgan-Kaufmann, 1996.

[D65]E. W. Dijkstra. “Cooperating sequential processes,” Eindhoven, the Netherlands,
Technological University Technical Report EWD-123, 1965.

[L85]L. Lamport. “A Fast Mutual Exclusion Algorithm,” Compaq Systems Research Center
Technical Report 7, November 1985.
2:408 Volume 2: MP Coherence and Synchronization

2

Interruptions and Serialization 3

This chapter discusses the interruption and serialization model. Although the Itanium architecture
is an explicitly parallel architecture, faults and traps are delivered in program order based on IP, and
from left-to-right in each instruction group. In other words, faults and traps are reported precisely
on the instruction that caused them.

3.1 Terminology

In the Itanium architecture, an interruption is an event which causes the hardware automatically to
stop execution of the current instruction stream, and start execution at the instruction address
corresponding to the interruption handler for that interruption. When this happens, we say that an
interruption has been delivered to the processor core.

There are two classes of interruptions in the Itanium architecture. IVA-based interruptions are
handled by the operating system (OS), at an address determined by the location of the interrupt
vector table (IVT) and the particular interruption that has occurred. PAL-based interruptions are
handled by the processor firmware. PAL-based interruptions are not visible to the OS, though PAL
may notify the OS that a PAL-based interruption has occurred; see Section 13.3, “Event Handling
in Firmware” on page 2:493.

The architecture supports several different types of interruptions. These are defined below:

• A fault occurs when OS intervention is required before the current instruction can be executed.
For example, if the current instruction misses the TLBs on a data reference, a Data TLB Miss
fault may be delivered by the processor. Faults are delivered precisely on the instruction that
caused the fault. The faulting instruction and all subsequent instructions do not update any
architectural state (with the possible exception of subsequent instructions which violate a
resource dependency1). All instructions executed prior to the faulting instruction update all
their architectural state before the fault handler begins execution.

• A trap occurs when OS intervention is required after the current instruction has completed.
For example, if the last instruction executed was a branch and PSR.tb is 1, a Taken Branch trap
will be delivered after the instruction completes. Traps are delivered precisely on the
instruction following the trapping instruction. The trapping instruction and all prior
instructions update all their architectural state before the trap handler begins execution. All
instructions subsequent to the trapping instruction do not update any architectural state.1

• When an external or independent agent (I/O device, timer, another processor) requires
attention from the processor, an interrupt occurs. There are several types of interrupts. An
initialization interrupt occurs when the processor has received an initialization request. A
Platform Management Interrupt (PMI) can be generated by the platform to request features
such as power management. Initialization interrupts and PMIs are PAL-based interruptions. An
external interrupt occurs when an agent in the system requires the OS to perform some

1. When an interruption is delivered on an instruction whose instruction group contains one or more illegal dependency violations, instructions
which follow the interrupted instruction in program order and which violate the resource dependency may appear to complete before the
interruption handler begins execution. Software cannot rely upon the value(s) written to the resource(s) whose dependencies have been
violated; the value(s) are undefined. For details refer to Section 3.4, “Instruction Sequencing Considerations” on page 1:33.
Volume 2: Interruptions and Serialization 2:409

service on its behalf. External interrupts are IVA-based interruptions. Interrupts are delivered
asynchronously with respect to program execution. The instruction upon which an interrupt is
delivered may or may not be related to the interrupt itself.

• An abort is generated by the processor when a malfunction (Machine Check) is detected, or
when a processor reset occurs. Aborts are asynchronous with respect to program execution. If
caused by a particular instruction, an abort may be delivered sometime after that instruction
completes. Aborts are PAL-based interruptions.

An interruption handler returns from interruption when it executes an rfi instruction. The rfi
instruction copies state from specific control registers known as interruption registers into their
corresponding architectural state (e.g. IIP is copied into IP and execution begins at that instruction
address). Whether or not the state that is restored by the rfi is the same state that was captured
when the interruption occurred is up to the operating system.

3.2 Interruption Vector Table

The Interruption Vector Address (IVA) control register defines the base address of the interruption
vector table (IVT). Each IVA-based interruption has its own architected offset into this table as
defined in Section 5.7, “IVA-based Interruption Vectors.” For the remainder of this section,
“interruption” refers to an IVA-based interruption, unless otherwise noted.

When an interruption occurs, the processor stops execution at the current IP, sets the current
privilege level to 0, and begins fetching instructions from the address of the entry point to the
interruption handler for the particular interruption that occurred. The address of this entry point is
defined by the base address of the IVT contained in the IVA register and the architected offset into
the table according to the interruption that occurred.

The IVT is 32Kbytes long and contains the code for the interruption handlers. Execution of the
interruption handler begins at the entry point. The interruption handler may be contained entirely in
the IVT, or the handler may branch to code outside the IVT if more space is needed.

When an interruption occurs, if the processor is operating with instruction address translation
enabled (PSR.it is 1), then the address in IVA is treated as a virtual address; otherwise, it is treated
as a physical address. Whenever an interruption may occur (i.e. whenever external interrupts are
not masked or disabled, or whenever an instruction may raise a fault or trap), the software must
ensure that the processor can safely reference the IVT. As a result, the IVT must be permanently
resident in physical memory. If instruction address translation is enabled, the IVT must be mapped
by an instruction translation register and must point at a valid physical page frame. When
instruction address translation is disabled, the IVA register should contain the physical address of
the base of the IVT. Software must further ensure that instruction and memory references from
low-level interruption handlers do not generate additional interruptions until enough state has been
saved and interruption collection can be re-enabled.

There are many more interruptions than there are interruption vectors in the IVT. As specified in
Section 5.6, “Interruption Priorities” there is a many-to-one relationship between interruptions and
interruption vectors. The interruptions that share a common interruption vector (and hence, the
code for an interruption handler) can determine which interruption occurred by reading the
Interruption Status Register (ISR) control register. See Chapter 8, “Interruption Vector
Descriptions” and Chapter 9, “IA-32 Interruption Vector Descriptions” for details of the specific
ISR settings for each unique interruption.
2:410 Volume 2: Interruptions and Serialization

3.3 Interruption Handlers

3.3.1 Execution Environment

As defined in Section 5.5, “IVA-based Interruption Handling,” the processor automatically clears
the PSR.i and PSR.ic bits when an interruption is delivered. This disables external interrupts and
interrupt state collection, respectively. PMI delivery is also disabled while PSR.ic is 0; other
PAL-based interruptions can be delivered at any point during the execution of the interruption
handler, regardless of the state of PSR.i and PSR.ic.

In addition to clearing the PSR.i and PSR.ic bits, the processor also automatically clears the PSR.bn
bit when an interruption is delivered, switching to bank 0 of general registers GR16 - GR31. This
provides the interruption handler with its own set of registers which can be used without spilling
any of the interrupted context’s register state, effectively saving GR16 - GR31 of the interrupted
context. (This assumes PSR.bn is 1 at the time of interruption; see Section 3.4.3 for how to deal
with the case where PSR.bn is 0 at the time of interruption.)

As specified in Section 3.3.7, “Banked General Registers,” GR24 - GR31 of bank 0 should not be
used while PSR.ic is 1. By firmware convention, PAL-based interruption handlers may use these
registers without preserving their values when PSR.ic is 1. When PSR.ic is 0, software may safely
use GR24 - GR31 of bank 0 as scratch register.

Several other PSR bits and the RSE.CFLE are modified by the hardware when an interruption is
delivered. Table 3-1 summarizes the execution environment that interruption handlers operate in,
and what each PSR bit and the RSE.CFLE values mean for the interruption handler.

Table 3-1. Interruption Handler Execution Environment (PSR and RSE.CFLE Settings)

PSR Bit New Value Effect on Low-level Interruption Handle

be DCR.be Byte order used by handler is determined by be-bit in DCR register.

ic & i 0 Disables interruption collection and external interrupts. Bank 0 is
made active bank. This is discussed abovebn 0

dt, rt, it, pk unchanged Instruction/Data/RSE address translation and protection key setting
remain unchanged.

dfl & dfh 0 Floating-point registers are made accessible. This allows handlers
to spill FP registers without having to toggle FP disable bits first.
Modified bits indicate which registers were touched. See
Section 4.2.2, “Preservation of Floating-point State in the OS” on
page 2:423 for details.

mfl, mfh unchanged

pp DCR.pp Privileged Monitoring is determined by pp-bit in DCR register. By
default, user counters are enabled and performance monitors are
unsecured in handlers. See Chapter 12, “Performance Monitoring
Support” for details.

up unchanged

sp 0

di 0 Instruction set transitions are not intercepted.

si 0 Interval timer is unsecured.

ac 0 No alignment checks are performed.

db, lp, tb, ss 0 Debug breakpoints, lower-privilege interception, taken branch and
single step trapping are disabled.

cpl 0 Current privilege level becomes most privileged.
Volume 2: Interruptions and Serialization 2:411

3.3.2 Interruption Register State

The Itanium architecture provides a set of hardware registers which, if interruption collection is
enabled, capture relevant interruption state when an interruption occurs. The state of the PSR.ic bit
at the time of an interruption controls whether collection is enabled. In this section, it is assumed
that interruption collection is enabled (PSR.ic is 1); see Section 3.4.3 for details on handling
interruptions when collection is disabled (PSR.ic is 0). For details on collection of interruption
resources for each interruption vector refer to Chapter 8, “Interruption Vector Descriptions” and
Chapter 9, “IA-32 Interruption Vector Descriptions.”

A processor based on the Itanium architecture provides the following interruption registers for
collecting information about the latest interruption or the state of the machine at the time of the
interruption:

• IPSR – A copy of the processor status register (PSR) at the moment the interruption occurred.
The OS can use the IPSR to determine the value of any PSR bit when the interruption
occurred. The contents of IPSR are restored into the PSR when the OS executes an rfi
instruction. If the OS wishes to change the PSR state of the interrupted process (e.g. to step
over an instruction debug fault), it can do so by modifying the IPSR contents before executing
the rfi. When an interruption occurs, the processor sets IPSR.ri to the slot number (0, 1, or 2)
of the instruction that was interrupted.

• IIP – A copy of the instruction pointer (IP) where the interruption occurred. The instruction
bundle address contained in IIP, along with the IPSR.ri field, defines the instruction whose
execution was interrupted. This instruction has not completed (i.e. it has not retired), so when
the OS returns to the interrupted context, typically this is the instruction at which execution of
the interrupted context resumes1. When the OS executes an rfi instruction, the contents of IIP
are copied into the IP register and the processor begins fetching instructions from this address.

is 0 Intel® Itanium® Instruction set. Handlers execute Intel® Itanium®
instructions.

id, da, ia, dd, ed 0 Instruction/data debug, access bit and speculation deferral bits are
disabled. For details, refer to Section 5.5.4, “Single Instruction Fault
Suppression” and Section 5.5.5, “Deferral of Speculative Load
Faults.”

ri 0 Interrupt handler starts at first instruction is bundle.

mc unchanged Software can mask delivery of some machine check conditions by
setting PSR.mc to 1, but the processor hardware does not set this
bit upon delivery of an IVA-based interruption. Delivery of resets
and BINITs cannot be masked.

RSE.CFLE

(not a PSR bit)

0 Allows interruption handler to service faults in presence of an
incomplete current register stack frame. This can happen when a
mandatory RSE load takes an exception during when RSE is
servicing a register stack underflow. For details refer to Section 6.6,
“RSE Interruptions.”.

1. When an instruction faults because it requires emulation by the OS, the OS will normally skip the emulated instruction by returning to the
instruction bundle address and slot number that follows IIP in program order. It does so by writing the next in-order bundle address and slot
number into IIP and IPSR.ri, respectively, before executing an rfi instruction. Details on emulation handlers is in Chapter 7, “Instruction
Emulation and Other Fault Handlers.”

Table 3-1. Interruption Handler Execution Environment (PSR and RSE.CFLE Settings) (Continued)

PSR Bit New Value Effect on Low-level Interruption Handle
2:412 Volume 2: Interruptions and Serialization

• ISR – Contains extra information about the specific interruption that occurred. This register is
useful for determining exactly which interruption occurred for interruptions which share the
same IVT vector.

• IFA – Faults related to addressing (e.g. Data TLB fault) materialize the faulting address in this
register.

• ITIR – Faults related to addressing materialize the default page size and permission key for the
region to which the faulting address belongs in this register.

• IIPA – Contains the instruction bundle address of the last instruction to retire successfully
while PSR.ic was 1. In conjunction with ISR.ei, IIPA can be used by software to locate the
instruction that caused a trap or that was executed successfully prior to a fault or interrupt.

• IIM – Instructions that take a Speculation fault (e.g. chk) or a Break Instruction fault (e.g.
break.i) write this register with their immediate field when taking these faults. For these
cases, the IIM register can be used to emulate the instruction, or to pass information to the fault
handler; for example, software can use a particular immediate field value in a break instruction
to indicate to the operating system that a system call is being performed.

• IHA – Faults related to the VHPT place the VHPT hash address in this register. See
Section 5.3, “Virtual Hash Page Table” on page 2:438 for details.

• IFS – This register can be used by software to save a copy of the interrupted context’s PFS
register, but an interruption handler must do this explicitly; hardware only clears the valid bit
(IFS.v) upon interruption. See below for details.

No other architectural state is modified when an interruption occurs. Note that only IIP, IPSR, ISR,
and IFS are written by all interruptions (assuming PSR.ic is 1 at the time of interruption); the other
interruption control registers are only written by certain interruptions, and their values are
undefined otherwise. For details on which faults update which interruption resources refer to
Chapter 8, “Interruption Vector Descriptions” and Chapter 9, “IA-32 Interruption Vector
Descriptions.”

3.3.3 Resource Serialization of Interrupted State

As defined in Section 3.2, “Serialization,” Itanium control register updates do not take effect until
software explicitly serializes the processor’s data or instruction stream with a srlz.d or a srlz.i
instruction, respectively. Control register updates that change a control register’s value and that
have not yet been serialized are termed “in-flight”. Refer to Section 3.2.3, “Definition of In-flight
Resources” for a precise definition.

When an interruption is delivered and before execution begins in the interruption handler, the
processor hardware automatically performs an instruction and data serialization on all “in-flight”
control registers, except for 4 resources: the IVA control register, DCR.be, DCR.pp, and PSR.ic.

As described in Section 3.3.1 above, these four resources determine the execution environment of
the interruption handler. As a result, to update these four resources, software must ensure that
external interrupts are disabled and that no instruction or data references will take an exception
until the resource update has been appropriately serialized. Typically, the code toggling these four
resources is mapped by an instruction translation register to avoid TLB related faults.

For example, assume that GR2 contains the new value for IVA and that PSR.i is 1. To modify the
IVA register, software would perform the following code sequence, where the code page is mapped
by an instruction translation register or instruction translation is disabled:
Volume 2: Interruptions and Serialization 2:413

rsm psr.i // external interrupts disabled upon next instruction
mov cr[iva] = r2
;;
srlz.i // writing IVA requires instruction serialization
;;
ssm psr.i // external interrupts will be re-enabled after next srlz

3.3.4 Resource Serialization upon rfi

An rfi instruction also performs an instruction and a data serialization operation when it is
executed. Any values that were written to processor register resources by instructions in an earlier
instruction group than the rfi will be observed by the returned-to instruction, except for those
register resources which are also written by the rfi itself, in which case the value written by the
rfi will be observed. This makes the interruption handler more efficient by avoiding additional
data and instruction serialization operations before returning to the interrupted context.

3.4 Interruption Handling

The Itanium-based operating systems need to distinguish the following interruption handler types:

• Lightweight interruptions: Lightweight interruption handlers are allocated 1024 bytes (192
instructions) per handler in the IVT. These are discussed in Section 3.4.1.

• Heavyweight interruptions: Heavyweight interruption handlers are allocated only 256 bytes
(48 instructions) per handler in the IVT. These are discussed in Section 3.4.2.

• Nested interruptions: If an interruption is taken when PSR.ic was 0 or was in-flight, a nested
interruption occurs. Nested interruptions are discussed in Section 3.4.3.

3.4.1 Lightweight Interruptions

Lightweight interruption handlers are allocated 1024 bytes (192 instructions) per handler in the
IVT. Typically, lightweight handlers are written in Itanium-based assembly code, and run in their
entirety with interruption collection turned off (PSR.ic = 0) and external interrupts disabled (PSR.i
= 0). Because these lightweight handlers are usually very short and performance-critical, they are
intended to fit entirely in the space allocated to them in the IVT. An example of a lightweight
interruption handler is the Data TLB vector (offset 0x0800). The first 20 vectors in the IVT, offsets
0x0000 (VHPT Translation vector) through 0x4c00 (reserved), are lightweight vectors. Typical
lightweight handlers deal with instruction, data or VHPT TLB Misses, protection key miss
handling, and page table dirty or access bit updates.

A typical lightweight interruption handler can operate completely out of register bank 0. If the bank
0 registers provide sufficient storage for the handler, none of the interrupted context’s register state
need be saved to memory, and the handler does not need to use stacked registers. Assuming no
stacked registers are needed, the lightweight interruption handler can operate with an incomplete
current register stack frame, obviating the need for cover and alloc instructions in the handler.
This also allows the TLB related handlers to service TLB misses that result from mandatory RSE
loads to the current frame.
2:414 Volume 2: Interruptions and Serialization

3.4.2 Heavyweight Interruptions

Heavyweight interruption handlers are allocated only 256 bytes (48 instructions) per handler in the
IVT. This stub provides enough space to save minimal processor state, re-enable interruption
collection and external interrupts, and branch to another routine to handle the interruption. Unlike a
lightweight interruption handlers described above, heavyweight interruption handlers use general
register bank 0 only until they can establish a safe memory context for spilling the interrupted
context’s state. This allows heavyweight handlers to be interruptible and to take exceptions.

A heavyweight handler stub (i.e. the portion of the handler that is located in the IVT) should
determine exactly which type of interruption has occurred based on its offset in the IVT and the
contents of the ISR control register. It can then branch out of the IVT to the actual interruption
handler. For some heavyweight interruptions (e.g. Data Debug fault), these handlers are typically
written in a high-level programming language; for others (e.g. emulation handlers) the interruption
can be handled efficiently in Itanium-based assembly code.

The sequence given below illustrates the steps that an Itanium-based heavyweight handler needs to
perform to save the interrupted context’s state to memory and to create an interruptible execution
environment. These steps assume that the low-level kernel code, the kernel backing store, and the
kernel memory stack are pinned in the TLB (using a translation register), so that no TLB misses
arise from referencing those memory pages. The ordering of the steps below is approximate and
other operating system strategies are possible.

1. Copy the interruption resources (IIP, IPSR, IIPA, ISR, IFA) into bank 0 of the banked
registers. To avoid conflicts with processor firmware, use registers GR24-31 for this
purpose. Both register bank 0 and the interruption control registers are accessible, since, as
described in Section 3.3.1, the processor hardware, upon an interruption always switches to
register bank 0, and clears PSR.ic and PSR.i.

2. Preserve the interrupted the predicate registers into bank 0 of the banked registers.

3. Determine whether interruption occurred in the operating system kernel or in user space by
inspecting both IPSR.cpl and the memory stack pointer (GR12).

a. If IPSR.cpl is zero and the interrupted context was already executing on a kernel stack,
then no memory stack switch is required.

b. Otherwise, software needs to switch to a kernel memory stack by preserving the
interrupted memory stack pointer to a banked register in bank 0, and setting up a new
kernel memory stack pointer in GR12.

4. Allocate a “trap frame” to store the interrupted context’s state on the kernel memory stack,
and move the interruption state (IIP, IPSR, IIPA, ISR, IFA, IFS), the interrupted memory
stack pointer and the interrupted predicate registers from the banked registers to the trap
frame.

5. Save register stack and RSE state by following the steps outlined in Section 6.11.1, “Switch
from Interrupted Context.”

a. If IPSR.cpl is zero and the interrupted context was not executing on a kernel backing
store (determined by inspecting BSPSTORE), then the new kernel BSPSTORE needs to
be allocated such that enough space is provided for the RSE to spill all stacked registers.
The architectural required maximum RSE spill area is 16KBytes. As a result,
BSPSTORE should be offset from the base of the kernel backing store base by at least
16KBytes. This offset can be reduced if the kernel queries PAL for the actual
implementation specific number of stacked physical registers (RSE.N_STACK_PHYS).
Volume 2: Interruptions and Serialization 2:415

Based on RSE.N_STACK_PHYS, the required minimum offset in bytes is:

8 * (RSE.N_STACK_PHYS + 1 + truncate((RSE.N_STACK_PHYS + 62)/63))

Otherwise, the interrupted context was already executing on the kernel backing store. In this
case, no new BSPSTORE pointer needs to be setup. The sequence in Section 6.11.1, “Switch
from Interrupted Context,” is still required, however, step 6 in that sequence can be omitted.

In either case, the interrupted register stack and RSE state (RSC, PFS, IFS, BSPSTORE,
RNAT, and BSP) needs to be preserved, and should be saved either to the trap frame on the
kernel memory stack, or to a newly allocated register stack frame.

6. Switch banked register to bank one and re-enable interruption collection as follows:

ssm 0x2000// Set PSR.ic
bsw.1;;// Switch to register bank 1
srlz.d// Serialize PSR.ic update

With interruptions collection re-enabled, the kernel may now branch to paged code and may
reference paged data structures.

7. Preserve branch register and application register state according to operating system
conventions.

8. Preserve general and floating-point register state. If this is an involuntary interruption, e.g.
an external interrupt or an exception, then software must save the interrupted context’s
volatile general register state (scratch registers) to the “trap frame” on the kernel memory
stack, or to the newly allocated register stack frame. If this is a voluntary system call then
there is no volatile register state. Preserved registers may or may not be spilled depending on
operating system conventions. Additionally, the Itanium architecture provides mechanisms
to reduce the amount of floating-point register spills and fills. More details on preservation
of register context are given in Section 4.2, “Preserving Register State in the OS” on
page 2:421.

9. At this point enough context has been saved to allow complete restoration of the interrupted
context. Re-enable taking of external interrupts using the ssm instruction as follows:

ssm 0x4000 ;; // Set PSR.i

There is no need to explicitly serialize the PSR.i update, unless there is a requirement to
force sampling of external interrupts right away. Without the serialization, the PSR.i update
will occur at the very latest when the next exception causes an implicit instruction
serialization to occur.

10. Dispatch interruption service routine (can be high-level programming language routine).

11. Return from interruption service routine.

12. Disable external interrupts as follows:

rsm 0x4000 ;; // Clear PSR.i

There is no need to explicitly serialize the PSR.i update, since clearing of the PSR.i bit with
the rsm instruction takes effect at the next instruction group. For details refer to the rsm
instruction page in Chapter 2, “Instruction Reference” in Volume 3.

13. Restore general and floating-point register state saved in step 8 above.

14. Restore branch register and application register state saved in step 7 above.

15. Disable collection of interruption resources and switch banked register to bank zero as
follows:

rsm 0x2000// Clear PSR.ic
bsw.0;;// Switch to register bank 0
srlz.d// Serialize PSR update
2:416 Volume 2: Interruptions and Serialization

16. Restore register stack and RSE state by following the steps outlined in Section 6.11.2,
“Return to Interrupted Context.”

17. Restore interrupted context’s interruption state (IIP, IPSR, IIPA, ISR, IFA, IFS) from the
“trap frame” on the kernel memory stack.

18. Restore interrupted context’s memory stack pointer and predicate registers from the trap
frame on the kernel memory stack. This step essentially deallocates the trap frame from the
kernel memory stack.

19. Return from interruption using the rfi instruction.

Many of the steps shown above are identical for different heavyweight interruptions, so unless
there is a specific need to create a different handler for a particular interruption, a common handler
can be used. Because external interrupt handlers use the Itanium external interrupt control registers
to determine the specific external interrupt vector that needs servicing and to mask off other
external interrupt vectors, an external interrupt handler looks somewhat different. Refer to
Section 10.4, “External Interrupt Delivery” on page 2:469 for details on writing external interrupt
handlers.

3.4.3 Nested Interruptions

The Itanium architecture provides a single set of interruption registers whose updates are controlled
by PSR.ic. When an IVA-based interruption is delivered and PSR.ic is 0 or in-flight (e.g. during a
lightweight interruption handler, or at the beginning of a heavyweight interruption handler), we say
that a nested interruption has occurred. On a nested interruption (other than a Data Nested TLB
fault) only ISR is updated by the hardware. All other interruption registers preserve their
pre-interruption contents.

With the exception of the Data Nested TLB fault, the Itanium architecture does not support nested
interruptions. Data Nested TLB faults are special and are discussed in Section 5.4.4, “Data Nested
TLB Vector” on page 2:443. The remainder of this section does not apply to Data Nested TLB
faults.

When a nested interruption occurs, the processor will update ISR as defined in Chapter 8,
“Interruption Vector Descriptions” and it will set the ISR.ni bit to 1. A value of 1 in ISR.ni is the
only indication to an interruption handler that a nested interruption has occurred. Since all other
interruption registers are not updated, there is generally no way for the OS to recover from nested
interruptions; the handler for the nested interruption has no context other than ISR for handling the
nested interruption. If a nested interruption is detected, it is often useful for the handler to call some
function in the OS that logs the state of ISR, IIP, and any other relevant register state to aid in
debugging the problem.
Volume 2: Interruptions and Serialization 2:417

2:418 Volume 2: Interruptions and Serialization

2

Context Management 4

This chapter discusses specific context management considerations in the Itanium architecture.
With 128 general registers and 128 floating-point registers, the architecture provides a
comparatively large amount of state. This chapter discusses various context management and state
preservation rules. This chapter introduces some architectural features that help an operating
system limit the amount of register spill/fill and gives recommendations to system programmers as
to how to use some of the instruction set features.

4.1 Preserving Register State across Procedure Calls

The Itanium® Software and Runtime Architecture Conventions [SWC] define a contract on register
preservation between procedures as follows:

• Scratch Registers (Caller Saves): GR2-3, GR8-11, GR14-GR15, and GR16-31 in register bank
1, FR6-15, and FR32-127. Code that expects scratch registers to hold their value across
procedure calls is required to save and restore them.

• Preserved Registers (Callee Saves): GR4-7, FR2-5, and FR16-31. Procedures using these
registers are required to preserve them for their callers.

• Stacked Registers: GR32-127, when allocated, are preserved by the RSE.

• Constant Register: GR0 is always 0. FR0 is always +0.0. FR1 is always +1.0.

• Special Use Registers: GR1, GR12, and GR13 have special uses.

Additional architectural register usage conventions apply to GR16-31 in register bank 0 which are
used by low-level interrupt handlers and by processor firmware. For details refer to Section 3.3.1.

Itanium general registers and floating-point registers contain three state components: their register
value, their control speculative (NaT/NaTVal) state, and their data speculative (ALAT) state. When
software saves and restores these registers, all three state components need to be preserved. As
described in Table 4-1, software is required to use different state preservation methods depending
on the type of register. More details on register preservation are provided in the next two sections.

Table 4-1. Preserving Intel® Itanium® General and Floating-point Registers

State Components
General Registers Floating-point Registers

GR1-31 (static) GR32-127 (stacked) FR2-127

Register Value st8.spill & ld8.fill
preserve register value.

RSE automatically
preserves register value.

stf.spill & ldf.fill
preserve register value.

Control Speculative
State (NaT/NaTVal)

st8.spill & ld8.fill
preserve register NaT.

RSE automatically
preserves register NaT.

stf.spill & ldf.fill
preserve NaTVal.

Data Speculative
State (ALAT)

Software must invala.e
a register’s ALAT state
when restoring the register.

RSE and ALAT manage
stacked register’s ALAT
state automatically.

Software must invala.e
a register’s ALAT state
when restoring the register.
Volume 2: Context Management 2:419

4.1.1 Preserving General Registers

The Itanium general register file is partitioned into two register sets: GR0-31 are termed the static
general registers and GR32-127 are termed the stacked general registers. Typically, st8.spill
and ld8.fill instructions are used to preserve the static GRs, and the processor’s register stack
engine (RSE) automatically preserves the stacked GRs.

Using the st8.spill and ld8.fill instructions, the general register value and its NaT bit are
always preserved and restored in unison. However, these instructions do not save and restore a
register’s data speculative state in the Advanced Load Address Table (ALAT). To maintain the
correct ALAT state, software is therefore required to explicitly invalidate a register’s ALAT entry
using the invala.e instruction when restoring a general register. The Itanium calling conventions
avoid such explicit ALAT invalidations by disallowing data speculation to preserved registers
(GR4-7) across procedure calls.

Spills and fills of general registers using st8.spill and ld8.fill cause implicit collection and
restoration of the accompanying NaT bits to/from the User NaT collection application register
(UNAT). The UNAT register needs to be preserved by software explicitly. The spill and fill
instructions derive the UNAT bit index of a spilled/filled NaT bit from the spill/fill memory address
and not from the spilled/filled register index. As a result, software needs to ensure that the 512-byte
alignment offset1 of the spill/fill memory address is preserved when a general register is restored.
This can be an issue particularly for user context data structures that may be moved around in
memory (e.g. a setjmp() jump buffer).

Unlike the st8.spill and ld8.fill instructions, the register stack engine (RSE) preserves not
only register values and register NaT bits, but it also manages the stacked register’s ALAT state by
invalidating ALAT that could be reused by software when the physical register stack wraps. This
automatic management of ALAT state across procedure calls permits compilers to use speculative
advanced loads (ld.sa) to perform cross-procedure call control and data speculation in stacked
general registers (GR32-127). Whenever software changes the virtual to physical register mapping
of the stacked registers, the ALAT needs to be invalidated explicitly using the invala instruction.
Typically this happens during process/thread context switches or in longjmp() when the register
stack is reloaded with a new BSPSTORE. Refer to Section 4.5.1.1, “Non-local Control Transfers
(setjmp/longjmp)” on page 2:426.

The RSE collects the NaT bits of the stacked general registers within the RNAT application register
and automatically saves and restores accumulated RNAT collections to/from fixed locations within
the register stack backing store. RNAT collections are placed on the backing store whenever
BSPSTORE bits{8:3} are all one, which results in one RNAT collection for every 63 registers.
When software copies a backing store to a new location, it is required to maintain the backing
store’s 512-byte alignment offset2 to ensure that the RNAT collections get placed at the proper
offset.

4.1.2 Preserving Floating-point Registers

The Itanium architecture encodes a floating-point register’s control speculative state as a special
unnormalized floating-point number called NaTVal. As a result, Itanium floating-point registers do
not have a NaT bit. The architecture provides the stf.spill and ldf.fill instructions to save

1. The specific requirement is that (fill_address mod 512) must be equal to (spill_address mod 512).
2. The specific requirement is that (old_bspstore mod 512) must be equal to (new_bspstore mod 512).
2:420 Volume 2: Context Management

and restore floating-point register values and control speculative state. These instructions always
generate a 16-byte memory image regardless of the precision of the floating-point number
contained in the register.

Preservation of data speculative state associated with floating-point registers needs to be managed
by software. As with the general registers, software is required to explicitly invalidate a register’s
ALAT entry using the invala.e instruction when restoring a floating-point register. The Itanium
calling conventions avoid such explicit ALAT invalidations by disallowing data speculation to
preserved floating-point registers (FR2-5, FR16-31) across procedure calls.

4.2 Preserving Register State in the OS

The software calling conventions described in the previous section apply to state preservation
across procedure call boundaries. When entering the operating system kernel either voluntarily (for
a system call) or involuntarily (for handling an exception or an external interrupt) additional
concerns arise because the interrupted user’s context needs to be preserved in its entirety.

The Itanium architecture defines a large register set: 128 general registers and 128 floating-point
registers account for approximately 1 KByte and 2 KBytes of state, respectively. The architecture
provides a variety of mechanisms to reduce the amount of state preservation that is needed on
commonly executed code paths such as system calls and high frequency exceptions such as TLB
miss handlers.

Additionally, Itanium-based operating systems have opportunities to reduce the amount of context
they need to save by distinguishing various kernel entry and exit points. For instance, when
entering the kernel on behalf of a voluntary system call, the kernel need only preserve registers as
outlined by the calling conventions. Furthermore, the operating system can be sensitive to whether
the preserved context is coming from the IA-32 or Itanium instruction set, especially since the
IA-32 register context is substantially smaller than the full Itanium register set. Ideally, an
Itanium-based operating system should use a single state storage structure which contains a field
that indicates the amount of populated state.

Table 4-2 summarizes several key operating system points at which state preservation is needed.

Scratch GRs and FRs, the bulk of all state, only need to be preserved at involuntary interruptions
resulting from unexpected external interrupts or from exceptions that need to call code written in a
high-level programming language. The demarcation of floating-point registers FR32-127 as
“scratch” along with architectural support for lazy state save/restore of the floating-point register
file allows software to substantially reduce the overhead of preserving the scratch FRs. See
Section 4.2.2 for details.

In principal, preserved GRs and FRs need not be spilled/filled when entering the kernel. Whatever
function is called from the low-level interruption handler or the system call entry point will itself
observe the calling conventions and preserve the registers. The only occasion when preserved
registers need to be spilled/filled is on a process or thread context switch. However, many operating
systems provide get_context() functions that provide user context upon demand. Although
such functions are called infrequently, many operating systems prefer to pay the penalty of spilling
preserved registers at system call and at interruption entry points to avoid the complexity of piecing
together user state from various potentially unknown kernel stack locations on demand.
Fortunately, the amount of preserved Itanium general register state is relatively small, and the
Volume 2: Context Management 2:421

Itanium architecture provides additional mechanisms for lazy floating-point state management. See
Section 4.2.2 for details.

Stacked GRs are managed by the register stack engine (RSE). On process/thread context switches
the operating system is required to completely flush the register stack to its backing store in
memory (using the flushrs instruction). In cases where the operating system knows that it will
return to the user process along the same path, e.g. in system calls and exception handling code, the
Itanium architecture allows operating systems to switch the register stack backing store without
having to flush all stacked registers to memory. This allows such kernel entry points to switch from
the user’s to the kernel’s backing store without causing any memory traffic, as described in the next
section.

4.2.1 Preservation of Stacked Registers in the OS

A switch from a thread of execution into the operating system kernel, whether on behalf of an
involuntary interruption or a voluntary system call, requires preservation of the stacked registers.
Instead of flushing all dirty stacked register’s to memory, the RSE can be used to automatically
preserve the stacked registers of the interrupted context. Automatic preservation offers
performance benefits: the register stack may contain only a handful of dirty registers, system call
parameters can be passed on the register stack, and, upon return to the interrupted context the
loadrs instruction only needs to restore registers that were actually spilled to memory. Since
system call rates scale with processor performance, the RSE offers a key method for reducing the
kernel’s execution time of a system call.

To ensure operating system integrity the RSE requires a valid backing store (i.e. one with a valid
page mapping). The validity of the current backing store depends on the interrupted context. If the
interrupted context is itself a kernel thread, then its backing store is in a known state, and no
backing store switch is required (assuming that kernel interruptions are nested). If the interrupted
context is a user process, then the backing store could be pointing at an invalid region of memory,
and software is required to redirect the RSE at a kernel backing store. Section 6.11.1, “Switch from

Table 4-2. Register State Preservation at Different Points in the OS

Register
Type

Number of
Registers

System Call
(Voluntary)

Lightweight
Interruptionsa

(Involuntary)

a. For details on lightweight interruption handlers refer to Section 3.4.1, “Lightweight Interruptions” on
page 2:414.

Heavyweight
Interruptionsb

(Involuntary)

b. For details on heavyweight interruption handlers refer to Section 3.4.2, “Heavyweight Interruptions” on
page 2:415.

Process/Thread
Context Switch

(Voluntary)

Scratch
GRs

23 no spill/fill
required

Untouched
(use banked registers)

spill/fill
required

no spill/fill required
(done at interruption)

Preserve
d GRs

4 no spill/fill
required

Untouched
(use banked registers)

no spill/fill
required

spill/fill
required

Stacked
GRs

96 Backing Store
Switch

Untouched Backing Store
Switch

 Synchronous
Backing Store Switch

using flushrsc

c. Refer to Section 6.11.3, “Synchronous Backing Store Switch” on page 2:129 for details.

Scratch
FRs

106 no spill/fill
required

Untouched spill/fill
required

no spill/fill required
(done at interruption)

Preserve
d FRs

20 no spill/fill
required

Untouched no spill/fill
required

spill/fill
required
2:422 Volume 2: Context Management

Interrupted Context” describes the code sequence to switch the RSE backing store without causing
memory traffic.

If the kernel redirects the backing store to a kernel memory region, then the kernel must restore the
backing store of the interrupted context prior to resumption of the interrupted context. The kernel
must also restore the register stack to its interrupted state by manually pulling the spilled registers
from the backing store. The kernel uses the loadrs instruction to restore stacked registers from the
backing store. The loadrs instruction requires the backing store pointer to align with any registers
spilled from the interrupted context. Thus the kernel should have paired all function calls (br.call
instructions) with function returns (br.ret instructions), or manually manipulated the kernel
backing store pointer, so that all kernel contents have been removed from the kernel backing store
prior to the loadrs. After loading the stacked registers, the kernel can switch to the backing store
of the interrupted frame. This code sequence is described in Section 6.11.1, “Switch from
Interrupted Context.”

The kernel may occasionally gather the complete interrupted user context, such as to satisfy a
debugger request or to provide extended information to a user signal handler. To provide the
preserved register stack contents, including NaT values, the kernel must extract the user context
values from its backing store.

4.2.2 Preservation of Floating-point State in the OS

A full preservation of Itanium floating-point register file requires approximately 2 KBytes of
memory. To reduce the frequency of such large register spills and fills, the Itanium architecture
offers additional mechanisms for lazy floating-point state management. These features allow the
system programmer to eliminate many unnecessary floating-point state spills and fills especially
around voluntary and involuntary entries into the kernel, e.g. around system calls, external
interrupts and exceptions. Lazy state preservation can provide a significant reduction of memory
traffic and hence faster interrupt handlers and system calls, especially since most interrupt handlers
and much system code rarely perform floating-point computations.

The 126 non-constant floating-point registers are architecturally divided into the lower set
(FR2-31) and the higher set (FR32-127). The Itanium architecture provides two floating-point
register set “modified” bits, PSR.mfl and PSR.mfh, which are set by hardware upon a write to any
register in the lower and higher sets, respectively. The “modified” bits are accessible to a user
process through the user mask. Additionally, two “disabled” bits, PSR.dfl and PSR.dfh, are
accessible to the privileged software alone. Setting a “disabled” bit causes a fault into the
disabled-fp vector upon first use (read or write) of the corresponding register set.

As mentioned earlier, an involuntary kernel entry (e.g. interruption) needs to preserve all scratch
floating-point registers. Instead of blindly always spilling all registers, state spills can be
conditionalized upon the “modified” bits in the PSR. Additionally, the “disabled” bits allow a
deferred, or lazy, approach to both spills and fills. This is particularly useful for “on demand” state
motion in an involuntary interruption handler that does not use many floating-point registers. To
perform deferred spills on the high set, the handler sets PSR.dfh immediately upon entry. Any
reference to a floating-point register in the high set will then fault into the disabled-fp vector which
spills the corresponding state to a prearranged store before allowing use within the handler. Lazy
state restoration is performed in a similar manner: the handler sets the “disabled” bit just before
exit, causing the first reference by the interrupted context to the disabled set to fault into the
kernel’s disabled floating-point vector which can then restore the appropriate state. Note the
Volume 2: Context Management 2:423

importance of agreeing upon prearranged stores for deferred spill/fill policies and the need for a
mechanism to communicate a past fill or spill.

At process or thread context switches all preserved floating-point registers need to be context
switched. The higher (scratch) set is also managed here if the context-switch was occasioned by an
involuntary interruption (e.g. timer interrupt) which did not already spill the higher set. Use of the
“modified” bits by the OS to determine if the appropriate register set is “dirty” with previously
unsaved data can help avoid needless spills and fills.

The “modified” bits are intentionally accessible through the user mask so that a user process can
provide hints to the OS code about its register liveness requirements. Clearing PSR.mfh, for
instance, suggests that the user process does not see the higher register set as containing useful data
anymore.

4.3 Preserving ALAT Coherency

As described in Section 4.4.5.3, “Detailed Functionality of the ALAT and Related Instructions” on
page 1:56, software is required to explicitly invalidate the entire ALAT using the invala
instruction whenever the virtual to physical register mapping is changed. Typically this occurs
when the clrrb instruction is used, when a synchronous backing store switch is performed (e.g. in
a user-level or kernel thread context switch), or when software “discontinuously” remaps the
register to backing store mapping by resetting BSPSTORE (e.g. by calling longjmp()).

When returning to a user-process after servicing an involuntary interruptions, an Itanium-based
operating system is required to invalidate the entire ALAT using the invala instruction. This is
required because the operating system may have targeted advanced loads at scratch registers, and
thereby altered the user-visible ALAT state.

When returning from a system call, however, full ALAT invalidations can be avoided by using
invala.e instructions to selectively invalidate ALAT entries of all preserved registers (GR4-7,
FR2-5, and FR16-31), or by ensuring that these registers where never accessible to software during
the system call (see Section 4.2.2 for details). This works, because at the system call entry
user-code may not have any dependencies on the state of the scratch registers.

4.4 System Calls

Reducing the overhead associated with system calls becomes more important as processor
efficiency increases. As processor frequencies and pipeline lengths increase, the typical overhead
associated with flushing the processor pipeline to effect privilege domain crossings is increased. To
reduce system call overhead, the Itanium architecture provides an efficient “enter privileged code”
(epc) instruction (page 3:47) that can be paired with the demoting branch return. Additionally, the
Itanium architecture provides the traditional break instruction (page 3:25) to enter privileged
mode, that is typically paired with the rfi instruction (page 3:203) to return to user mode.

The epc instruction offers higher efficiency than the break instruction for invoking a kernel
system call. Whereas a break instruction will always cause a pipeline flush to change privilege
level, the epc is designed not to. The break instruction also passes the system call number as a
2:424 Volume 2: Context Management

parameter, and requires a table lookup with an indirect branch to the system call. With the epc
instruction, the user application can directly branch to the system call code.

More information about epc based system calls is provided in Section 4.4.1. More information
about break based system calls is provided in Section 4.4.2. Regardless of whether the epc or
break instruction are used, an Itanium-based operating system needs to check the integrity of
system call parameters. In addition to traditional integrity checking of the passed parameter values,
the system call handler should inspect system call parameters for set NaT bits as described in
Section 4.4.3.

4.4.1 epc/Demoting Branch Return

To execute a system call with epc, a user system call stub branches to an execute-only kernel page
containing the system call, using the br.call instruction. The kernel page executes an epc to raise
the privilege level. The privilege level is raised to the privilege level of the page mapping
corresponding to the instruction address of the epc instruction. The page mapping must be
execute-only (see Section 4.1.1.6, “Page Access Rights” for details).

After the kernel completes its system call, it returns to the user system call stub with a br.ret
instruction. The br.ret demotes the privilege level, by restoring the privilege level contained
within the PFS application register (PFS.ppl). To ensure operating system integrity epc checks that
the PFS.ppl field is no greater than the PSR.cpl at the time the epc is executed.

As described in Section 4.2.1, interruptions and system calls in a typical Itanium-based operating
system need to switch to the kernel register stack backing store upon kernel entry. The epc
instruction does not disable interrupts nor does it switch the processor to the kernel backing store.
As a result, code directly following the epc instruction that runs at increased privilege level is still
running on the caller’s backing store. It is recommended that software disable external interrupts
right after the epc until the switch to the kernel backing store has been completed. Additionally,
low-level operating system handlers should not only use IPSR.cpl, but should also check
BSPSTORE, to determine whether they are running on the kernel backing store (imagine an
external interrupt being delivered on the first instruction after the epc).

4.4.2 break/rfi

The break instruction, when issued in the i, f, and m syllables, specifies an arbitrary 21-bit
immediate value. The kernel can choose a specific break immediate value to differentiate system
calls from other usage of the break instruction (such as debug). The break instruction jumps to
the break fault handler, which should be a valid address mapping for each user application, and
raises the privilege mode to the most privileged level.

The system call number is an additional parameter passed to the kernel when invoking a system call
via the break instruction. The system call number must reside in a fixed location. If stored within
GR32, then the system call stub must rearrange its input parameters to map to the register stack
starting at GR33. This register jostling can be avoided by passing the system call number through a
scratch static general register or by using the break immediate itself. Additionally, the system call
can utilize all eight input registers of the register stack for system call parameters.
Volume 2: Context Management 2:425

4.4.3 NaT Checking for NaTs in System Calls

In addition to regular range/value checking on system call arguments, Itanium-based operating
systems need to additionally ensure that system call arguments passed in by a user application do
not have any NaT bits set. The following code fragment can be used:

mov mask = 0xff
clrrrb
;;

// create register stack frame with only output registers for system call args
alloc tmp = ar.pfs, 0, 0, 8, 0
shl mask = mask, syscall_arg_count
;;
mov pr = mask, 0xff00 // define p8 .. p15
;;
cmp.eq p7 = r0, r0 // set p7 to true
;;

// test for NaT bits in the input arguments
(p8) cmp.eq.and p7 = r32, r32 // and type compare clears p7 if r32 is NaT
(p9) cmp.eq.and p7 = r33, r33
(p10) cmp.eq.and p7 = r34, r34
(p11) cmp.eq.and p7 = r35, r35
(p12) cmp.eq.and p7 = r36, r36
(p13) cmp.eq.and p7 = r37, r37
(p14) cmp.eq.and p7 = r38, r38
(p15) cmp.eq.and p7 = r39, r39
(p7) br.cond.sptk ok_arguments // No NaTs found
;;

// p7 was cleared by at least one NaT argument

4.5 Context Switching

This section discusses context switching at the user and kernel levels.

4.5.1 User-level Context Switching

4.5.1.1 Non-local Control Transfers (setjmp/longjmp)

A non-local control transfer such as the C language setjmp()/longjmp() pair requires software
to correctly handle the register stack and the RSE. The register stack provides the BSP application
register which always contains the backing store address of the current GR32. This permits
execution of a setjmp() without having to manipulate any register stack or RSE state. All register
stack and RSE manipulation is postponed to the much less frequent longjmp().

In setjmp() only the RSC, PFS and BSP application registers have to be preserved. This can be
accomplished by reading these registers, and without having to disable the RSE. The preserved
values will be referred to as setjmp_rsc, setjmp_pfs, and setjmp_bsp further on.

In longjmp() restoration of the appropriate register stack and RSE state is more involved, and
software needs to take the following steps:

1. Stop RSE by setting RSC.mode bits to zero.

2. Read current BSPSTORE (referred to as current_bspstore further down).
2:426 Volume 2: Context Management

3. Find setjmp()’s RNAT collection (rnat_value).

a. Compute the backing store location of setjmp()’s RNAT collection as follows:

rnat_collection_address{63:0} = setjmp_bsp{63:0} | 0x1F8

The RNAT location is computed by setting bits{8:3} of setjmp()’s BSP to all ones.
This is where setjmp()’s RNAT collection will have been spilled to memory.

b. If (current_bspstore > rnat_collection_address), then the required RNAT
collection has already been spilled to the backing store.

c. Otherwise if (current_bspstore <= rnat_collection_address), the required
RNAT collection is incomplete and is still contained in the register stack. To materialize
the complete RNAT collection, flush the register stack to the backing store using a
flushrs instruction.

d. Finally, load rnat_value from rnat_collection_address in memory.

4. Invalidate the contents of the register stack as follows:

a. Allocate a zero size register stack frame using the alloc instruction.

b. Write RSC.loadrs field with all zeros and execute a loadrs instruction.

c. Invalidate the ALAT using the invala instruction.

5. Restore setjmp()’s register stack and RSE state as follows:

a. Write BSPSTORE with setjmp_bsp.

b. Write RNAT with rnat_value.

c. Write RSC with setjmp_rsc.

d. Write PFS with setjmp_bsp.

6. Restore setjmp()’s return IP into BR7.

7. Return from longjmp() into setjmp()’s caller using br.ret instruction.

4.5.1.2 User-level Co-routines

The following steps need to be taken to execute a voluntary user-level thread switch.

1. Save all preserved register state of outgoing thread to memory stack. Refer to Section 4.1 for
details on preservation of general and floating-point registers.

2. Preserve predicate, branch, and application registers.

3. Flush outgoing register stack to backing store, and switch to incoming thread’s backing store
as described in Section 6.11.3, “Synchronous Backing Store Switch.” This code sequence
includes ALAT invalidation.

4. Switch thread memory stack pointers.

5. Restore incoming thread’s predicate, branch, and application registers.

6. Restore incoming thread’s preserved register state.
Volume 2: Context Management 2:427

4.5.2 Context Switching in an Operating System Kernel

4.5.2.1 Thread Switch within the Same Address Space

To switch between different threads in the same address space the following steps are required:

1. Application architecture state associated with each thread (GRs, FRs, PRs, BRs, ARs) are
saved and restores as if this were a user-level coroutine. This is described in Section 4.5.1.2.

2. Memory Ordering: to preserve correct memory ordering semantics the context switch
routine needs to fence all memory references and flush cache (fc, fc.i) operations by
executing a sync.i and mf instruction. More details on memory ordering are given in
Section 2.3.

4.5.2.2 Address Space Switching

When an operating system switches address spaces it needs to perform the same steps as a same
address space thread switch (described in the previous section). Additionally, however between the
saves of the outgoing and the restores of the incoming process, the operating system context switch
handler is required to:

1. Save the contents of the protection key registers associated with the outbound context, and
then invalidate the protection key registers.

2. Save the default control register (DCR) of the outbound context (if the DCR is maintained
on a per-process basis).

3. Save the region registers of the outbound address space.

4. Restore the region registers of the inbound address space.

5. Restore the default control register (DCR) of the inbound context (if the DCR is maintained
on a per-process basis).

6. Restore the contents of the protection key registers associated with the inbound context.
2:428 Volume 2: Context Management

2

Memory Management 5

This chapter introduces various memory management mechanisms of the Itanium architecture:
region register model, protection keys, and the virtual hash page table usage models are described.
This chapter also discusses usage of the architecture translation registers and translation caches.
Outlines are provided for common TLB and VHPT miss handlers.

5.1 Address Space Model

The Itanium architecture provides a byte-addressable 64-bit virtual address space. The address
space is divided into 8 equally-sized sections called regions. Each region is 261 bytes in size and is
tagged with a unique region identifier (RID). As a result, the processor TLBs can hold translations
from many different address spaces concurrently, and need not be flushed on address space
switches. The regions provide the basic virtual memory architecture to support multiple address
space (MAS) operating systems.

Additionally, each translation in the TLB contains a protection key that is matched against a set of
software maintained protection key registers. The protection keys are orthogonal to the region
model and allow efficient object sharing between different address spaces. The protection key
registers provide the basic virtual memory architecture to support single address space (SAS)
operating systems.

5.1.1 Regions

For each of the eight regions, there is a corresponding region register (RR), which contains a RID
for that region. The operating system is responsible for managing the contents of the region
registers. RIDs are between 18 and 24 bits wide, depending on the processor implementation. This
allows an Itanium-based operating system to uniquely address up to 224 address spaces each of
which can be up to 261 bytes in virtual size. An address space is made accessible to software by
loading its RID into one of the eight region registers.

Address Translation: The upper 3 bits of a 64-bit virtual address (bits 63:61) identify the region to
which the address belongs; these are called the virtual region number (VRN) bits. When a virtual
address is translated to a physical address, the VRN bits select a region register which provides the
RID used for this translation. Each TLB entry contains the RID tag bits for the translation it maps;
these are matched against the RID bits from the selected region register when the TLB is looked up
during address translation. Address translation only succeeds if the RID and VPN bits from the
virtual address match the RID and VPN bits from the TLB entry. Note that the VRN bits are used
only to select the region register, are not matched against the TLB entries.

Inserting/Purging of Translations: When a translation is inserted into the processor TLBs (either
by software, or by the processor’s hardware page walker), the VRN bits of the virtual address
translation being inserted are used only to index the corresponding region register; they are not
inserted into the TLB. Likewise, when software purges a translation from the processor’s TLBs, the
VRN bits of the address used for the purge are used only to index the corresponding region register
Volume 2: Memory Management 2:429

and are not used to find a matching translation. Only the RID and VPN bits are used to find
overlapping translations in the TLBs.

The fact that the VRN bits are not contained in the processor TLB allows the same address space
(identified by a RID) to be referenced through any of the eight region registers. In other words, the
combination of RID and VPN establishes a unique 85-bit virtual address, regardless of which VRN
(and region register) was used to form the pair. Independence of VRN allows easy creation of
temporary virtual mappings of an address space and can accelerate cross-address space copying as
described in Section 5.1.1.3.

5.1.1.1 RID Management

Before a RID that has been used for one address space can be reused for another address space, all
TLB entries relating to the first address space have to be purged. In general, this will require a
complete flush of the TLBs of all processors in the system. This can be accomplished by
performing an IPI to all processors and executing the ptc.e loop described in Section 5.2.2.2.2 on
each processor in the TLB coherence domain.

A more efficient alternative, depending on the size of the defunct address space, might be to
perform a series of ptc.ga operations on one processor to tear down just the translations used by
the recycled RID. Some processor implementations support an efficient region-wide purge page
size such that this can be accomplished with a single ptc.ga operation.

The frequency of these global TLB flushes can be reduced by using a RID allocation strategy that
maximizes the time between use and reuse of a RID. For example, RIDs could be assigned by using
a counter that is as wide as the number of implemented RID bits and that is incremented after every
assignment. Only when the RID counter wraps around it is necessary to do a global TLB flush.
After the flush the operating system can either remember the in-use RIDs or it can re-assign new
RIDs to all currently active address spaces.

5.1.1.2 Multiple Address Space Operating Systems

Multiple address space (MAS) operating systems provide a separate address space for each process.
Typically, only when a process is running is its address space visible to software.

The application view of the virtual address space in the MAS OS model is a contiguous 64-bit
address space, though normally not all of this virtual address space is accessible by the application.
At least one of the 8 regions must be used to map the OS itself so that the OS can handle
interruptions and system services invoked by the application.

The OS chooses a region ID and a region (e.g. region 7) into which to map itself during the boot
process and usually does not change this mapping after enabling address translation. The other
seven regions may be used to map process-private code and data; code and data that are shared
amongst multiple processes; to map large files; temporary mappings to allow efficient
cross-address space copies (see Section 5.1.1.3); and, for operating systems which use it, the long
format VHPT.

In a MAS OS, the RID bits act as an address space identifier or tag. For each process-private
region, a unique RID is assigned to that process by the OS. If a process needs multiple
process-private regions (e.g. the process requires a private 64-bit address space), the OS assigns
multiple unique RIDs for each such region. Because each translation in the processor’s TLBs is
2:430 Volume 2: Memory Management

tagged with its RID, the TLBs may contain translations from many different address spaces (RIDs)
concurrently. This obviates the need for the OS to purge the processor’s TLBs upon an address
space switch. When the OS performs a context switch from process A to process B, the OS need
only remove process A’s private RIDs from the CPU’s region registers and replace them with
process B’s private RIDs.

5.1.1.3 Cross-address Space Copies in a MAS OS

The use of regions, region registers, and RIDs provides a mechanism for efficient address
space-to-address space copies. Because translations are tied to RIDs and not to a particular static
region, a MAS OS can easily copy a memory range from one address space to another by
temporarily remapping the target memory location to another region. This remapping is
accomplished simply by placing the RID to which the target location belongs into a different region
register and then performing the copy from source to target directly.

For example, assume a MAS OS wishes to copy and 8-byte buffer from virtual address
0x0000000000A00000 of the currently executing process (process A) to virtual address
0x0000000000A00000 of another process (process B):

mov r2 = 2

mov r3 = process_b_rid

movl r4 = 0x0000000000A00000

movl r5 = 0x4000000000A00000;;; // reference process B through RR[2]

mov rr[r2] = r3 ;; // put process B RID into RR[2]

srlz.d // serialize RR write
copyloop:

ld8 r6 = [r4] ;; // read buffer from process A addr space

st8 [r5] = r6 // store buffer into process B addr
space

(p4)br copyloop // loop until done

mov r3 = original_rr2_rid ;;

mov rr[r2] = r3 ;; // restore RR[2] RID

srlz.d // serialize RR write

When the OS switches to process B and places process B’s RID into RR[0] and resumes execution
of process B, the process can reference the message via virtual address 0x0000000000A00000.
Note that no new translations need to be created to make the sequence shown above work; because
translations are tagged by RID and not by region, all existing translations for process B’s address
space are visible regardless of which region the reference is made to, as long as the region register
for that region contains the correct process B RID. Note that the sequence shown above is intended
for illustrative purposes only; the OS may need to perform other steps as well to perform a
cross-address space copy.

5.1.2 Protection Keys

The Itanium architecture provides two mechanisms for applying protection to pages. The first
mechanism is the access rights bits associated with each translation. These bits provide privilege
level-granular access to a page. The second mechanism is the protection keys. Protection keys
permit domain-granular access to a page. These are especially useful for mapping shared code and
data segments in a globally shared region, and for implementing domains in a single address space
(SAS) operating system.
Volume 2: Memory Management 2:431

Protection key checking is enabled via the PSR.pk bit. When PSR.pk is 1, instruction, data, and
RSE references go through protection key access checks during the virtual-to-physical address
translation process.

All processors based on the Itanium architecture implement at least 16 protection key registers
(PKRs) in a protection key register cache. The OS is responsible for maintaining this cache and
keeping track of which protection keys are present in the cache at any given time.

Each protection key register contains the following fields:

• v – valid bit. When 1, this register contains a valid key, and is checked during address
translation whenever protection keys are enabled (PSR.pk is 1).

• wd – write disable. When 1, write permission is denied to translations which match this
protection key, even if the data TLB access rights permit the write.

• rd – read disable. When 1, read permission is denied to translations which match this
protection key, even if the data TLB access rights permit the read.

• xd – execute disable. When 1, execute permission is denied to translations which match this
protection key, even if the instruction TLB access rights give execute permission.

• key – protection key. An 18- to 24-bit (depending on the processor implementation) unique
key which tags a translation to a particular protection domain.

When protection key checking is enabled, the protection key tagged to a referenced translation is
checked against all protection keys found in the protection key register cache. If a match is found,
the protection rights specified by that key are applied to the translation. If the access being
performed is allowed by the matching key, the access succeeds. If the access being performed is not
allowed by the matching key (e.g. instruction fetch to a translation tagged with a key marked ‘xd’),
a Protection Key Permission fault is raised by the processor. The OS may then decide whether to
terminate the offending program or grant it the requested access.

If no match is found, a Protection Key Miss fault is raised by the processor, and the OS must insert
the correct protection key into the PKRs and retry the access.

Protection keys can be used to provide different access rights to shared translations to each process.
For example, assume a shared data page is tagged with a protection key number of 0xA. Two
processes share this data page: one is the producer of the data on this page, and the other is only a
consumer. When the producer process is running, the OS will insert a valid PKR with the protection
key 0xA and the ‘wd’ and ‘rd’ bits cleared, to allow this process to both read and write this page.
When the consumer process is running, the OS will insert a valid PKR with the protection key 0xA
and the ‘rd’ bit cleared, to allow this process to read from the page. However, the ‘wd’ bit for this
PKR will be set when the consumer process is running to prevent it from writing the page.

The processor hardware has no notion of which protection keys belong to which process. The only
check the hardware performs is to compare the protection key from the translation to any valid
protection keys in the PKR cache. On a context switch, the OS must purge any valid protection
keys from the PKRs which would provide access rights to the switched-to context that are not
allowed. The OS may purge an existing PKR by performing a move to PKR instruction with the
same key as the existing PKR, but with the PKR valid bit set to 0.

Protection keys can be read from the processor’s data TLBs via the tak instruction. However,
instruction TLB key values cannot be read directly. Software must keep track of these values in its
own data structures.
2:432 Volume 2: Memory Management

5.1.2.1 Single Address Space Operating Systems

Processes in a single address space (SAS) OS all cohabit a global address space. SAS operating
systems running on a processor based on the Itanium architecture can view the RID bits as
effectively extending the single virtual address space to between 79 and 85 bits (depending on the
number of RID bits implemented by the processor). This address space is then divided into between
218 and 224 61-bit regions, up to eight of which may be accessed concurrently.

Note that there is no “SAS OS” or “MAS OS” mode in the Itanium architecture. The processor
behavior is the same, regardless of the address space model used by the OS. The difference
between a SAS OS and a MAS OS is one of OS policy: specifically how the RIDs and protection
keys are managed by the OS, and whether different processes are permitted to share RIDs for their
private code and data. Multiple, unrelated processes in a SAS OS may share the same RID for their
private pages; it is the responsibility of the OS to use protection keys and the protection key
registers (PKRs) to enforce protection. In a MAS OS, the unique per-process RIDs enforce this
protection.

Hybrid SAS/MAS models that combine unique RIDs for process-private regions and shared RIDs
with protection keys for per-page memory protection in shared regions are also possible.

5.2 Translation Lookaside Buffers (TLBs)

All processors based on the Itanium architecture implement one or more translation lookaside
buffers (TLBs) for fast virtual-to-physical address translation. The architecture provides
instructions for managing instruction and data TLBs as separate structures.

Both the instruction and data TLBs are further divided into a set of translation registers (TRs),
which are managed exclusively by software and are “locked down” to pin critical address
translations (e.g. kernel memory); and a set of translation cache entries (TCs), which can be
managed by both software and the processor hardware. The TRs are divided into slots, each of
which are individually addressable on insertion by software. The TCs are treated as a set
associative cache and are not addressable by software. The TC replacement policy is determined by
software. All processor models implement at least 8 instruction and 8 data TRs, and at least one
instruction and 1 data TC entry.

Software inserts translations into the TLBs via insertion instructions. There are four variants of
insertion instructions. itr.i and itr.d insert a translation into the specified instruction or data
TR slot, respectively. itc.i and itc.d insert a translation into a hardware-selected instruction or
data TC entry, respectively.

Software TR purge instructions also distinguish between the instruction and data TRs (ptr.i,
ptr.d). TC purge instructions do not.

5.2.1 Translation Registers (TRs)

Once a translation is inserted by software into a TR, it remains in that TR until either the translation
is overwritten by software, or the translation is purged. TRs are used by the OS to pin critical
address translations; all memory references made to a TR translation will always hit the TLB and
will never cause the processor's hardware page walker to walk the VHPT or raise a fault. Examples
Volume 2: Memory Management 2:433

of memory areas that the OS might cover with one or more TRs are the Interruption Vector Table,
critical interruption handlers not contained completely in the Interruption Vector Table, the
root-level page table entries, the long format VHPT, and any other non-pageable kernel memory
areas.

Two address translations are said to overlap when one or more virtual addresses are mapped by
both translations. Software must ensure that translations in an instruction TR never overlap other
instruction TR or TC translations; likewise, software must ensure that translations in a data TR
never overlap other data TR or TC translations. If an overlap is created, the processor will raise a
Machine Check Abort.

The processor hardware will never overwrite or purge a valid TR. TRs that are currently unused
may be used by the processor hardware as extra TC entries, but if software subsequently inserts a
translation into an unused a TR, the TC translation will be purged when the insertion is executed.

5.2.1.1 TR Insertion

To insert a translation into a TR, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of PSR.ic is
observed.

2. Place the base virtual address of the translation into the IFA control register.1

3. Place the page size of the translation into the ps field of the ITIR control register. If
protection key checking is enabled, also place the appropriate translation key into the key
field of the ITIR control register. See below for an explanation of protection keys.

4. Place the slot number of the instruction or data TR into which the translation is be inserted
into a general register.

5. Place the base physical address of the translation into another general register.

6. Using the general registers from steps 4 and 5, execute the itr.i or itr.d instruction.

A data or instruction serialization operation must be performed after the insert (for itr.d or
itr.i, respectively) before the inserted translation can be referenced.

Software may insert a new translation into a TR slot already occupied by another valid translation.
However, software must perform a TR purge to ensure that the overwritten translation is no longer
present in any of the processor’s TLB structures.

Instruction TR inserts will purge any instruction TC entries which overlap the inserted translation,
and may purge any data TC entries which overlap it. Data TR inserts will purge any data TC entries
which overlap the inserted translation and may purge any instruction TC entries which overlap it.

Software may insert the same (or overlapping) translation into both the instruction TRs and the data
TRs. This may be desirable for locked pages which contain both code and data, for example.

1. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along with the rest of the translation. See
Section 5.1.1 for details.
2:434 Volume 2: Memory Management

5.2.1.2 TR Purge

To purge a TR from the TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general register.2

2. Place the address range in bytes of the purge into bits {7:2} of a second general register.

3. Using these two GRs, execute the ptr.d or ptr.i instruction.

A data or instruction serialization operation must be performed after the purge (for ptr.d or
ptr.i, respectively) before the translation is guaranteed to be purged from the processor’s TLBs.

Note: The TR purge instruction operates independently of the slot into which the translation was
originally inserted.

A ptr.d instruction will never purge an overlapping translation in an instruction TR, but may
purge an overlapping translation in an instruction TC; likewise, a ptr.i instruction will never
purge an overlapping translation in a data TR, but may purge an overlapping translation in a data
TC.

A TR purge does not modify the page tables nor any other memory location, nor does it affect the
TLB state of any processor other than the one on which it is executed.

5.2.2 Translation Caches (TCs)

The TC array acts as a cache of the dynamic working set for data and instruction translations. It is
managed by software (via itc and ptc instructions) and, optionally by hardware, if the processor
provides a hardware page walker (HPW) and the walker is enabled. See Section 5.3 below.

The size, associativity, and replacement policy of the TC array are implementation-dependent. With
the exception of the forward progress rules defined in Section 4.1.1.2, “Translation Cache (TC)”,
software cannot depend on the existence or life-span of a TC translation, as a TC entry may be
replaced or invalidated by the hardware at any time.

5.2.2.1 TC Insertion

To insert a TC entry, software performs the following steps:

1. If PSR.ic is 1, clear it and execute a srlz.d instruction to ensure the new value of PSR.ic is
observed.

2. Place the base virtual address of the translation into the IFA control register.3

3. Place the page size of the translation into the ps field of the ITIR control register. If
protection key checking is enabled, also place the appropriate translation key into the key
field of the ITIR control register. See below for an explanation of protection keys.

4. Place the base physical address of the translation into a general register.

5. Using the general register from step 4, execute the itc.i or itc.d instruction.

2. The upper 3 bits (VRN) of this address specify a region register whose contents are used as part of the translation to be purged. See
Section 5.1.1 for details.

3. The upper 3 bits (VRN) of this address specify a region register whose contents are inserted along with the rest of the translation. See
Section 5.1.1 for details.
Volume 2: Memory Management 2:435

A data or instruction serialization operation must be performed after the insert (for itc.d or
itc.i, respectively) before the inserted translation can be referenced.

Instruction TC inserts always purge overlapping instruction TCs and may purge overlapping data
TCs. Likewise, data TC inserts always purge overlapping data TCs and may purge overlapping
instruction TCs.

5.2.2.2 TC Purge

There are several types of TC purge instructions. Unlike the other TLB management instructions,
the TC purge instructions do not distinguish between instruction and data translations; they will
purge any matching translations in either the data or instruction TC arrays.

5.2.2.2.1 ptc.l

The most basic TC purge is the local TC purge instruction (ptc.l). To purge a TC from the local
processor TLBs, software performs the following steps:

1. Place the base virtual address of the translation to be purged into a general register.4

2. Place the address range in bytes of the purge into bits {7:2} of a second general register.

3. Using these two GRs, execute the ptc.l instruction.

A data or instruction serialization operation must be performed after the ptc.l before the
translation is guaranteed to be no longer visible to the local data or instruction stream, respectively.

The ptc.l instruction does not modify the page tables nor any other memory location, nor does it
affect the TLB state of any processor other than the one on which it is executed.

5.2.2.2.2 ptc.e

To purge all TC entries from the local processor’s TLBs, software uses a series of ptc.e
instructions. Software must call the PAL_PTCE_INFO PAL routine at boot time to determine the
parameters needed to use the ptc.e instruction. Specifically, PAL_PTCE_INFO returns:

• tc_base – an unsigned 64-bit integer denoting the beginning address to be used by the first
ptc.e instruction in the purge loop.

• tc_counts – two unsigned 32-bit integers packed into a 64-bit parameter denoting the loop
counts of the outer and inner purge loops. count1 (outer loop) is contained in bits {63:32} of
the parameter, and count2 (inner loop) is contained in bits {31:0} of the parameter.

• tc_strides – two unsigned 32-bit integers packed into a 64-bit parameter denoting the loop
stride of the outer and inner purge loops. stride1 (outer loop) is contained in bits {63:32} of the
parameter, and stride2 (inner loop) is contained in bits {31:0} of the parameter.

4. The upper 3 bits (VRN) of this address specify a region register whose contents are used as part of the translation to be purged. See
Section 5.1.1 for details.
2:436 Volume 2: Memory Management

Software then executes the following sequence:
disable_interrupts();
addr = tc_base;
for (i = 0; i < count1; i++) {

for (j = 0; j < count2; j++) {
ptc.e addr;
addr += stride2;

}
addr += stride1;

}
enable_interrupts();

A data or instruction serialization operation must be performed after the sequence shown above
before the translations are guaranteed to be no longer visible to the local data or instruction stream,
respectively.

The ptc.e instruction does not modify the page tables nor any other memory location, nor does it
affect the TLB state of any processor other than the one on which it is executed.

5.2.2.2.3 ptc.g, ptc.ga

The Itanium architecture supports efficient global TLB shootdowns via the ptc.g and ptc.ga
instructions. These instructions obviate the need for performing inter-processor interrupts to
maintain TLB coherence in a multi-processor system. A TLB coherence domain is defined as a
group of processors in a multiprocessor system which maintain TLB coherence via hardware.

For the remainder of this section, ptc.g refers to both the ptc.g and ptc.ga instructions, except
where otherwise noted.

Only one ptc.g operation can be in progress at any time, otherwise one or more of the processors
in the system may raise a Machine Check Abort. To guarantee that only one ptc.g operation is in
progress at a time, software should create a shootdown lock variable which must be acquired before
issuing a ptc.g, and released after the ptc.g has completed.

A ptc.g instruction is a release operation; all memory references that precede a ptc.g in program
order are made visible to all other processors before the ptc.g is made visible. To guarantee
visibility of the ptc.g prior to a particular point in program execution, software must use another
release operation or a memory fence.

To purge a translation from all TLBs in the coherence domain, software performs the following
steps:

1. Acquire the shootdown lock variable.

2. Place the base virtual address of the translation to be purged into a general register.

3. Place the address range in bytes of the purge into bits {7:2} of a second general register.

4. Using these two GRs, execute the ptc.g instruction. Note that the ptc.g instruction must be
followed by a stop.

5. Release the shootdown lock variable.

Global purges can be batched together by performing multiple ptc.g instructions prior to releasing
the lock.

A data or instruction serialization operation must be performed after the sequence shown above
before the translations are guaranteed to be no longer visible to the local data or instruction stream,
Volume 2: Memory Management 2:437

respectively. To guarantee the translations are no longer visible on remote processors, a release
operation or memory fence instruction is required after the ptc.g instruction.

The ptc.g instruction does not modify the page tables nor any other memory location. It affects
both the local and all remote TC entries in the TLB coherence domain. It does not remove
translations from either local or remote TR entries, and if a ptc.g overlaps a translation contained
in a TR on either the local processor or on any remote processor in the coherence domain, the
processor containing the overlapping translation will raise a Machine Check Abort.

The ptc.ga variant of the global purge instruction behaves just like the ptc.g variant, but it also
removes any ALAT entries which fall into the address range specified by the global shootdown
from all remote processors’ ALATs. The ptc.ga variant is intended to be used whenever a
translation is remapped to a different physical address to ensure that any stale ALAT entries are
invalidated. Note that the ptc.ga does not affect the issuing processor’s ALAT; software must
perform a local ALAT purge via the invala instruction on the processor issuing the ptc.ga to
ensure the local ALAT is coherent.

Note that processors based on the Itanium architecture may support one or more
implementation-dependent purge sizes; some implementations may include a region-wide purge.
The PAL_VM_PAGE_SIZE firmware call returns the supported page sizes for purges for a
particular processor implementation. Refer to Section 11.9.1, “PAL Procedure Summary” for
details. When software wishes to purge an address range that is much larger than the largest
supported purge size from all TCs in the coherence domain, performance may be enhanced by
issuing inter-processor interrupts to all processors and using the ptc.e loop described in
Section 5.2.2.2.2 on each processor, instead of issuing many ptc.g instructions from one
processor.

ptc.g instructions do not apply to processors outside the coherence domain of the processor
issuing the ptc.g instruction. Systems with multiple coherence domains must use a
platform-specific method for maintaining TLB coherence across coherence domains.

5.3 Virtual Hash Page Table

The Itanium architecture defines a data structure that allows for the insertion of TLB entries by a
hardware mechanism. The data structure is called the “virtual hash page table” (VHPT) and the
hardware mechanism is called the VHPT “walker”.

Unlike the IA-32 page tables, the Itanium VHPT itself is virtually mapped, i.e. VHPT walker
references can take TLB faults themselves. Virtual mapping of the page tables is needed because
the page tables for 264 address space are quite large and typically do not fit into physical memory.

The Itanium architecture prescribes the format of a leaf-node page table entry (PTE) seen by the
VHPT walker, but does not impose an OS page table data structure itself. As summarized in
Table 5-1, the architecture support two different VHPT formats:

• Short format uses 8-byte PTEs, and is a linear page table. The short format VHPT cannot use
protection keys (there are not enough PTE bits for that). Short format is a per-region linear
page table, i.e. the PTEs and hash function are independent of the RID. The short format
prefers use of a self-mapped page table. The short format VHPT is an efficient representation
for address spaces that contain only a few large clusters of pages, like the text, data, and stack
segments of applications running on a MAS operating system.
2:438 Volume 2: Memory Management

• Long format uses 32-byte PTEs, and is a hashed page table. The hash function embedded in
hardware. The long format supports protection keys and the use of multiple page sizes in a
region. The long format hash and tag functions incorporate the RID, and allows multiple
address space translations to be present in the same VHPT. The long format is expected to be
used either as a cache of the real OS page tables, or as a primary page table with collision
chains. The long format VHPT is a much better representation for address spaces that are
sparsely populated, since the short format VHPT has a linear layout and would consume a large
amount of memory. Single address space operating systems may prefer the long format VHPT
for this reason.

5.3.1 Short Format

The short format VHPT is a per-region linear table that contains translation entries for every page
in the region’s virtual address space. This makes the VHPT very large, but since the VHPT itself
lives in virtual address space only those parts of the VHPT that actually contain valid translation
entries have to be present in physical memory. If the operating system’s page table is a hierarchical
data structure and the last level of the hierarchy is a linear list of translations, the VHPT can be
mapped directly onto the page table as shown in Figure 5-1.

Table 5-1. Comparison of VHPT Formats

Attribute Short Format Long Format

Entry Size 8 Byte 32 Byte

Lookup Linear Hashed

Protection Keys No Yes

Page Size per region per entry

Figure 5-1. Self-mapped Page Table

PTA

. . .

.

.

Page Table
VHPT

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

P
T
E

Volume 2: Memory Management 2:439

If the VHPT walker tries to access a location in the VHPT for which no translation is present in the
TLB, a VHPT Translation fault is raised. The original address for which the VHPT walker was
trying to find an entry in the VHPT is supplied to the fault handler in the IFA register. The fault
handler can use this address to traverse the page table and insert a translation into the TLB that
maps the address the VHPT walker tried to access (in IHA) to the page that contains the
corresponding leaf page table.

5.3.2 Long Format

The long format VHPT is organized as a hash table which contains a subset of all translation
entries. The long format VHPT entries contain a 8-byte field that is ignored by the VHPT walker
and can be used by the operating system to link VHPT entries to software-walkable hash collision
chains if it uses the VHPT as its primary page table. The size of the long format VHPT is usually
kept small enough to keep a mapping for it in one of the translation registers (TRs), so it is not
necessary to handle VHPT translation faults.

The long format hash algorithm is based on the per-region preferred page size, but a translation for
a larger page can still be entered into the VHPT by subdividing the large page into multiple smaller
pages with the preferred page size and placing an entry for the large page at all VHPT locations that
correspond to the smaller pages.

5.3.3 VHPT Updates

The VHPT walker uses unordered load semantics to access the in-memory VHPT. Visibility of
VHPT updates to a VHPT walker on another processor follows the rules outlined in Section 4.1.7,
“VHPT Environment.” Since a global TLB purge has release semantics, prior modifications to the
VHPT will be visible to operations that occur after the TLB purge operation.

Atomic updates to short format VHPT entries can easily be done through 8-byte stores. For atomic
updates of long format VHPT entries, the “ti” flag in bit 63 of the tag field can be utilized as
follows:

• Set the “ti” bit to 1.

• Issue a memory fence.

• Update the entry.

• Clear the “ti” bit through a store with release semantics.

5.4 TLB Miss Handlers

The Itanium architecture enables lightweight TLB fault handlers by providing individual entry
points for different excepting conditions and by pre-setting the translation insertion registers for the
various types of TLB faults. The following subsections list the typical steps for resolving each kind
of fault.
2:440 Volume 2: Memory Management

5.4.1 Data/Instruction TLB Miss Vectors

These faults occur when the data or instruction TLB required for a data access or instruction fetch
is not found in the processor TLBs, the VHPT walker is enabled, and:

• Either the VHPT walker aborted the walk (for any reason and at any time), or

• The VHPT walker found the translation but the insert failed (due to tag mismatch in the long
format or badly formed PTE), or

• The walker is not implemented on this processor.

There is a separate vector for each fault type (data and instruction).

Since the VHPT walker may abort a walk at any time and raise these faults, software must always
be able to handle all TLB faults, even when the VHPT walker is enabled. Upon entry to these fault
handlers, the IHA, ITIR, and IFA control registers are initialized by the hardware as follows:

• IHA – contains the virtual address of the hashed page table address corresponding to the
reference which raised the fault.

• ITIR – contains the default translation information for the reference which raised the fault (i.e.
for the virtual address contained in IFA). The access key field is set to the region ID from the
RR corresponding to the faulting address. The page size field is set to the preferred page size
(RR.ps) from the RR corresponding to the faulting address.

• IFA – the virtual address of the bundle (for instruction faults) or data reference (for data faults)
which missed the TLB.

The fault handler for a short format VHPT performs the following steps, at a minimum, to handle
the fault:

1. Move IHA into a general register, chosen by convention to match the register expected by
the nested TLB fault handler.

2. Perform an 8-byte load into another general register from the address contained in this
general register to grab the VHPT entry. Note that the format of these first 8 bytes is identical
to the format required for TLB insertion. If the VHPT is not mapped by a TR, software must
be prepared to handle a nested TLB fault when performing this load.

3. Using the general register from step 2 that holds the contents of the VHPT entry, perform a
TC insert (itc.i for instruction faults, itc.d for data faults).

4. In an MP environment, reload the VHPT entry from step 2 into a third general register and
compare the value to the one loaded in step 2. If the values are not the same, then the VHPT
has been modified by another processor between steps 2 and 3, and the entry will have to be
re-inserted. In this case, purge the entry just inserted using a ptc.l instruction. The fault
will re-occur after the rfi in step 5 (unless the VHPT walker succeeds on the next TLB
miss) and the fault handler will re-attempt the insertion. (Uniprocessor environments may
skip this step.)

5. rfi.

For a long format VHPT, additional steps are required to load bytes 16-23 of the VHPT entry and
check for the correct tag (the correct tag for the reference can be generated using the ttag
instruction). If the tags do not match, this indicates a VHPT collision, and the handler must proceed
to walk the operating system’s collision chain manually to find the correct entry. The handler may
then choose to swap places between the correct entry and the VHPT entry. Note that the pointers for
a collision chain can be stored in bytes 24-31 of the VHPT entry format since these bytes are
ignored by the VHPT walker.
Volume 2: Memory Management 2:441

If the default page size and key are not sufficient, the handler must also perform additional steps to
load the correct page size and key into the ITIR register before performing the TC insert in step 3 of
the sequence shown above.

5.4.2 VHPT Translation Vector

Processors based on the Itanium architecture does not perform recursive TLB hardware page walks.
Since the VHPT is itself a virtually addressed structure, each reference performed by the walker
itself goes through the TLBs and may miss. These faults are raised when the VHPT walker is
enabled, but the walker misses the TLBs when attempting to service a TLB miss caused by the
program.

There is a separate vector for each fault type (data and instruction).

Upon entry to this fault handler, the IHA, IFA, and ITIR control registers are initialized by the
hardware as follows:

• IHA – contains the virtual address of the hashed page table address corresponding to the
reference which raised the fault.

• ITIR – contains the default translation information for the VHPT address which missed the
TLBs (i.e. for the virtual address contained in IHA). The access key field is set to the region ID
from the RR corresponding to the VHPT address. The page size field is set to the preferred
page size (RR.ps) from the RR corresponding to the VHPT address.

• IFA – contains the original faulting address that the VHPT walker was attempting to resolve.

The fault handler for a short format VHPT performs the following steps, at a minimum, to handle
the fault:

1. Move the IHA register into a general register.

2. Perform a thash instruction using the general register from step 1 This will produce, in the
target register, the VHPT address of the VHPT entry that maps the VHPT entry
corresponding to the original faulting address (i.e. the address in IFA).

3. Using the target general register of the thash from step 2 as the load address, perform an
8-byte load from the VHPT. Note that the format of these first 8 bytes is identical to the
format required for TLB insertion. Software must be prepared to take a nested TLB fault if
this load misses the TLBs.

4. Move the IHA value from the general register written in step 1 into the IFA register.

5. Using the general register from step 3 that holds the contents of the VHPT entry, perform a
data TC insert using the itc.d instruction. (VHPT references always go through the data
TLBs.)

6. In an MP environment, reload the VHPT entry from step 3 into a different general register
and compare the value to the one loaded in step 3. If the values are not the same, then the
VHPT has been modified by another processor between steps 3 and 4, and the entry will
have to be re-inserted. In this case, purge the entry just inserted using a ptc.l instruction.
The fault will re-occur after the rfi in step 7 (unless the VHPT walker succeeds on the next
TLB miss) and the fault handler will re-attempt the insertion. (Uniprocessor environments
may skip this step.)

7. rfi.
2:442 Volume 2: Memory Management

For a long format VHPT, additional steps are required to load bytes 16-23 of the VHPT entry and
check for the correct tag; see Section 5.4.1 for more details.

A separate structure other than the VHPT may be used to back VHPT translations, in which case the
handler would not use the thash instruction to generate the address of the translation mapping the
VHPT entry corresponding to the original faulting address. Instead, the handler would use the
operating system’s own mechanism for finding VHPT back-mappings. Other schemes for handling
VHPT misses are also possible, but are beyond the scope of this document.

5.4.3 Alternate Data/Instruction TLB Miss Vectors

These faults are raised when an instruction or data reference misses the processor’s TLBs and the
VHPT walker is not enabled for the faulting address, i.e. TLB misses are handled entirely in
software. Operating systems which do not wish to use the VHPT walker can disable the walker and
use these fault vectors for software TLB fill handlers. The OS may also choose to enable the walker
on a per-region basis and use these vectors to handle misses in regions where the walker is disabled.

Upon entry to these fault handlers, the IFA and ITIR registers are initialized by the hardware as
follows:

• ITIR – contains the default translation information for the reference which raised the fault (i.e.
for the virtual address contained in IFA). The access key field is set to the region ID from the
RR corresponding to the faulting address. The page size field is set to the preferred page size
(RR.ps) from the RR corresponding to the faulting address.

• IFA – the virtual address of the bundle (for instruction faults) or data reference (for data faults)
which missed the TLB.

The OS needs to lookup the PTE for the faulting address in the OS page table, convert it to the
architected insertion format (see Section 4.1.1.5, “Translation Insertion Format”), and insert it into
the TLB. The mechanism used to handle these faults is OS-specific and is beyond the scope of this
document.

5.4.4 Data Nested TLB Vector

To enable efficient handling of software TLB fills, the Itanium architecture provides a dedicated
Data Nested TLB fault vector. The Data Nested TLB fault handler is intended to be used by the
Data TLB fault handler, which allows the OS to page the page tables themselves. When PSR.ic is 0,
any data reference that misses the TLB and would normally raise a Data TLB Miss fault (e.g. a load
performed by the Data TLB fault handler to the page tables) will vector to the Data Nested TLB
fault handler instead. Because IFA is not updated when PSR.ic is 0, the Data Nested TLB fault
handler must get the faulting address from the general register used as the load address in the Data
TLB fault handler5. Unlike other nested interruptions, the hardware does not update ISR when a
Data Nested TLB fault is delivered.

The processor will not deliver a Data Nested TLB fault when PSR.ic is in-flight; Data Nested TLB
faults are only delivered when PSR.ic is 0. If PSR.ic is in-flight, any data references which miss the
TLB and trigger a fault will raise a Data TLB fault, and the processor will set ISR.ni to 1.

5. This requires a register usage convention between all TLB miss handlers and the Data Nested TLB miss handler.
Volume 2: Memory Management 2:443

5.4.5 Dirty Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS page table
and load the PTE into a general register rx. It can then set the “dirty” bit in rx and write the updated
PTE back to the page table. To continue execution, the OS must insert the updated PTE into the data
TLB or update the PTE memory image and let the VHPT walker perform the insertion.

5.4.6 Data/Instruction Access Bit Vector

The operating system is expected to lookup the PTE for the faulting address in the OS page table
and load the PTE into a general register rx. It can then set the “access” bit in rx and to continue
execution, the OS must either:

• Write the updated PTE back to the page table, and have the VHPT walker pick it up, or

• Insert the updated PTE into the TLB using itc.i rx for instruction pages, and itc.d rx for
data pages, or

• Step over the instruction/data access bit fault by setting the IPSR.ia or IPSR.da bits prior to
performing an rfi.

5.4.7 Page Not Present Vector

Forward the fault to the operating system’s virtual memory subsystem.

5.4.8 Data/Instruction Access Rights Vector

Forward the fault to the operating system’s virtual memory subsystem.

5.5 Subpaging

The native page size an Itanium-based operating system will choose for its page tables is likely be
larger than the architectural minimum page size of 4 KB. Some legacy IA-32 applications,
however, expect a page protection granularity of 4 KB. The following technique allows support for
these applications with minimal impact on the native, larger page size paging mechanism.

A special type of entry is used in the native page table to mark pages that are subdivided into
smaller 4 KByte units. The entry must have its memory attribute field set to the architecturally
“software reserved” encoding (binary 001), and it carries a pointer to an array of 4 KB subentries in
its most significant 59 bits. An example using a native page size of 16 KB is shown in Figure 5-2.
The use of the “software reserved” memory attribute prevents the VHPT walker from attempting to
insert the entry into the TLB.
2:444 Volume 2: Memory Management

When one of the subdivided pages is referenced and does not have a translation in the TLB, a TLB
miss will occur. The handler for this fault can then use the faulting address to calculate the
appropriate offset into the sub-table and insert the corresponding 4KByte PTE into the TLB.

Some care is required to ensure forward progress for IA-32 instructions. Each IA-32 instruction can
reference up to 8 distinct memory pages during its execution (see also Section 10.6.3, “IA-32 TLB
Forward Progress Requirements”). This means that the fault handler not only has to insert the PTE
for the current fault into the TLB, but also the PTEs for up to seven faults that occurred before, if
these faults originate from the same IA-32 instruction. This can be accomplished by maintaining a
buffer for the most recent faulting IIP and for the parameters of up to 7 TLB insertions. If a TLB
fault occurs while executing in IA-32 mode and the IIP matches the most recent IIP, all TLB
insertions in the buffer have to be repeated and the parameters for the new TLB fault must be added
to the buffer. Otherwise, the buffer can be cleared out and the most recent IIP can be updated. The
buffer also has to be cleared out when a TLB purge occurs.

Figure 5-2. Subpaging

Native Page Table

16K PTE

16K PTE

16K PTE

16K PTE

4K PTE

4K PTE

4K PTE

4K PTE

Sub-Table

001 1
Volume 2: Memory Management 2:445

2:446 Volume 2: Memory Management

2Itan ium®

Runtime Support for Control and Data
Speculation 6

An Itanium-based operating system needs to handle exceptions generated by control speculative
loads (ld.s or ld.sa), data speculative loads (ld.a) and architectural loads (ld) in different
ways.

Software does not have to worry about control or data speculative loads potentially hitting
uncacheable memory with side-effects, since ld.s, ld.sa, and ld.a instructions to
non-speculative memory are always deferred by the processor for details refer to Section 4.4.6,
”Speculation Attributes.” As a result, compilers can freely use control and data speculation to all
program variables.

Control speculative loads require special exception handling and the Itanium architecture provides
a variety of deferral mechanisms for handling of control speculative exception handling. This is
discussed in Section 6.1.

The Itanium architecture supports different control speculation recovery models. These are
discussed in Section 6.2.

Handling of exceptions caused by architectural and data speculative loads is the same, except for
emulation of unaligned data speculative references, which require special unaligned emulation
handling. This is discussed in Section 6.3.1.

6.1 Exception Deferral of Control Speculative Loads

Exceptions that occur on control speculative loads (ld.s or ld.sa) can be handled by the
operating system in different ways. The operating system can configure a processor based on the
Itanium architecture in three ways:

• Hardware-Only Deferral: automatic hardware deferral of all control speculative exceptions. In
this case, the processor hardware will always defer excepting control speculative loads without
invoking the operating system.

• Combined Hardware/Software Deferral: automatic deferral of some control speculative
exceptions, but deliver others to software. In this case, some exceptions will result in hardware
deferral as described above, other exceptions will be reported to the operating system. The
operating system fault handlers can identify that an exception has been caused by a control
speculative load (ISR.sp will be 1). Furthermore, OS handlers can software-defer an exception
on a control speculative load by setting IPSR.ed to 1 prior to rfi-ing back to the ld.s or
ld.sa. This allows an operating system to service “cheap” non-fatal exceptions (e.g. simple
TLB misses), while software-deferring both “expensive” non-fatal (e.g. page faults) as well as
fatal exceptions (e.g. non-recovery protection violation).

• Software-Only Deferral: processor is configured to deliver all control speculative exceptions to
software. In this case, operating system software handles all non-fatal control speculative
exceptions, and software-defers all fatal control speculative exceptions.
Volume 2: Runtime Support for Control and Data Speculation 2:447

Details on these three models are discussed in the next three sections as well as in Section 5.5.5,
”Deferral of Speculative Load Faults.”

6.1.1 Hardware-only Deferral

Hardware only deferral is configured by setting all speculation deferral bits in the DCR register (dd,
da, dr, dx, dk, dp and dm) to 1. All excepting control speculative loads are automatically deferred
by the processor. As a result, all excepting control speculative loads that hit non-fatal exceptions,
e.g. a TLB miss or a page fault, will be deferred by the processor hardware, and will cause
speculation recovery code to be invoked. This can cause speculation recovery code to be invoked
more often than strictly necessary.

6.1.2 Combined Hardware/Software Deferral

Setting of a DCR deferral bit to 1 results in hardware deferral by the processor, whereas clearing of
a deferral bit causes exceptions to be delivered to software. The operating system may want to
configure the processor to deliver control speculative exceptions to its handlers for certain non-fatal
faults such as TLB misses or protection key misses. Early handling of these exceptions avoids
unnecessary invocation of speculation recovery code, and the associated performance penalty. This
is especially useful for exceptions handlers whose overhead is small. Note that handlers will also be
invoked for excepting control speculative loads that have been hoisted from not taken paths, and
therefore are not needed. As a result, software handling of control speculative exceptions is
recommended only for statistically infrequent light weight fault handlers such as TLB miss or
protection key miss handlers. If, while handling the exception, the operating system determines that
this instance of the exception may require too much effort, e.g. a TLB miss turns out to be a page
fault, the handler still has the choice of software-deferring the exception.

6.1.3 Software-only Deferral

Software only deferral is configured by clearing all speculation deferral bits in the DCR register
(dd, da, dr, dx, dk, dp and dm) to 0. Control speculative loads that hit any Debug, Access Bit,
Access Rights, Key Permissions, Key Miss, or Not Present fault, or that suffer a TLB miss or a
VHPT Translation fault will be delivered to software.

6.2 Speculation Recovery Code Requirements

As described by Table 6-1, code generators for the Itanium architecture are not always required to
generate speculation recovery code for all forms of speculation. Compilers and operating systems
can collaborate to provide two models for handling of recovery from failed control speculation:

• ITLB.ed=1 (application with recovery code - the default): The compiler generates appropriate
recovery code for all ld.s instructions, as well as for ld.sa and ld.a instructions that have
speculatively executed uses. Speculation failure of ld.sa and ld.a instructions that have no
speculatively executed uses can be recovered by a ld.c instruction, and hence do not require
recovery code. The operating system may defer non-fatal exceptions.
2:448 Volume 2: Runtime Support for Control and Data Speculation

• ITLB.ed=0 (no control speculative recovery code): The compiler generates recovery code only
for ld.sa and ld.a instructions that have speculatively executed uses. Speculation failure of
ld.sa and ld.a instructions that have no speculatively executed uses can be recovered by a
ld.c instruction, and hence do not require recovery code. Speculation failure of ld.s
instructions does not require recovery code, because, in this model, the operating system must
guarantee that only fatal exceptions will be deferred. This requires software-only deferral of all
potential non-fatal exceptions. The motivation for this model is that the absence of chk.s
instructions and their associated recovery code may make for shorter and more compact in-line
code, especially in loops with tight instruction schedules.

Presence or lack of control speculation recovery code is communicated from the compiler and the
run-time system to the operating system by marking the code page’s page table entry ed-bit
appropriately (this bit is referred to as ITLB.ed). When ITLB.ed is 1, the operating system will
expect recovery code to be present; when ITLB.ed is 0 no recovery code is expected. When a
control speculative load takes an exception, the code page’s ITLB.ed bit is copied into ISR.ed and
is made available to the operating system exception handler. Furthermore, a set ISR.sp bit indicates
that an exception was caused by a control speculative load.

6.3 Speculation Related Exception Handlers

6.3.1 Unaligned Handler

Misaligned control and data speculative loads, as well as architectural loads, are not required to be
handled by the processor. As a result, the operating system’s unaligned reference handler has to be
prepared to emulate such misaligned memory references, especially in cases where the application
has not provided any recovery code (see Section 6.2 for details). Furthermore, misaligned data
speculative loads (ld.sa or ld.a) must be forced failed by the unaligned emulation handler,
because the ALAT cannot track all sizes of misalignment for store conflict detection.

Table 6-1. Speculation Recovery Code Requirements

Usage Model
OS May Defer Non-fatal Exceptions

on Control Speculative Loads
(ITLB.ed=1)

OS Must Not Defer Non-fatal
Exceptions on Control

Speculative Loads
(ITLB.ed=0)

No Speculative Load Uses

ld.s

Recovery code required; Invoked by
chk.s or non-speculative use of
speculative value recovers from failed
control speculation.

No recovery code required;
OS handles all non-fatal exceptions
speculatively.

ld.sa,ld.a
No recovery code required;

ld.c recovers from failed data speculation.

With Speculative Load Uses

ld.s

Recovery code required; invoked by
chk.s or non-speculative use of
speculative value recovers from failed
control speculation.

No recovery code required;
OS handles all non-fatal exceptions
speculatively.

ld.sa,ld.a
Recovery code required;

chk.a recovers from failed data speculation.
Volume 2: Runtime Support for Control and Data Speculation 2:449

The following pseudo code outlines the basic steps for an unaligned reference handler:

1. Ensure that only ISR.r is 1, and that ISR.w, ISR.x, and ISR.na are 0.

2. Inspect the ISR.sp and ISR.ed. If both are 1, then defer this control speculative load by
setting IPSR.ed and rfi-ing.

3. Crack the instruction opcode to determine:

a. Size of the load: 1, 2, 4, 8, 10 bytes

b. Type of the load: ld.sa, ld.s, ld.a, ld.c.clr, ld.c.nc or ld

c. Target, source and post-increment registers of the load

4. If this is a data speculative load (ld.sa, or ld.a), invalidate the target register’s ALAT
entry using an invala.e instruction, and rfi.

5. If this is a ld.c.clr instruction invalidate the target register’s ALAT entry using an
invala.e instruction.

6. Emulate the memory read of the load instruction by updating the target register as follows:

a. Validate that emulated code has the access rights to the target memory location at the
privilege level that it was running prior to taking the alignment fault. The probe
instruction can be used on the first and the last byte of the unaligned memory reference.
If both probes succeed the memory reference may proceed.

b. Using architectural ld instructions if the emulated operation is a ld or a ld.c (either
clear or no clear flavor).

c. Using ld.s instructions if the emulated operation is a ld.s. The result in the target
register may end up with its NaT bit or NaTVal set, if one of the parts of emulation
causes an exception. If ITLB.ed is 0 (no control speculation recovery code), then the
misaligned ld.s may only be deferred if a fatal exception occurred on either half or the
ld.s emulation.

7. If this is a post-increment load, compute the new value for the source register.
2:450 Volume 2: Runtime Support for Control and Data Speculation

2

Instruction Emulation and Other Fault
Handlers 7

This chapter introduces several common emulation handlers that an Itanium-based operating
system must support. A general overview is given for:

• Unaligned Reference Handler – emulation of misaligned memory references that the processor
hardware cannot handle, or has been configured to fault on.

• Unsupported Data Reference Handler – emulation of memory operations that the processor
hardware does not support. Examples are semaphore, ldfe or stfe operations to uncacheable
memory.

• Illegal Dependency Fault Handler – this is a fatal condition that operating system needs to
provide error logging functionality for.

• Long Branch Handler – the Itanium processor does not implement the long branch instruction.
When encountered on the Itanium processor, long branches must be emulated by the operating
system.

Floating-point software assist emulation handlers are not discussed here, but are presented in
Chapter 8, “Floating-point System Software.” Additionally, Section 5.5.1, “Efficient Interruption
Handling” discusses more details about emulation code in the Itanium architecture.

7.1 Unaligned Reference Handler

Misaligned memory references that are not supported by the processor cause Unaligned Reference
Faults. This behavior is implementation-specific but typically occurs in cases where the access
crosses a cache line or page boundary. In cases where the operating system chooses to emulate
misaligned operations, some special cases need to be considered:

• Emulation of control and data speculative loads as well as advanced check and “regular” loads
requires special attention. For details consult Section 6.3.1, “Unaligned Handler” on
page 2:449.

• Emulation of unaligned semaphores, especially when interacting with IA-32 code require
special attention. For details consult Section 2.1.3.2, “Behavior of Uncacheable and
Misaligned Semaphores” on page 2:383.

IA-32 programs do not use the Itanium-based handler to support unaligned references. The
hardware that supports IA-32 execution provides the appropriate behavior if alignment checking is
disabled through EFLAGS.ac. If an unaligned reference occurs in IA-32 code when EFLAGS.ac is
set to enable alignment checking, alignment faults are delivered to a different vector from the
unaligned reference handler. Specifically they are delivered to the
IA_32_Exception(AlignmentCheck) vector; see Chapter 9, “IA-32 Interruption Vector
Descriptions” for details.
Volume 2: Instruction Emulation and Other Fault Handlers 2:451

7.2 Unsupported Data Reference Handler

Processors based on the Itanium architecture do not support all types of memory references to all
memory attributes. In particular:

• Semaphore operations to uncacheable memory are not supported. For details consult
Section 2.1.3.2, “Behavior of Uncacheable and Misaligned Semaphores” on page 2:383.

• A 10-byte memory access, e.g. ldfe or stfe, to uncacheable memory are not supported by
all implementations.

The handler for 10-byte memory accesses must go through the following steps to emulate the ldfe
or stfe instructions:

• Determine that the opcode at the faulting address is an ldfe or stfe. On control-speculative
flavors of these instructions (ldfe.s or ldfe.sa) processor hardware always defers the
unsupported data reference fault. In other words, software does not have to emulate
control-speculative fault deferral.

• If the instruction is an advanced load ldfe.a then the emulation handler should invalidate the
ALAT entry of the appropriate floating-point target register using the invala.e instruction.
Furthermore, a zero should be returned in the floating-point target register.

• If the instruction is a regular ldfe or stfe, then software must emulate the load or store
behavior of the instruction taking the appropriate faults if necessary.

• If the instruction is the base register update form, update the appropriate base register.

A number of these steps may require the use of self-modifying code to patch instructions with the
appropriate operands (for example, the target register of the inval.e must be patched to the
destination register of the ldfe or stfe). See Section 2.5, “Updating Code Images” on
page 2:404 for more information.

7.3 Illegal Dependency Fault

The Itanium instruction sequencing rules specify that, generally speaking, instructions within an
instruction group are free of dependencies as described in Section 3.4, “Instruction Sequencing
Considerations” on page 1:33. A dependency violation occurs anytime a program violates
read-after-write (RAW), write-after-write (WAW) or write-after-read (WAR) resource dependency
rules within an instruction group.

As Section 3.4.4, “Processor Behavior on Dependency Violations” on page 1:37 describes, an
implementation may provide hardware to detect and report dependency violations. It is important to
note that the presence and capabilities of such hardware is implementation-specific. A processor
based on the Itanium architecture reports dependency violations through the General Exception
Vector with an ISR.code of 8.

It is recommended that operating systems log the dependency violation and then terminate the
offending application, as hardware behavior is undefined when a dependency violation occurs.
2:452 Volume 2: Instruction Emulation and Other Fault Handlers

7.4 Long Branch

The Itanium architecture supports “long” branches with a 64-bit offset. This provides IP-relative
conditional- and call-type branches that can reach any address in a 64-bit address space. These
instructions use the MLX template, and similar to the move long instruction (movl), they encode
their immediate in the L and the X slot of the bundle.

The Intel Itanium processor does not support the long branch instruction, brl, and requires the
operating system to emulate its behavior. When an Itanium processor encounters a brl instruction,
it vectors to the Illegal Operation Fault handler, regardless of the branches’ qualifying predicate.
This handler is expected to emulate the long branch instruction in software. A general outline of the
long branch emulation handler is as follows:

• The emulation handler reads the IIP, IPSR, and predicates at the time of the fault.

• If the fault occurred in IA-32 code or if the fault did not occur in slot 2 of a bundle (IPSR.ri is
not 2), the handler passes the fault to regular illegal operation fault handler.

• Two floating-point registers are spilled into the integer register file to get ready to load the
bundle.

• The emulation handler speculatively loads the 128-bit bundle at the faulting IP using the
integer form of the floating-point load pair instruction. This instruction is chosen because it
operates atomically (see Section 4.5, “Memory Datum Alignment and Atomicity”). Using two
64-bit integer loads would require the handler to ensure that another agent does not update the
bundle between the two reads.

• If the speculation fails, the recovery code re-issues the load. Before re-issuing an architectural
load, the processor must first re-enable PSR.ic to be able to handle potential TLB misses when
reading the opcode from memory. In other words, this becomes a heavyweight handler. For
details see Section 3.4.2, “Heavyweight Interruptions” on page 2:415. Once the opcode has
been read from memory successfully flow of the emulation continues at the next step.

• The 128-bit bundle is moved from the FP register file into two integer registers and the
FP registers are restored to their contents at the time of the fault.

• The handler extracts the fields necessary to decode the instruction (specifically, the qp,
template, major opcode, and btype or b1 fields of slot 2). It also determines the value of the
qualifying predicate of the instruction in slot 2 from the contents of the predicate register at the
time of the fault. Itanium instruction are always stored in memory in little-endian memory
format. When extracting bit fields from the loaded opcode current processor endianness
(PSR.be) must be taken into account.

• The emulation handler passes the fault off to the regular illegal operation fault handler if the
bundle is not an MLX or if the faulting instruction is not a brl.cond or brl.call.

• If the faulting instruction is a not-taken brl.cond or brl.call, the code prepares to
change the IIP to the address of the sequential successor of the faulting branch (i.e. IIP + 16)
and jumps ahead to the trap detection code mentioned below.

• If the faulting instruction is a taken brl.call, the handler emulates the appropriate behavior
of the call. The code uses a br.call to move the appropriate values into CFM and AR[PFS].
There are several details, however. First, the branch register update from the call must be
backed out (as it is not the correct update for the brl.call). Second, AR[PFS].ppl must be
set based on the cpl at the time of the fault (which is given by IPSR.cpl). Finally, the code must
update the branch register specified in the brl.call instruction with the IP of the successor
of the brl.call (predication helps here as the Itanium instruction set does not provide an
indirect move to branch register instruction).
Volume 2: Instruction Emulation and Other Fault Handlers 2:453

• The handler forms the 60-bit immediate IP-offset for the brl target from the i and imm20
fields from the X syllable of the bundle (the brl instruction) and the imm39 field from the
L syllable of the bundle.

• The handler checks to see if there are any traps to be taken. Specifically, it verifies that the next
IP is at an implemented address (the specific test depends on whether the processor was in
virtual or physical mode at the time of the fault as IPSR.it indicates), that taken branch traps
are not enabled if the branch is taken, and that single stepping is not enabled.

• If a trap condition is detected, the ISR.code and ISR.vector fields are set up as appropriate and
the handler jumps to the appropriate operating system entry point after restoring the predicates
at the time of the fault and setting the IIP to the appropriate address.

• If no trap occurs, the handler restores the predicates and returns to the faulting code at the
appropriate IP.

A processor based on the Itanium architecture typically does not fault on instructions with false
qualifying predicates. However, an implementation may take an Illegal Operation Fault on an MLX
instruction with a false predicate; the Itanium processor is such an implementation. This implies
that the brl emulation handler must also provide the means to skip the faulting instruction when
its qualifying predicate is false.
2:454 Volume 2: Instruction Emulation and Other Fault Handlers

2

Floating-point System Software 8

This chapter details the way floating-point exceptions are handled in the Itanium architecture and
how the architecture can be used to implement the ANSI/IEEE Std. 754-1985 for Binary Floating-
point Arithmetic (IEEE-754). It is useful in creating and maintaining floating-point exception
handling software by operating system writers.

8.1 Floating-point Exceptions in the Intel® Itanium®
Architecture

Floating-point exception handling in the Itanium architecture has two major responsibilities. The
first responsibility is to assist a hardware implementation to conform to the Itanium floating-point
architecture specification. The Floating-point Software Assistance (FP SWA) Exception handler
supports this conformance and is included as a driver in the Extensible Firmware Interface (EFI).
The second responsibility is to provide conformance to the IEEE-754 standard. The IEEE Floating-
point Exception Filter (IEEE Filter) supports providing this conformance.

When a floating-point exception occurs, a minimal amount of processor state information is saved
in interruption control registers. Additional information is contained in the Floating-point Status
Register (FPSR), i.e. application register (AR40). This register contains the IEEE exception enable
controls, the IEEE rounding controls, the IEEE status flags, and information to determine the
dynamic precision and range of the result to be produced.

When a floating-point exception occurs, execution is transferred to the appropriate interruption
vector, either the Floating-point Fault Vector (at vector address 0x5c00) or the Floating-point Trap
Vector (at vector address 0x5d00.) There the operating system may handle the exception or save
additional processor information and arrange for handling of the exception elsewhere in the
operating system. Floating-point exception faults must be handled differently than other faults.
Correcting the condition that caused the fault (e.g. a page not present is brought into memory) and
re-executing the instruction is how most other faults are handled. For floating-point faults, software
is required to emulate the operation and continue execution at the next instruction as is normally
done for traps. Part of this emulation needs to include a check for any lower priority traps that
would have been raised if the instruction hadn’t faulted, e.g. a single-step trap.

8.1.1 The Software Assistance Exceptions (Faults and Traps)

There are three categories of Software Assistance (SWA) exceptions that must handled by the
operating system. The first two categories, SWA Faults and SWA Traps, are implementation
dependent and could be generated by any Itanium floating-point arithmetic instruction that contains
a status field specifier in the instruction's encoding. An implementation may choose to raise a SWA
Fault as needed. The SWA Trap can only be raised under special circumstances. The third category,
architecturally mandated SWA Faults, is limited to the scalar reciprocal and scalar reciprocal
square-root approximation instructions and is not implementation dependent. It is required for the
correctness of the divide and square root algorithms.
Volume 2: Floating-point System Software 2:455

8.1.1.1 SWA Faults

The Itanium architecture allows an implementation to raise SWA faults as required. Therefore an
implementation-independent operating system must be able to emulate the architectural behavior of
all FP instructions that can raise a floating-point exception. However, hardware implementations
will limit the cases that raise SWA Faults for performance reasons. The most likely cases would be
for the consumption of denormalized or unnormalized operands and production of denormalized
results.

The general flow of the SWA Fault handler is as follows:

1. From the interruption instruction bundle pointer (IIP) and faulting instruction index
(IPSR.ri), determine the FP instruction that faulted.

2. From the instruction, decode the opcode, static precision, status field and input/output
register specifiers.

3. Read the data from the input registers.

4. From the opcode and the FPSR’s status field, decode the result range and precision.

5. From the ISR.code, determine that a SWA Fault has occurred, if not go to the last step.

6. From the FPSR, determine if the trap disabled or trap enabled result is wanted.

7. Emulate the Itanium instruction to produce the Itanium architecture specified result.

8. Place the result(s) in the correct FR and/or PR registers, if required.

9. Update the flags in the appropriate status field of the FPSR, if required.

10. Update the ISR.code if required. (This is required if the SWA fault has been translated into
an IEEE fault or trap.)

11. Check to see if an IEEE fault or trap needs to be raised. If so, then queue it to the IEEE
Filter, otherwise continue checking for lower priority traps that may need to be raised and if
required invoke their handler. When finished, continue execution at the next instruction.

8.1.1.2 SWA Traps

SWA traps are allowed in the Itanium architecture as an optimization for cases when the hardware
implementation has produced the result of the first (exponent unbounded) IEEE rounding1 and can't
continue with the second (exponent bounded) IEEE rounding to produce the final result. One
option for the implementation would be to throw away the first IEEE rounding result and raise the
SWA Fault. The SWA Fault handler would then have to redo the computation of the first IEEE
rounding. A potentially more efficient option would be for the implementation to return the first
IEEE rounding result and raise a SWA trap. Returning the first IEEE rounded result is the same as
what is done when the IEEE Overflow or Underflow exceptions are enabled. However, hardware
implementations will limit the cases that raise SWA Traps for performance reasons. The most likely
case would be for the production of denormalized results.

For tiny2 results, the SWA Trap handler has the simpler task of taking the intermediate result of the
first IEEE rounding, the ISR.fpa and ISR.i status bits and producing the correctly rounded and
signed minimum normal, denormal or zero. For huge3 results, the SWA Trap handler has the even

1. ANSI/IEEE Std 754-1985 sections 7.3 Overflow and 7.4 Underflow.
2. Tiny numbers are non-zero values with a magnitude smaller than the smallest normal floating-point number.
3. Huge numbers have values larger in magnitude than the largest normal floating-point number.
2:456 Volume 2: Floating-point System Software

simpler task of taking the intermediate result of the first rounding and producing the correctly
signed maximum representable normal or infinity, based on the sign of the result, the rounding
direction, and the result precision and range.

Note: The Itanium architecture also allows for SWA Traps to be raised when the result is just
Inexact. This is a trivial case for the SWA Trap handler, since result of the second IEEE
rounding is identical to the first IEEE rounding.

The general flow of the SWA Trap handler is as follows:

1. From the interruption instruction previous address (IIPA) and exception instruction index
(ISR.ei), determine the FP instruction that trapped.

2. From the instruction, decode the opcode, static precision, status field and input/output
register specifiers.

3. From the ISR.code and FPSR trap enable controls, determine if a SWA Trap has occurred, if
not go to the last step.

4. Read the first IEEE rounded result from the FR output register.

5. From the opcode and the status field, decode the result range and precision.

6. From the ISR.code’s FPA, O, U, and I status bits and the intermediate result, produce the
Itanium architecture specified result.

7. Place the result in the output FR register.

8. Update the flags in the appropriate status field of the FPSR, if required.

9. Update the ISR.code if required. (This is required if the SWA trap has been translated into an
IEEE trap.)

10. Check to see if an IEEE trap needs to be raised. If so, then queue it to the IEEE Filter,
otherwise continue checking for lower priority traps that may need to be raised and if
required invoke their handler. When finished, continue execution at the next instruction.

Figure 8-1. Overview of Floating-point Exception Handling in the Intel® Itanium® Architecture

000957a

User Space

User Application User Exception Handler

IEEE Filter

OS Kernel Fault/Trap Vector

PAL

Intel® Itanium® Processor Hardware

IEEE?

"Ease of Use"

"Functionality"

Boot Time

Itanium®-based System

FP SWA

EFI
FP Emulation Library
Volume 2: Floating-point System Software 2:457

8.1.1.3 Approximation Instructions and Architecturally Mandated SWA Faults

The scalar approximation instructions, frcpa and frsqrta, can raise architecturally mandated
SWA Faults. This occurs when their input operands are such that they are potentially prevented
from generating the correct result by the usual software algorithms that are employed for divide and
square root. The reasons for this are that these algorithms may suffer from underflow, overflow, or
loss of precision, because the inputs or result are at the extremes of their range. For these special
cases, the SWA Fault handler must use alternate algorithms to provide the correct quotient or
square root and place that result in the floating-point destination register. The predicate destination
register is also cleared to indicate the result is not an approximation that needs to be improved via
the iterative algorithm.

The parallel approximation instructions fprcpa and fprsqrta have situations similar to the scalar
approximation instruction’s architecturally mandated SWA Faults. This occurs when their input
operands are such that they are potentially prevented from generating the correct result by the usual
software algorithms that are employed for divide and square root. For these special cases, instead of
generating a SWA Fault, the parallel approximation instructions indicate that software must use
alternate algorithms to provide the correct reciprocal or square-root reciprocal by clearing the
destination predicate register. The cleared predicate is the indication to the parallel IEEE-754
divide and square root software algorithms that alternative algorithms are required to produce the
correct IEEE-754 quotient or square root.

8.1.2 The IEEE Floating-point Exception Filter

The Itanium architecture supports the reporting of the five IEEE-754 standard floating-point
exceptions and the IA-32 Denormal Operand exception. In the Itanium architecture the Denormal
Operand exception is expanded to the Denormal/Unnormal Operand exception. When referring to
the IEEE-754 exceptions in the Itanium architecture the Denormal/Unnormal Operand exception is
included.

At the application level, a user floating-point exception handler could handle the Itanium floating-
point exception directly. This is the traditional operating system approach of providing a signal
handler with a pointer to a machine-dependent data structure. It would be more convenient for the
application developer if the operating system were to first transform the results to make them
IEEE-754 conforming and then present the exception to the user in an abstracted manner. It is
recommended that the operating system include such a software layer to enable application
developers that want to handle floating-point exceptions in their application. The IEEE Floating-
point Exception Filter provides this convenience to the developer through three functions.

• The first function of the IEEE Filter is to map the Itanium architecture's result to the IEEE-754
conforming result. This includes the wrapping of the exponent for Overflow and Underflow
exceptions. The Itanium architecture keeps the exponent in the 17-bit format, which is not
wrapped (i.e. scaled) with the appropriate value for the destination precision.

• The second function of an IEEE Filter is to transform the interruption information to a format
that is easier to interpret and to invoke a user handler for the exception. The user's handler may
then provide a value to be substituted for the IEEE default result, based on the operation,
exception and inputs.

• The third function of the filter is to hide the complexities of the parallel instructions from the
user. If a floating-point fault occurs in the high half of a parallel floating-point instruction and
there is a user handler provided, the parallel instruction is split into two scalar instructions. The
result for the high half comes from the user handler, while the low half is emulated by the IEEE
2:458 Volume 2: Floating-point System Software

Filter. The two results are combined back into a parallel result and execution is continued.
More complicated cases can also occur with multiple faults and/or traps occurring in the same
instruction.

Note: Usage of the IEEE Filter should not be compulsory – the user should be able to choose to
handle enabled floating-point exceptions directly. The IEEE filter just hides the details of
the instruction set and frees the user handler from having to emulate instructions directly
and potentially incorrectly.

8.1.2.1 Invalid Operation Exception (Fault)

The exception-enabled response of an Itanium floating-point arithmetic instruction to an Invalid
Operation exception is to leave the operands unchanged and to set the V bit in the ISR.code field of
the ISR register. The operating system kernel, reached via the floating-point fault vector, will then
invoke the user floating-point exception handler, if one has been registered.

8.1.2.2 Divide by Zero Exception (Fault)

The exception-enabled response of an Itanium floating-point arithmetic instruction to a Divide-by-
Zero exception is to leave the operands unchanged and to set the Z bit in the ISR.code field of the
ISR register. The operating system kernel, reached via the floating-point fault vector, will then
invoke the user floating-point exception handler, if one has been registered.

8.1.2.3 Denormal/Unnormal Operand Exception (Fault)

The exception-enabled response of the Itanium arithmetic instruction to a Denormal/Unnormal
Operand exception is to leave the operands unchanged and to set the D bit in the ISR.code field of
the ISR register. The operating system kernel, reached via the floating-point fault vector, will then
invoke the user floating-point exception handler, if one has been registered.

8.1.2.4 Overflow Exception (Trap)

The exception-enabled response of an Itanium floating-point arithmetic instruction to an Overflow
exception is to deliver the first (exponent unbounded) IEEE rounded result, and to set the O bit (and
possibly the I and FPA bits) in the ISR.code field of the ISR register and the Overflow flags (and
possibly the Inexact flag) in the appropriate status field of the FPSR register.

The IEEE-754 standard requires that, when raising an overflow exception, the user handler should
be provided with the result rounded to the destination precision with the exponent range
unbounded. For the huge result to fit in the destination’s range, it must be scaled down by a factor
equal to 2.0a (with a equal to 3*2n-2, where n is the number of bits in the exponent of the
floating-point format used to represent the result.) This scaling down will bring the result close to
the middle of the range covered by the particular format. The exponent adjustment factors to do the
scaling for the various formats are determined as follows:

• 8-bit (single) exponents are adjusted by 3*26 = 0xc0 = 192.

• 11-bit (double) exponents are adjusted by 3*29 = 0x600 = 1536.

• 15-bit (double-extended) exponents are adjusted by 3*213 = 0x6000 = 24576.

• 17-bit (register) exponents are adjusted by 3*215 = 0x18000 = 98304.
Volume 2: Floating-point System Software 2:459

The actual scaling of the result is not performed by the Itanium architecture. The IEEE filter that is
invoked before calling the user floating-point exception handler typically performs the scaling.

8.1.2.5 Underflow Exception (Trap)

The exception-enabled response of an Itanium floating-point arithmetic instruction to an
Underflow exception is to deliver the first (exponent unbounded) IEEE rounded result, and to set
the U bit (and possibly the I and FPA bits) in the ISR.code field of the ISR register and the
Underflow flag (and possibly the Inexact flag) in the appropriate status field of the FPSR register.

The IEEE-754 standard requires that, when raising an underflow exception, the user handler should
be provided with the result rounded to the destination precision with the exponent range
unbounded. For the tiny result to fit in the destination’s range, it must be scaled up by a factor equal
to 2.0a (with a equal to 3*2n-2, where n is the number of bits in the exponent of the floating-
point format used to represent the result.). The scaling up will bring result close to the middle of the
range covered by the particular format. The exponent adjustment factors to do this scaling for the
various formats are the same as those for enabled overflow exceptions, listed above.

Just as for overflow, the actual scaling of the result is not performed by the Itanium architecture. It
is typically performed by the IEEE Filter, which is invoked before calling the user floating-point
exception handler.

8.1.2.6 Inexact Exception (Trap)

The exception-enabled response of an Itanium arithmetic instruction to an Inexact exception is to
set the I bit (and possibly the FPA bit) in the ISR.code field of the ISR register and the Inexact flag
in the appropriate status field of the FPSR register. The operating system kernel, reached via the
floating-point fault vector, will then invoke the user floating-point exception handler, if one has
been registered.

8.2 IA-32 Floating-point Exceptions

IA-32 floating-point exceptions may occur when executing code in IA-32 mode. When this
happens, execution is transferred to the Itanium interruption vector for IA-32 Exceptions (at vector
address 0x6900.) For classic IA-32 floating-point instructions, they are raised via the
“IA_32_Exception(FPError) - Pending Floating-point Error.” For Streaming SIMD Extension
instructions, they are raised via the “IA_32_Exception(StreamingSIMD) - Streaming SIMD
Extension Numeric Error Fault.” The operating system may schedule Itanium-based and/or IA-32
exception handlers for these exceptions.
2:460 Volume 2: Floating-point System Software

2

IA-32 Application Support 9

The Itanium architecture enables Itanium-based operating systems to host IA-32 applications,
Itanium-based applications, as well as mixed IA-32/Itanium-based applications. Unless the
operating system explicitly intercepts ISA transfers (using the PSR.di), user-level code can
transition between the two instruction sets without operating system intervention. This allows
IA-32 programs to call Itanium-based subroutines or vice-versa. Itanium-based and IA-32 code can
share data through registers and/or memory. Multi-threaded IA-32 and Itanium-based applications
can easily communicate with each other or the Itanium-based operating system using shared
memory. The Itanium architecture does not support execution of Itanium-based programs on an
IA-32 operating system. While the architecture does not prevent IA-32 code from executing as part
of an Itanium-based operating system, it is strongly recommended that Itanium-based operating
systems do not contain IA-32 code.

One of the most compelling motivations for executing IA-32 code on an Itanium-based operating
system is the ability to run existing unmodified IA-32 application binaries. Because IA-32 performs
32-bit instruction/memory references that are zero-extended into 64-bit virtual addresses,
Itanium-based operating systems must ensure that all IA-32 code and data is located in the lower
4GBytes of the virtual address space. Compute intensive IA-32 applications can improve their
performance substantially by migrating compute kernels from IA-32 to Itanium-based code while
preserving the bulk of the application’s IA-32 binary code. If mixed IA-32/Itanium-based
applications are supported, care has to be taken that the data accessible to IA-32 portions of the
application is located in the lower 4GBytes of the virtual address space.

While processors based on the Itanium architecture are capable of supporting a wide range of
Itanium-based/IA-32 code mixing, Itanium-based operating systems need to provide a software
support infrastructure to enable full interoperability between the IA-32 and Itanium instruction set.
Most Itanium-based operating systems are expected to support user-level IA-32 applications, and,
as a result, must be able to provide the full range of operating system services through a 32-bit
system call interface. However, different operating systems and run-time conventions may reduce
the set of interoperability modes as desired by the operating system vendor.

While it is an interesting topic, this chapter does not discuss 32-bit application binary interfaces
provided by specific operating systems. Instead, this chapter focusses on what services are required
from an Itanium-based operating system by a processor based on the Itanium architecture that is
executing IA-32 code. In other words, the focus of this chapter is the low-level processor /
operating system interface rather than the IA-32 software / operating system (application binary)
interface.

9.1 Transitioning between Intel® Itanium® and IA-32
Instruction Sets

As mentioned earlier, user-level code can transition from Itanium to IA-32 (or back) instruction sets
without operating system intervention. As described in Chapter 6, “IA-32 Application Execution
Model in an Intel® Itanium® System Environment” in Volume 1, two instructions are provided for
Volume 2: IA-32 Application Support 2:461

this purpose: br.ia (an Itanium unconditional branch), and JMPE (an IA-32 register indirect and
absolute jump). Prior to executing any IA-32 instructions, however, the Itanium-based operating
system needs to setup an execution environment for executing IA-32 code.

9.1.1 IA-32 Code Execution Environments

Processors based on the Itanium architecture are capable of executing IA-32 code in real mode,
VM86 mode or protected mode. When segmentation is enabled both 16 and 32-bit code are
supported. Prior to transferring control to IA-32 code, an Itanium-based application and/or
operating system is expected to setup the complete IA-32 execution environment in Itanium
registers.

In particular, Itanium-based software must setup IA-32 segment descriptor and selector registers in
Itanium application registers, and must ensure that code and stack segment descriptors (CSD, SSD)
are pointing at valid and correctly aligned memory areas. It is also worth noting that the IA-32
GDT and LDT descriptors are maintained in GR30 and GR31, and are unprotected from
Itanium-based user-level code. For more details on the IA-32 execution environment please refer to
Section 6.2, “IA-32 Application Register State Model” on page 1:102.

Some IA-32 execution environments may need support from an Itanium-based operating system.
Which IA-32 software environments are supported by an Itanium-based operating system is
determined by the operating system vendor. Itanium-based platform firmware (SAL) provides a
run-time environment that allows execution of real-mode IA-32 code found in PCI configuration
option ROMs.

9.1.2 br.ia

br.ia is an unconditional indirect branch that transitions from Itanium to IA-32 instruction set.
Prior to entering IA-32 code with br.ia, software is also required to flush the register stack.
br.ia sets the size of the current register stack frame to zero. The register stack is disabled during
IA-32 code execution. Because IA-32 code execution uses Itanium registers, much of the Itanium
register state is overwritten and left in an undefined state when IA-32 code is run. As a result,
software can not rely on the value of such registers across an instruction set transition. Execution of
IA-32 code also invalidates the ALAT. For more details refer to Table 6-2, “IA-32 Segment
Register Fields” on page 1:108.

For best performance, the following code sequence is recommended for transitioning from Itanium
to IA-32 instruction set:

{.mii
flushrs // flush register stack
mov b7 = rTarget // Setup IA-32 target address
nop.i // nop.i or other instruction

;;
{.mib

nop.m // nop.m or other instruction
nop.i // nop.i or other instruction
br.ia.sptk b7 // branch to IA-32 target defined by

// lower 32-bits of branch register b7
;;

Key to performance is that the register stack flush (flushrs) and the br.ia instruction are
separated by a single cycle, and that the br.ia instruction is the first B-slot in the bundle directly
2:462 Volume 2: IA-32 Application Support

following the flushrs. The nop instruction slots in the code example may be used for other
instructions.

9.1.3 JMPE

JMPE is an IA-32 instruction that comes in a register indirect and absolute branch flavors. The code
segment descriptor base is held in the CSD application register (ar.csd).

• JMPE reg16/32 computes the target of the Itanium instruction set as
IP = ([reg16/32] + CSD.base) & 0xfffffff0

• JMPE disp16/32 computes the target of the Itanium instruction set as
IP = (disp16/32 + CSD.base) & 0xfffffff0

Targets of the IA-32 JMPE instruction are forced to be 16-byte aligned, and are constrained to the
lower 4Gbytes of the 64-bit virtual address space. The JMPE instruction leaves the IA-32 return
address (address of the IA-32 instruction following the JMPE itself) in IA_64 register GR1.

9.1.4 Procedure Calls between Intel® Itanium® and IA-32
Instruction Sets

If procedure call linkage is required between Itanium-based and IA-32 subroutines, software needs
to perform additional work as described in the next two sections.

9.1.4.1 Itanium®-based Caller to IA-32 Callee

This section outlines what steps an Itanium-based caller of an IA-32 procedure needs to perform.
The ordering of the steps is approximate and need not be executed exactly in the order presented.

1. Setup IA-32 execution environment, if not already done (see Section 9.1.2 for details).
Ensure that no NaTed registers are used to setup IA-32 environment nor that they are passed
as procedure call arguments to IA-32 code.

2. Marshall arguments from the register stack to memory stack according to IA-32 software
conventions.

3. Set up exception handle unwind data structures according to OS convention.

4. Make sure JMPE knows where to return to, e.g. deposit return address for the JMPE on
memory stack or pass it in an IA-32 visible register.

5. Setup IA-32 branch target in branch register.

6. Flush register stack, but no other RSE updates.

7. br.ia is an indirect branch to IA-32 code. There is no need to preserve Itanium only
application registers, since IA-32 code execution leaves them unmodified.

8. Run in the IA-32 callee until it executes a JMPE instruction.

9. JMPE instruction is an unconditional jump to Itanium-based code. JMPE should use the
return address specified in step 4.

10. Move return values from memory stack to static Itanium register used for procedure return
value according to Itanium calling conventions.

11. Ensure that IA-32 code correctly unwound memory stack, and that memory stack pointer is
correctly aligned.
Volume 2: IA-32 Application Support 2:463

12. Update exception handle unwind data structures according to OS convention.

13. br.ret returns to Itanium-based caller.

9.1.4.2 IA-32 Caller to Itanium®-based Callee

This section outlines what steps an IA-32 caller of an Itanium-based procedure needs to perform.
The ordering of the steps is approximate and need not be executed exactly in the order presented.

1. Caller deposits arguments on memory stack, and calls Itanium-based transition stub using
the JMPE instruction.

2. Execute JMPE instruction as an unconditional branch to Itanium-based code. The JMPE
instruction will leave the address of the IA-32 instruction following the JMPE itself in
Itanium register GR1. This address may be used as a return address later.

3. Allocate a register stack frame with the alloc instruction.

4. Load procedure arguments from memory stack into Itanium stacked registers. Preserve
IA-32 return address in memory or register stack.

5. Set up exception handle unwind data structures according to OS convention.

6. br.call to target Itanium-based callee.

7. Execute Itanium-based code until it returns using br.ret.

8. Move return value from static Itanium register to memory stack.

9. Load IA-32 return address from step 4 into branch register.

10. Instead of flushing the register stack to memory, the contents of the register stack can be
discarded at this point since IA-32 code execution will overwrite it anyway. Invalidate
register stack by:

a. Allocating a zero-size stack frame using the alloc instruction.

b. Writing zero into RSC application register, and executing a loadrs instruction.

c. Restore RSC application register to its original value in preparation for the next call
from IA-32 to Itanium instruction set.

11. Ensure memory stack pointer is correctly aligned prior to returning to IA-32 code.

12. br.ia returns to IA-32 caller.

9.2 IA-32 Architecture Handlers

An Itanium-based operating system needs to be prepared to handle exceptions from Itanium-based
and IA-32 code. Depending on the exception cause, exception vectors can be:

• Shared Itanium/IA-32 Exception Vectors: all virtual memory related instruction and data
reference faults share a common exception vector, regardless of whether they were caused by
Itanium-based or IA-32 code.

• Unique Itanium Exception vectors: these are conditions that only Itanium-based code can
cause. Examples are: Instruction Breakpoint fault, Illegal Operation fault, Illegal Dependency
fault, Unimplemented Data Address fault, etc.

• Unique IA-32 Exception Vectors: these conditions can occur only from IA-32 instructions.

A detailed break-down of which exceptions occur on which interruption vector and from which
instruction set is given in Table 5-6. Table 9-1 shown below summarizes all IA-32 related
2:464 Volume 2: IA-32 Application Support

exceptions that an Itanium-based operating system needs to be ready to handle. These IA-32
specific interrupts are grouped into three vectors: the IA-32 Exception vector, the IA-32 Intercept,
and the IA-32 Interrupt vector. Within each of these vectors the interrupt status register (ISR)
provides detailed codes as to the origin of this exception. Details on the IA-32 vectors is provided
in Chapter 9, “IA-32 Interruption Vector Descriptions.” More details on debug related IA-32
exceptions is given in the following section of this document.

Table 9-1. IA-32 Vectors that Need Itanium®-based OS Support

Vector (IVA offset) Exception Name Exception Related To Expected OS Behavior

IA-32 Exception
vector (0x6900)

IA-32 Instruction Debug fault Debug Relay to debugger.

IA-32 Code Fetch fault Segmentation Signal application.

IA-32 Instruction Length > 15
bytes fault Bad Opcode Signal application.

IA-32 Device Not Available fault Numeric Signal application.

IA-32 FP Error fault Numeric Signal application.

IA-32 Segment Not Present fault Segmentation Signal application.

IA-32 Stack Exception fault Segmentation Signal application.

IA-32 General Protection fault Segmentation Signal application.

IA-32 Divide by Zero fault Numeric Signal application.

IA-32 Alignment Check fault

Misaligned IA-32
Memory Reference
with alignment
checking enabled.

Depends on convention.

IA-32 Bound fault Segmentation Signal application.

IA-32 Streaming SIMD Extension
Numeric Error Fault Numeric Signal application.

IA-32 INTO Overflow trap Numeric Signal application.

IA-32 Breakpoint (INT 3) trap Software Breakpoint Depends on convention.

IA-32 Data Breakpoint trap Debug Relay to debugger.

IA-32 Taken Branch trap Debug Relay to debugger.

IA-32 Single Step trap Debug Relay to debugger.

IA-32 Invalid Opcode fault Bad Opcode Signal application.

IA-32 Intercept
vector (0x6a00) IA-32 Instruction Intercept fault

Attempted to access
IA-32 paging, MTRRs,
IDT, IA-32 control
registers, IA-32 debug
registers or attempted
to execute IA-32
privileged instructions.

This is not supported on
an Itanium®-based OS.
Signal application.

IA-32 Locked Data Reference
fault

Attempt to reference
misaligned or
uncacheable
semaphore.

Emulation handler if
needed. Refer to
Section 2.1.3.2,
“Behavior of
Uncacheable and
Misaligned Semaphores”
on page 2:383.

IA-32 System Flag Intercept trap System Flag intercept Depends on convention.

IA-32 Gate Intercept trap Gate/Task transfer
intercept Depends on convention.

IA-32 Interrupt
vector (0x6b00)

IA-32 Software Interrupt (INT)
trap

Software Interrupt Depends on convention.

Cannot happen in
Itanium®-based
operating system

IA-32 Double Fault

IA-32 Invalid TSS Fault,

IA-32 Page Fault,

IA-32 Machine Check

N/A Don’t worry,
Volume 2: IA-32 Application Support 2:465

9.3 Debugging IA-32 and Itanium®-based Code

Itanium-based operating systems that want to provide debug support for both IA-32 and
Itanium-based applications, need to be aware of the differences between taking instruction and data
breakpoint exceptions as well as single step or taken branch traps on Itanium and IA-32
instructions.

9.3.1 Instruction Breakpoints

If an Itanium instruction matches an instruction breakpoint register (IBR) then an Instruction
Debug Fault is delivered on the Itanium Debug vector. To step across a single Itanium instruction,
IPSR.id must be set to one. An IA-32 instruction, however, that matches an IBR causes an IA-32
Instruction Breakpoint fault which is delivered to the IA-32 Exception vector (Debug). To step
across a single IA-32 instruction, either IPSR.id or EFLAGS.rf must be set to one.

9.3.2 Data Breakpoints

If an Itanium memory reference matches a data breakpoint register (DBR) then a Data Debug Fault
is delivered on the Itanium Debug vector. To step across a single data breakpoint, IPSR.dd must be
set to one. An IA-32 instruction, however, that matches a DBR causes an IA-32 Data Breakpoint
trap which is delivered to the IA-32 Exception vector (Debug). In other words, the debugger only
gets control after the instruction making the reference has completed. Since IA-32 instruction can
make multiple memory references, a single IA-32 instruction may cause multiple data break points
to trigger. Details on how this is communicated to software in the interrupt status register (ISR) is
given in Section 9.1, ”IA-32 Trap Code.” Since IA-32 data breakpoints are traps, there is no need to
step over them.

9.3.3 Single Step Traps

When PSR.ss enables single stepping of Itanium-based applications, each instruction that is
stepped will stop at the Single Step trap handler. When PSR.ss or EFLAG.tf enable single stepping
of IA-32 applications, an IA-32_Exception(Debug) trap is taken after each IA-32 instruction. For
more details refer to Section 9.1, ”IA-32 Trap Code.”

9.3.4 Taken Branch Traps

When PSR.tb enables taken branch trapping on Itanium-based applications, each taken branch will
transfer control to the Taken Branch Trap handler. When PSR.tb is set, taken IA-32 branches
transfer control to the IA-32_Exception(Debug) trap handler taken after each IA-32 instruction. For
more details refer to Section 9.1, ”IA-32 Trap Code.”
2:466 Volume 2: IA-32 Application Support

2

External Interrupt Architecture 10

The Itanium architecture provides a high performance external interrupt architecture. While IA-32
processors commonly use a three wire shared APIC bus, processors based on the Itanium
architecture utilize a high performance message based point-to-point protocol between processors
and multiple I/O interrupt controllers. To ensure that processors based on the Itanium architecture
can fully leverage the large set of existing platform infrastructure and I/O devices, compatibility
with existing platform infrastructure is provided in the form of direct support for Intel® 8259A
compatible interrupt controllers and limited support for level sensitive interrupts.

This chapter introduces the basic external interrupt mechanism provided by the architecture, while
Section 5.8, “Interrupts” provides the complete architectural definition for the Itanium external
interrupt architecture.

10.1 External Interrupt Basics

Interrupts are identified by their vector number. The vector number implies interrupt priority, and
also determines whether the interrupt is delivered to processor firmware as a “PAL-based”
interrupt, or whether it is delivered to the operating system as an “IVA-based” external interrupt.

This chapter discusses asynchronous external interrupts only. PAL-based platform management
interrupts (PMI) are not discussed here. External interrupts are IVA-based and are delivered to the
operating system by transferring control to code located at address CR[IVA]+0x3000. This code
location is also known as the external interrupt vector and is described on page 2:164.

Software can distinguish interrupts based on their vector number. Vector numbers range from 0 to
255. Vector numbers also establish interrupt priorities as follows:

• Vector numbers below 16 are special, and are architecturally defined in Section 5.8.1,
“Interrupt Vectors and Priorities.” The non-maskable interrupt (NMI) is always vector 2 and is
higher priority than all in-service external interrupts. ExtINT, Intel 8259A compatible external
interrupt controller interrupt, is always vector 0. Vector numbers below 16 have higher priority
than vectors above 16. Vector 15 is used to indicate that the highest priority pending interrupt
in the processor is at a priority level that is currently masked or there are no pending external
interrupts.

• For vector numbers between 16 and 255, higher vector numbers imply higher priority. In this
range, vectors are freely assignable by software. This is achieved by programming of interrupt
controllers and the processor internal interrupt configuration registers.
Volume 2: External Interrupt Architecture 2:467

10.2 Configuration of External Interrupt Vectors

As defined in Section 5.8, “Interrupts”, external interrupts originate from one of four sources:

• From external sources, e.g. external interrupt controllers or intelligent external I/O devices, or

• From the processor’s LINT0 or LINT1 pins (typically connected to an Intel 8259A compatible
interrupt controller), or

• From internal processor sources, e.g. timers or performance monitors, or

• From other processors, e.g. inter-processor interrupts (IPIs).

All interrupts are point-to-point communications. There is no facility for broadcasting of interrupts.
The interrupt message protocol used by the processor-to-processor and the external
source-to-processor is not defined architecturally, and is not visible to software.

A number of external interrupt control registers (LID,TPR, ITV, PMV, CMCV, LRR0 and LRR1)
allow software to directly configure the processor interrupt resources. The Local ID register (LID)
establishes a processor’s unique physical interrupt identifier. The Task Priority Register (TPR)
allows masking of external interrupts based on vector priority classes. The ITV, PMV, CMCV,
LRR0 and LRR1 external interrupt control registers configure the vector number for the
processor’s local interrupt sources. Configuration of the external controllers and devices is
controller/device specific, and is beyond the scope of this document.

10.3 External Interrupt Masking

The Itanium architecture provides four mechanisms to prevent external interrupts from being
delivered to a processor: a bit in the processor status register (PSR.i), the interrupt vector register
(IVR) and the end-of-interrupt (EOI) register, the task priority register (TPR), and the external task
priority register (XTPR). The next four sections discuss these mechanisms.

10.3.1 PSR.i

When PSR.i is zero, the processor does not accept any external interrupts. However, interrupts
continue to be pended by the processor. Software can use PSR.i to temporarily disable taking of
external interrupts, e.g. to ensure uninterruptable execution of critical code sections. Since clearing
of PSR.i takes effect immediately (refer to the rsm instruction page), software is not necessarily
required to explicitly serialize clearing of PSR.i (unless another processor resource requires
serialization). On the way out of an uninterruptable code section software is not required to
serialize the setting of PSR.i either, unless it is of interest to software to be able to take interrupts in
the very next instruction group. A code example for this case is given below:

rsm i ;;
// rsm of PSR.i takes effect on the next instruction

// uninterruptable code sequence here

ssm i ;;
// ssm of PSR.i does require data serialization, if we need to ensure
// that external interrupts are enabled at the very next instruction. If
// data serialization is omitted, PSR.i is set to 1 at the latest when
// the next exception is taken.
2:468 Volume 2: External Interrupt Architecture

By avoiding the serialization operations on PSR.i the performance of such uninterruptable code
sections is improved.

10.3.2 IVR Reads and EOI Writes

As described in Section 10.4, IVR reads return the highest priority, pending, unmasked vector, and
places this vector “in-service”. Additionally, IVR reads have the side-effect of masking all vectors
that have equal or lower priority than one that is returned by the IVR read. Correspondingly, writes
to the EOI register unmask all vectors with equal or lower priority than the highest priority
“in-service” vector. Due to nesting of higher priority interrupts, it is possible to have multiple
vectors in the “in-service” state.

10.3.3 Task Priority Register (TPR)

The Task Priority Register (TPR) provides an additional interrupt masking capability. It allows
software to mask interrupt “priority classes” of 16 vectors each by specifying the mask priority
class in the TPR.mic field. The TPR.mmi field allows masking of all maskable external interrupts
(essentially all but NMI).

An example of TPR use is shown in Section 10.5.2, “TPR and XPTR Usage Example” on
page 2:471.

10.3.4 External Task Priority Register (XTPR)

The External Task Priority Register (XTPR) is a per-processor resource that can be provided by
external bus logic in some Itanium-based platforms. If supported by the platform, XTPR can be
used by the operating system to redirect external interrupts to other processors in a multi-processor
system.

The XTPR is updated by performing a 1-byte store to the XTP byte which is located at an offset of
0x1e0008 in the Processor Interrupt Block (see Section 5.8.4, “Processor Interrupt Block” for
details). Since the timing of the modification of the XTP register is not time critical there is no
serialization required. Effects of the one byte store operation are platform specific. Typically, it will
generate a transaction on the system bus identifying it as an XTP register update transaction, and
will indicate which processor generated the transaction as well as the stored data.

An example of XTPR use is included in Section 10.5.2, “TPR and XPTR Usage Example” on
page 2:471.

10.4 External Interrupt Delivery

The architectural interrupt model in Section 5.8 defines how each interrupt vector cycles through
one of four states:

• Inactive: there is no interrupt pending on this vector.

• Pending: an interrupt has been received by the processor on this vector, but has not been
accepted by the processor and has not been acquired by software. The processor hardware will
Volume 2: External Interrupt Architecture 2:469

accept the interrupt when this vector’s priority level is higher than the highest currently
in-service vector, PSR.i is one, and TPR settings do not mask the interrupt. This will cause the
processor to transfer control flow to the external interrupt handler. Software can then acquire
the highest priority, pending, unmasked vector by reading the IVR control register. The IVR
read returns the 8-bit vector number in a register and masks all vectors that have equal or lower
priority. This vector now enters the In-Service/None Pending state.

• In-Service/None Pending: an interrupt has been received by the processor on this vector, and
has been acquired by software (by reading the IVR control register), but software has not
completed servicing this interrupt. In this state, the processor masks all vectors that have equal
or lower priority. In this state, the processor can receive and remember a second interrupt on
this vector. If this happens, the processor transitions this vector to the “In-Service/One
Pending” state. If software completes the interrupt service routine (indicated to the processor
by writing the EOI register) before another interrupt is received on this vector, then the
processor returns this vector to the Inactive state, and all vectors with equal or lower priority
are unmasked.

• In-Service/One Pending: an interrupt has been received by the processor on this vector, and has
been acquired by software (by reading the IVR control register), and software has not
completed servicing this interrupt. Additionally, the processor received a second interrupt on
this vector, which is now held pending. If additional interrupts on this vector are received by
the processor while this vector is in the “In-Service/One Pending” state, those additional
interrupts are not distinguishable by the processor hardware. When software completes the
interrupt service routine for the original interrupt on this vector (indicated to the processor by
writing the EOI register), then the processor returns this interrupt vector to the Pending state
for the second interrupt that was received on this vector. Additionally, all vectors with equal or
lower priority are unmasked.

It is recommended the following structure for an Itanium-based external interrupt handler:

1. Read and Save TPR, i.e. save Old Task Priority variable (optional).

2. External Interrupt Harvest Loop:

a. Read the IVR control register to determine which vector is being delivered. If the
returned IVR value is 15, then this is a spurious interrupt and it can be can ignored;
software can now clear PSR.ic, restore IPSR and IIP and then rfi to the interrupted
context. If the returned IVR value is not 15, continue with step 2b.

b. Raise TPR register to the interrupt class to which the level read out of IVR belongs
(optional).

c. Software must preserve IIP and IPSR prior to re-enabling PSR.ic and PSR.i which will
re-enable taking of exceptions and higher priority external interrupts.

d. Issue a srlz.d instruction. This ensures that updated PSR.ic and PSR.i settings are
visible, and it also makes sure that the IVR read side effect of masking lower or equal
priority interrupts is visible when PSR.i becomes 1.

e. Dispatch the appropriate interrupt service routine.

f. Disable external interrupts by clearing PSR.i with an rsm 0x4000 instruction.This
ensures that external interrupts are disabled prior to the EOI write in the next step.

g. Notify the processor that interrupt handling for this vector is completed by writing to the
EOI register. This will unmask any pending lower priority interrupts. If this was a level
triggered interrupt, write to the I/O SAPIC EOI register.

h. Lower TPR register to Old Task Priority (optional).
2:470 Volume 2: External Interrupt Architecture

i. Issue a srlz.d instruction. This ensures that ensure the EOI write from step 2g is
reflected in the future IVR read (in step 2a). It also ensures that the TPR update from
step 2h unmasks any interrupts in the priority classes (including the current task priority
level) that were masked by the previous value of TPR.

j. Return to top of loop (step 2a).

These steps assume that the routine’s caller already performed the required state preservation of
interruption resources. Therefore the focus of the steps above is to check the IVR to acquire the
vector so the operating system can determine what device the interrupt is associated with. The code
is setup to loop, servicing interrupts until the spurious interrupt vector (15) is returned. Looping and
harvesting outstanding interrupts reduces the time wasted by returning to the previous state just to
get interrupted again. The benefit of interrupt harvesting is that the processor pipeline is not
unnecessarily flushed and that the interrupted context is only saved/restored once for a sequence of
external interrupts. Once the vector is obtained the specific interrupt service routine is called to
service the device request. Upon return from the interrupt service routine, an EOI is written and the
IVR is checked once again.

If the operating system does not implement priority levels then there is no need to save and restore
the task priority level (steps 1, 2b, and 2h are optional). As described in Section 10.3 above, an IVR
read automatically masks interrupts at the current in-service level and below until the
corresponding EOI is issued. For level triggered interrupts, the programmer must not only inform
the processor, but the external interrupt controller that the level triggered interrupt has been
serviced.

10.5 Interrupt Control Register Usage Examples

The examples in this section provide an overview of using the Itanium external interrupt control
registers. Actual and pseudo code fragments are listed to aid in the development of OS code which
will utilize these registers. It is up to the operating system and its writer to determine what
minimum set of control registers are required to be used.

10.5.1 Notation

Preprocessor macros for function ENTRY and END are used in the examples to reduce duplication
of code and reduce document space requirements.
#define ENTRY(label) \

 .text; \
 .align 32;; \
 .global label; \
 .proc label; \

label::

#define END(label) .endp

10.5.2 TPR and XPTR Usage Example

This code will allow certain interrupts to be masked by increasing/decreasing the task priority
register. If you don’t want to mask all external interrupts, you can raise the priority level to mask
out only the interrupts that have higher priority (and no effect on your current critical section).
Volume 2: External Interrupt Architecture 2:471

We also take the expensive route here by updating not only the processor TPR, but the External
Task Priority Register used by the chipset (if supported) as a hint to what processor should receive
the next external interrupt.
//
// routine to set the task priority register to mask
// interrupts at the specific level or below
//
// INPUT: SPL level
//

TPR_MIC=4
TPR_MIC_LEN=4

.global external_task_pri_reg// address points to Interrupt Delivery block

ENTRY(set_spl)
alloc r18=ar.pfs,1,0,0,0
dep.z r22=r32,TPR_MIC,TPR_MIC_LEN
movl r19=external_task_pri_reg
;;
mov cr.tpr=r22
ld8 r20=[r19] // get address of EXt. TASK Priority Register
;;
srlz.d // srlz.d only required if want TPR update effective

immediately
st1 [r20]=r32 // if supported by platform: update eXternal Task Priority

(XTP)
br.ret.sptk b0
;;

END(set_spl)

10.5.3 EOI Usage Example

This example is a typical return from an interrupt service routine to the generic interrupt handler.
Interrupts are disabled before returning to the main trap handler in preparation for returning from
kernel space.

return_from_interrupt:
// disable interrupts here

rsm 0x4000 // make sure interrupts disabled

// interrupt_eoi# clear the sapic/pic interrupt
sapic_eoi:

mov cr.eoi=r0 // issue and eoi
;;
srlz.d // make sure it takes effect

// issue the appropriate EOI sequence to the external interrupt
// controller here.

For level trigger interrupts, the OS is required to issue an EOI not only to the processor, but also the
external interrupt controller where the interrupt originated. This forces the OS to keep track of
whether the vector is associated with a level or an edge trigger interrupt line.
2:472 Volume 2: External Interrupt Architecture

10.5.4 IRR Usage Example

Waiting on an interrupt with interrupts disabled.

my_interrupt_loop::
//
// check for vector 192 (0xc0) via irr3

//

mov r3=cr.irr3
;;
and r3=0x1,r3
;;
cmp.eq p6,p7=0x1,r3

(p7)br.cond.sptk.few my_interrupt_loop
;;
mov r4=cr.ivr // read the vector
;;
mov cr.eoi=r0 // clear it
;;

10.5.5 Interval Timer Usage Example

The Itanium architecture provides a 64 bit interval timer for elapsed time notification interrupts. It
is similar to the IA-32 Time Stamp Counter (TSC). Programming the Itanium interval timer
consists of initializing the ITV (CR 72), ITM (CR 1), and ITC (AR 44).

The Interval Timer Vector (ITV) specifies the external interrupt vector number for the Interval
Timer Interrupts. The code examples below show how to clear and initialize the timers vector,
match register, and count registers.

The Interval Time Counter (ITC) gets updated at a fixed relation to the processor clock. The ITM,
Interval Timer Match, is used to determine when a interval timer interrupt is generated. When the
ITC matches the ITM and the timer is unmasked via ITV then an interrupt will be generated.

//
// routine to reset the interval timer to zero..
//

ENTRY(em_timer_reinit)
mov ar.itc=r0 // reset itimer counter
br.ret.spnt.few rp

END(em_timer_reinit)

//
// routine to setup the interval timer.
//
// 1) setup the interval timer vector
// 2) initialize the time counter to zero
// 3) initialize the match register
//
// INPUTS: timermatch -- value to initialize ITM register with.
// vector number -- vector to interrupt with
// OUTPUTS: none
//
ENTRY(enable_minterval)

alloc r14=ar.pfs,0x2,0,0,0 // get ready for input parameters
mov ar.itc=r0 // initialize counter to zero
;;
mov cr.itm=r32 // set match register
Volume 2: External Interrupt Architecture 2:473

;;
srlz.d

mov cr.itv=r33 // set interval timer vector
;;
srlz.d // make sure it goes through
br.ret.sptk.few rp // return
.endp

Since the ITC gets updated at a fixed relation to the processor clock, in order to find out the
frequency at run time, one can use a firmware call to obtain the input frequency information to the
interval time. Using this frequency information the ITM can be set to deliver an interrupt at a
specific time interval (i.e. for operating system scheduling purposes). Assuming the frequency
information returned by the firmware is in ticks per second, the programmer could use a time-out
delta for delivering a timer interrupt every 10 milliseconds as follows:

timeout_delta=ticks_per_second/100;

where ticks_per_second is the frequency value returned by the firmware and timeout_delta will
be the value added to the ITC for setting the next ITM. Therefore, the ITC is left free running, but
the ITM must be updated upon every timer interrupt with its next time out match value,
i.e. ITM = ITC + timeout_delta.

The only issue with this setup is if the timer interrupt delivery is delayed beyond the point of the
original intended delivery time (i.e. ITC > ITM). This could happen if interrupts were disabled or
blocked by the operating system/device driver longer than the time-out value. In this case the ITM
has to be adjusted in order for the next ITM to be accurate. The following algorithm could be used
to adjust the next ITM before returning from the timer interrupt handler.

for (;;) {
itm_next = itm_next + timeout_delta + (read current ITC - read current ITM);
if (itm_next < current ITC) {

/* we missed the next interrupt already, continue */
} else {

set_itm(itm_next);
break;

}
}

where itm_next was initialized to current ITC + timeout_delta, and set_itm in Itanium-based
assembly would look like:

.global set_itm

.proc set_itm
set_itm:

alloc r18=ar.pfs,1,0,0,0
mov cr.itm=r32
;;
srlz.d
br.ret.sptk b0
;;

.endp set_itm
2:474 Volume 2: External Interrupt Architecture

10.5.6 Local Redirection Example

The Local Redirection Registers (LRR0-1) serves to steer external signal based interrupts that are
directly connected to the processor. LRR0 and LRR1 control the external interrupt signals (pins)
referred to as Local Interrupt 0 (LINT0) and Local Interrupt 1 (LINT1) respectively. The example
below shows how to mask interrupt delivery on LINT0.

movl r18=(1<<16)
;;
mov cr.lrr0=r18
;;
srlz.d // srlz.d is required after LRR write to ensure write effect

10.5.7 Inter-processor Interrupts Layout and Example

A processor generates an inter-processor interrupt (IPI) by storing a 64-bit interrupt command to an
8-byte aligned address in the Interrupt delivery region of the Processor Interrupt block. The address
being stored to determines what target processor receives the IPI. The example below is an example
of sending an interrupt to a specific processor based on the destination ID passed in. The
destination ID consists of the Local interrupt ID and the Extended interrupt ID.

Writing to improperly aligned addresses in the delivery region or failure to store less than 64 bits
can result in an invalid operation fault. The access must be uncacheable in order to generate an IPI.

//
// send_ipi_physical (dest_id, vector)
//
// inputs: processor destination ID vector to send
// (Local ID (8 bits << 8)| EID (8 bits))
//
//
//

.global ipi_block // pointer to processor I/O block

IPI_DEST_EID=0x4

ENTRY(send_ipi_physical)
alloc r19=ar.pfs,2,0,0,0
movl r17=ipi_block;;
ld8 r17=[r17] // get pointer to processor block
shl r21=r32,IPI_DEST_EID;;
add r20=r21,r17;; // point to proper processor
st8.rel [r20]=r33 // send the IPI
br.ret.sptk b0;;

END(send_ipi_physical)

10.5.8 INTA Example

External interrupt controllers, that are compatible with the Intel 8259A interrupt controller can not
issue interrupt messages, so the vector number is not available at the time of the interrupt request.
When an interrupt is accepted the software must check to see if it came from an external controller
by the vector number (via IVR) to see if it is the ExtINT vector.
Volume 2: External Interrupt Architecture 2:475

Once the software determines it is an ExtINT, it must obtain the actual vector by doing an uncached
1 byte load from the INTA byte located in the upper half of the processor interrupt block, offset
0x1e0000 from the base.

EXTINT=r0
INTA_PHYS_ADDRESS=0x80000000fefe0000

inta_address=r31

movl inta_address=INTA_PHYS_ADDRESS
;;
srlz.d // make sure everything is up to date
mov r14 = cr.ivr // read ivr
;;
srlz.d // serialize before the EOI is written...
;;
cmp.ne p1,p2 = EXTINT,r14 ;;

(p1)br.cond.sptk process_interrupt
;;

//
// A single byte load from the INTA address should cause
// the processor to emit the INTA cycle on the processor
// system bus. Any Intel 8259A compatible external interrupt
// controller must respond with the actual interrupt
// vector number as the data to be loaded.
//
//

ld1 r17 = [inta_address] // get the real vector..
;;

// vector obtained

process_interrupt:
2:476 Volume 2: External Interrupt Architecture

2

I/O Architecture 11

I/O devices can be accessed from Itanium-based programs using regular loads and stores to
uncacheable space. While cacheable Itanium memory references may be reordered by the
processor, uncacheable I/O references are always presented to the platform in program order. This
“sequentiality” of uncacheable references is discussed in Section 2.2.2, “Memory Attributes” on
page 2:396 and in more detail in Section 4.4.7, ”Sequentiality Attribute and Ordering.”

Additionally, uncacheable memory pages are defined to be “non-speculative” which causes all data
and control speculative loads to uncacheable pages to defer. Control speculative loads to
uncacheable memory return a NaT/NaTVal to their target register. Data speculative loads to
uncacheable memory return zero to their target register. For details, refer to Section 4.4.6,
”Speculation Attributes.”

When configuring chipset registers or setting up device registers, it is sometimes required to know
when a memory transaction has been completed. Completion means the processor received
acknowledgment that the transaction finished successfully in the platform, and that all its
side-effects have occurred and will be visible to the next memory operation (issued by the same
processor). To ensure completion of prior accesses on the platform, the Itanium architecture
provides the mf.a instruction. Unlike the mf instruction that waits for visibility of prior operations,
the mf.a waits for completion of prior operations on the platform. More details in Section 11.1.

To fully leverage the large set of existing platform infrastructure and I/O devices, the architecture
also supports the IA-32 platform I/O port space. The Itanium instruction set does not provide IN
and OUT instructions, but they can be emulated. The I/O port space can be mapped into user-space,
and IA-32 applications can use IN and OUT instructions to directly communicate with the I/O port
space. More details in Section 11.2.

The Itanium architecture provides a high-performance, high-bandwidth uncacheable memory
attribute that supports write-coalescing. This allows the processor to burst writes to uncacheable
locations at much higher bandwidth. The Itanium architecture does not guarantee the FIFO
delivery of write-coalescing stores. More details in Section 4.4.5, ”Coalescing Attribute.”

11.1 Memory Acceptance Fence (mf.a)

An mf instruction ensures that all cache coherent agents have observed all prior memory operations
made by the processor issuing the mf. However, it does not ensure that those operations have
completed, in the Itanium architecture parlance it does not ensure that they have been “accepted”
by the external platform. For instance, a load may have been made visible to all processors by
snooping their caches, but the data return may still be in progress. Such a load would be visible, but
not complete.

The mf.a instruction on the other hand ensures that all prior data memory references made by the
processor issuing the mf.a have been “accepted” by the external platform. However by itself the
mf.a does not guarantee that all cache coherent agents have observed all prior memory operations.
For instance, an uncacheable store to a chipset register may have completed on the system bus,
Volume 2: I/O Architecture 2:477

however, that does not entail that all prior cacheable transactions (from the processor issuing the
store) have been observed by all other processors in the coherence domain.

If software needs to ensure that all prior memory operations have been accepted by the platform
and have been observed by all cache coherent agents, both an mf.a and an mf instruction must be
issued. The mf.a must be issued first, and the mf must be issued second. For more details on
memory ordering between cache coherent agents please refer to Chapter 2, “MP Coherence and
Synchronization.”

Typically mf.a is used to configure a system’s I/O space, e.g. to setup chipset registers that affect all
subsequent memory operations. Specifically, the mf.a instruction restrains further data accesses
from initiating on the external platform interface until:

1. All previous sequential (i.e. non write-coalescing uncacheable) loads have been returned
data, and

2. All previous stores have been “accepted” by the platform. Typically acceptance is indicated
by a bus specific signals/phase, e.g. completion of response phase on the system bus.

Architecturally, the definition of “acceptance” is platform dependent. The next section discusses
the usage of the mf.a instruction in the context of the I/O port space.

11.2 I/O Port Space

IA-32 processors support two I/O models: memory mapped I/O and the 64KB I/O port space. To
support IA-32 platforms, the Itanium architecture allows operating systems to map the 64KB I/O
port space into the 64-bit virtual address space. This allows Itanium-based operating systems to see
all I/O devices as a single unified memory mapped I/O model, and permits “normal” Itanium load
and store instructions as well as IA-32 IN and OUT instructions to directly access the I/O port
space.

As described in Section 10.7, ”I/O Port Space Model,” Itanium-based operating systems can map
the physical 64KB I/O port space into a spread-out 64MB block of virtual address space. The
virtual base address of the I/O port space (IOBase) is maintained by the operating system in kernel
register KR0. When the processor issues Itanium load and stores accesses to the I/O port space, a
port’s virtual address is computed as:
port_virtual_address = IOBase | (port{15:2}<<12) | port{11:0}

For Itanium loads and stores, this address computation places four 1-byte ports on each 4KB page
and expands the space to 64MB, with the ports being at a relative offset specified by port{11:0}
within each 4KB virtual page. When executing an IA-32 IN or OUT instruction a processor based
on the Itanium architecture automatically converts the IA-32 address to the appropriate expanded
I/O port space address.

As a result of the spreading-out of the I/O ports into individual 4KB pages, Itanium-based operating
system code can control IA-32 IN, OUT instruction and IA-32 or Itanium load/store accessibility to
blocks of 4 virtual I/O ports using the TLBs. This allows Itanium-based operating systems to
securely map devices that inhabit the I/O port space to different Itanium-based device drivers or to
user-space Itanium-based applications.
2:478 Volume 2: I/O Architecture

Itanium-based operating systems must ensure that the I/O port space is always mapped as
uncacheable memory, and that Itanium-based software only issues aligned 1, 2 or 4 byte references
to I/O port space, otherwise device behavior is undefined.

When porting an IA-32 device driver to the Itanium architecture it can be useful to emulate the
behavior of IA-32 IN and OUT instructions. The following code examples should be used for this
purpose, since they enforce the strict memory ordering and platform acceptance requirements that
IA-32 IN and OUT instructions are subject to. The following Itanium-based assembly code outb
(out byte) and inb (in byte) examples assume that the io_port_base is the virtual address mapping
pointer set up by the IA_64 operating system. An mf.a instruction is used to verify acceptance by
the platform before returning to the calling routine. Interrupts would expected to be disabled if
these routines are called from user mode. This is for possible issues with process migration after
servicing an interrupt.
//
// void outb(unsigned char *io_port,unsigned char byte)
//
//Output a byte to an I/O port.
//
ENTRY(outb)

base_addr = r16
port_addr = r17
port_offset = r18
mask = r19

alloc r13 = ar.pfs, 2, 0, 0, 0 // 2 in, 0 local, 0 out, 0 rot
movl base_addr = io_port_base
extr.u port_offset = in0, 2, 14
mov mask = 0xfff
;;
ld8 port_addr = [base_addr]
shl port_offset = port_offset, 12
and in0 = mask, in0
;;
add port_offset = port_offset, in0
;;
mf
add port_addr = port_addr, port_offset
;;
st1.rel [port_addr] = in1
mf.a
mf
br.ret.spnt.few rp

END(outb)

//
// unsigned char inb(unsigned char *io_port)
//
// Input a byte from an I/O port.
//
ENTRY(inb)

base_addr = r16
port_addr = r17
port_offset = r18
mask = r19

alloc r13 = ar.pfs, 2, 0, 0, 0 // 2 in, 0 local, 0 out, 0 rot
movl base_addr = io_port_base
extr.u port_offset = in0, 2, 14
mov mask = 0xfff
;;
ld8 port_addr = [base_addr]
shl port_offset = port_offset, 12
and in0 = mask, in0
;;
Volume 2: I/O Architecture 2:479

add port_offset = port_offset, in0
;;
mf
add port_addr = port_addr, port_offset
;;
ld1.acq r8 = [port_addr]
mf.a

mf
br.ret.spnt.few rp

END(inb)
2:480 Volume 2: I/O Architecture

2

Performance Monitoring Support 12

Processors based on the Itanium architecture include a minimum of four performance counters
which can be programmed to count processor events. These event counts can be used to analyze
both hardware and software performance. Performance counters can be configured to generate a
counter overflow interrupt. This interrupt can be used for event or time based profiling. For hot-spot
analysis of running code, performance monitor interrupts can be used to create a profile of
frequently occurring instruction pointers (IP). Another common use of event counts is to compute
processor performance metrics such as cycles per instructions (CPI), the current branch, cache or
TLB miss rates, etc.

The Itanium architecture provides architected support for context switching of performance
monitors by an Itanium-based operating system. If supported by the operating system, this allows
performance counter events to be broken down per thread or per process which is important for
effective performance tuning of Itanium-based applications.

The remainder of this chapter reviews the architected performance monitoring mechanisms. It also
discusses the Itanium-based operating system support needed for two monitoring usage models: per
process/thread and system-wide event monitoring.

12.1 Architected Performance Monitoring Mechanisms

As defined in Section 7.2, ”Performance Monitoring,” processors based on the Itanium architecture
provide a minimum of four generic performance counter pairs (PMC/PMD[4..7]). The performance
monitor control (PMC) registers are used to select the event to be counted, and to define under what
conditions the event should qualify for being counted (for details refer to Section 7.2.1, ”Generic
Performance Counter Registers”). The performance monitor data (PMD) registers contain the event
count or data.

The PMC/PMD registers can only be written by privileged software (PSR.cpl must be zero). A
counter can be configured as a “privileged” counter or a “user-level” counter by setting of the
PMC[i].pm bit. Privileged counters can only read at privilege level 0, while user-level counters can
by read by user mode code (unless the operating system has explicitly disabled the user-level
monitor reads using PSR.sp).

Once the PMC/PMD registers have been configured, counting is enabled and disabled by setting
bits in the PSR. User-level counters can be controlled at user-level using the rum and sum
instructions to toggle PSR.up. Privileged counters are controlled by privileged software using the
rsm, ssm, mov from/to PSR instructions to toggle PSR.pp. Counting for all counters is further
controlled by the PMC[0] freeze bit. When PMC[0].fr is 0, all counters are disabled. When
PMC[0].fr is 1, counting is enabled based on PMC[i].pm, PSR.pp and PSR.up. For more details on
controlling of the performance monitors please refer to Section 7.2.1, ”Generic Performance
Counter Registers.”
Volume 2: Performance Monitoring Support 2:481

The PAL firmware provides information about the performance monitor registers that are
implemented on the processor through the PAL_PERF_MON_INFO PAL call. Information
provided by the PAL includes bit masks which indicate which PMC/PMD registers are
implemented on this processor model, as well as the implemented number of generic PMC/PMD
pairs, and the counter width of the generic counters.

12.2 Operating System Support

The monitoring mechanisms discussed in the previous section support two performance monitoring
usage models that need support from an Itanium-based operating system.

• Per Thread/Process Event Monitoring

To monitor processor events per thread the operating system needs to save and restore performance
monitor state at thread/process context switches. This save/restore of PMC and PMD registers only
needs to be done for monitored threads. The effect of the save/restore is that when a monitored
thread is running, PMD reads will reflect events for the monitored thread/process only.
Section 7.2.4.2, ”Performance Monitor Context Switch” defines the steps required for per-thread
context switch of performance monitors. It is worth noting that the PMC/PMD masks returned from
PAL_PERF_MON_INFO indicate which PMC/PMD registers are implemented. The context
switch routine can use the mask to save/restore implemented monitors without knowing the
function of the monitors.

• System Wide Event Monitoring

To monitor processor events system wide (across all processes and the operating system kernel
itself), a monitor must be enabled continuously across all contexts. This can be achieved by
configuring a privileged monitor (PMC.pm=1), and by ensuring that PSR.pp and DCR.pp remain
set for the duration of the monitor session. Since the operating system typically reloads PSR and
possibly DCR on context switch, this requires the operating system to set PSR.pp and DCR.pp for
all contexts that are active during the monitoring session. One way to accomplish this is to have
code in the context switch routine to always set PSR.pp and DCR.pp when system wide monitoring
is in effect. Another technique is to set the initial state for all new threads/processes to PSR.pp=1,
PSR.up=0, PSR.sp=0 and DCR.pp=1. Setting the per thread PSR and DCR in this way ensures that
privileged monitors will be enabled across all contexts. When system wide monitoring is in effect,
PSR.pp, DCR.pp as well as the PMC and PMD registers should not be altered by the context switch
routine.

To support both per thread and system wide monitoring, the operating system needs to be aware
which type of monitoring is being performed at any given moment. If per thread/process
monitoring is active, then the operating system must save/restore monitor state for monitored
threads. If system wide monitoring is active, then the operating system must ensure that PSR.pp
and DCR.pp remain set.

The preferred approach for performance monitoring is for Itanium-based operating systems to
provide a set of kernel mode services that allow performance monitoring software to be
implemented in a loadable device driver. Such a loadable device driver can support various usage
monitoring models, can be adapted to model-specific processor monitoring capabilities, and is a
well-defined isolated and easily replaceable software component. The following operating system
services allow a kernel mode device driver to take full advantage of the performance monitors:

• Allocation/Free Performance monitors – operating system should delegate management of the
performance monitor resources to device driver.
2:482 Volume 2: Performance Monitoring Support

• Process create/terminate notification – operating system should notify driver on process create/
terminate.

• Thread create/terminate notification – operating system should notify driver on thread create/
terminate.

• Context switch notification – operating system should notify driver on thread and process
context switch. The driver will perform the required save/restore depending on the currently
active usage model.

• Performance counter overflow interrupt – operating system should notify driver when a
performance monitor overflow interrupt occurs.

• Get Current Process Identifier – returns a unique identifier for the current process or address
space. This should be callable in any context, e.g. by an interrupt handler.

• Get Current Thread Identifier – returns a unique identifier for the current thread of execution.
This should be callable in any context, e.g. by an interrupt handler.

One of the challenges when doing instruction pointer (IP) profiling is to relate the current IP to an
executable binary module and to an instruction within that module. If appropriate symbol
information is available, the IP can be mapped to a line of source code.

To support this IP to module mapping, it is recommended that the OS provide services to enumerate
all kernel and user mode modules in memory, and to allow a kernel mode driver to be notified of
each module load. The following services are recommended:

• Enumerate kernel mode modules – provides information each kernel mode module currently
loaded in memory.

• Enumerate threads/processes – provides a list of current threads/processes. The list should
include the unique identifier for each thread/process.

• Enumerate all user mode modules – provides information on each user mode module that is
currently loaded in memory (all processes).

• Enumerate modules for a process – provides information on each user mode module that is
currently loaded in memory for the selected process.

• Module load notification – OS should notify a driver when the OS loads a kernel or user mode
module into memory for execution. The notification should occur before the module begins
execution.

In the above services for module enumeration and load notification, the module information
provided for a module should include module name, load address, size in bytes, section number (if
a section of a module is loaded non-contiguously), and a process/thread identifier that identifies the
process into which the module is loaded.
Volume 2: Performance Monitoring Support 2:483

2:484 Volume 2: Performance Monitoring Support

2

Firmware Overview 13

The Itanium architecture defines three firmware layers: Processor Abstraction Layer (PAL),
System Abstraction Layer (SAL), and Extensible Firmware Interface (EFI).

The PAL, SAL and EFI layers work together to handle the reset abort event. The reset abort
handling performs processor and system initialization for operating system (OS) boot and provides
a legacy-free API to the operating system loader. The PAL and SAL firmware layers work together
to handle machine check aborts (MCA), initialization events (INIT), and platform management
interrupt (PMI) handling. All three firmware layers also provide runtime procedure calls to abstract
processor and platform functions that may vary across implementations.

This chapter will provide an overview of the firmware layers and how the firmware layers interact
with each other as well as with the operating system. For the full architecture specifications of the
PAL firmware please refer to Chapter 11, “Processor Abstraction Layer.” For full architecture
specifications on SAL and EFI firmware layers please refer to Section 1.2, “Related Documents”
on page 2:379.

The PAL layer is developed by Intel Corporation and delivered with the processor. The SAL and
EFI firmware is developed by the platform manufacturer and provide a means of supporting value
added platform features from different vendors.

The interaction of the various functional firmware blocks with the processor, platform and
operating system is shown in Figure 13-1, “Firmware Model” on page 2:486.

13.1 Processor Boot Flow Overview

13.1.1 Firmware Boot Flow

Upon detection of a reset event on a processor based on the Itanium architecture, execution begins
at an architected entry point inside of PAL. This PAL code will verify the integrity of the PAL code
and may perform some basic processor testing. PAL will then branch to an entry point within the
SAL firmware. This first branch to SAL is to determine if a firmware update is needed requiring
re-programming of the firmware code. If no firmware update is needed SAL will branch back to
PAL.

PAL now performs additional processor testing and initialization. These first processor tests are
performed without platform memory. PAL indicates the outcome of the testing and branches to an
entry point within SAL firmware for the second time. SAL will now begin platform testing and
initialization.

The order of steps within the SAL firmware is platform implementation dependent and may vary.
In general, the SAL firmware selects a Bootstrap processor (BSP) in multi-processor (MP)
configurations early in the boot sequence. Next, SAL will find and initialize memory and invoke
PAL procedures to conduct additional processor tests to ensure the health of the processors. SAL
Volume 2: Firmware Overview 2:485

then initializes the system fabric and platform devices. SAL will display the progress of the boot on
the video output device and permit the user to change the system configuration.

The SAL firmware layer hands off control to the EFI firmware layer which incorporates a Boot
Manager. The EFI firmware specification [EFI] enables booting from a variety of mass storage
devices such as hard disk, CD, DVD as well as remote boot via a network. At a minimum, one of
the mass storage devices contains an EFI system partition.

The EFI Boot Manager displays the list of operating system choices and permits the user to select
the operating system for booting. To support this functionality, the OS setup program stores the
boot paths of the OS loaders and boot options in non-volatile storage managed by the EFI. The EFI
reserves the environment variables Boot#### (#### represents values 0000 to 0xFFFF) for this
purpose. The OS setup program must also store the OS loader binary images within the EFI System

Figure 13-1. Firmware Model

Non-performance criti-
cal hardware events,
e.g., reset, machine
checks

Operating System Software

System Abstraction Layer
(SAL)

 Processor (hardware)

Performance critical hard-
ware events, e.g., inter-
rupts

Instruction
Execution

Platform (hardware)

Processor Abstraction Layer (PAL)

Interrupts,
traps, and
faults

Transfers to
SAL entrypoints

Transfers to
OS entrypoints

PAL
procedure
calls

Access to
platform
resources

Extensible Firmware
 Interface (EFI)

SAL
procedure
calls

OS Boot
Handoff

EFI
procedure
calls

OS Boot
Selection
2:486 Volume 2: Firmware Overview

Partition. The EFI Boot Manager will also allow the user to add boot options, delete boot options,
launch an EFI application, and set the auto-boot time out value.

The EFI System Partition also contains EFI drivers that will be loaded by the EFI firmware prior to
transfer of control to an OS loader. The floating-point software assist (FPSWA) library is included
in these EFI drivers. The FPSWA library may be invoked by the OS during floating-point exception
faults and traps. Please see Section 8.1.1, “The Software Assistance Exceptions (Faults and Traps)”
on page 2:455 for more information on the usage of this library.

If the user elects to boot an IA-32 operating system, the EFI will load 512 bytes of the first level
boot code (Master Boot Record in the case of disk devices) at location 0x7C00. Next, EFI will
remove its memory footprint and returns to the SAL firmware. The SAL will then invoke a PAL
procedure to set up the IA-32 System environment and jump to the boot code at 0x7C00. The boot
code will load an IA-32 OS loader which, in turn, loads and transfers control to the IA-32 OS
kernel.

If the user elects to boot an Itanium-based operating system, the EFI loads the appropriate OS
loader from the EFI System Partition and passes control to it. The OS loader will load other files
including the OS kernel from an OS partition using the EFI boot services which provides a legacy
free API interface to the OS loader. EFI uses SAL to access low level platform resources. The
interfaces between EFI and SAL are platform firmware implementation dependent and not relevant
for the OS loader developers.

The OS loader can obtain information about the memory map usage of the firmware by making the
EFI procedure call GetMemoryMap(). This procedure provides information related to the size and
attributes of the memory regions currently used by firmware.

The OS loader will then jump to the OS kernel that takes control of the system. Until this point,
SAL retained control of key system resources such as the Interrupt Vector Table and provided the
necessary interrupt, trap and fault handlers.

Figure 13-2, “Control Flow of Boot Process in a Multi-processor Configuration” on page 2:488
depicts the booting steps in a MP configuration.

13.1.2 Operating System Boot Steps

The firmware will initialize the processor(s) and platform to a specific state before handing off to
the operating system boot loader. The boot loader is then responsible for copying the operating
system from some storage medium into memory for running. Once this is done the operating
system will need to initialize some key registers before entering into a higher level language code
such as C. This section will describe code that an OS will need to execute in order to initialize
system registers for preparing an OS to run in virtual mode and handle interrupts. Appendix A,
“Code Examples” provides the Itanium-based sample assembly code described in this section.

Assuming the specific operating system boot loader hands off to the OS kernel in physical mode,
the operating system should first disable interrupts and interrupt collection via the PSR. This is
done to avoid taking external interrupts from timers, etc and also prepares for writing specific
system registers that require PSR.ic to be 0 when written.
Volume 2: Firmware Overview 2:487

Figure 13-2. Control Flow of Boot Process in a Multi-processor Configuration

000937a

No

Yes

Yes

YesYes

No

IA-32 OS

Power On

BSP?
Rendez

Interrupt?

No

OS Type?

No

PALE_RESET

PAL_RESET

SALE_ENTRY

SAL_RESET

BSP Selection

Initialization &
Memory Test

PAL Late Self-test

Wake APs for
PAL Late Self-test

Load OSLoader
from Boot Device

Itanium-based OS Wake up the APs

IA-32 OS

EFI

Itanium-based OS
will wake up the APs

IA-32 OS will issue
Startup IPI to
wake up the APs

Rendezvous_1

PAL Late Self-test

Rendezvous_2

Rendez
Interrupt?

OS Type?

CALL to OS
BOOT_RENDEZ

IA-32 OS

Itanium®

Processor OS

Initializatize IA-32
system params,

enter IA-32 system
environment

Wait for IA-32
Startup IPI

Recovery?
Update Firmware,
do System Reset

APs

Optional

PAL

OS_Loader

Set Wakeup Entry,
Wakeup APs

Handoff to the
Itanium-based OS Initializatize IA-32

system params,
enter IA-32 system

environment

Handoff to the
Itanium-based OS
2:488 Volume 2: Firmware Overview

Next the operating system startup code invalidates the ALAT via the invala instruction. The
invala in complete form will invalidate all entries in the ALAT.

The register stack should be invalidated. This can be done by setting the Register Stack
Configuration Register (RSC) to zero followed by a loadrs instruction. Setting the RSC to zero will
put the register stack in enforced lazy mode and set the RSC.loadrs, load distance to tear point, to
zero. The loadrs will invalidate all stacked registers outside current frame.

The region registers and protection key registers are then initialized with operating system
implementation dependent values. For example, the OS will initialize the region register with a
preferred page size. It would also disable the VHPT until it was ready for it. In the example, all
region registers are initialized with an 8-KB page size.

An OS must setup a kernel stack pointer and backing store pointer for the register stack. The stack
pointer (GR12) is set to the OS kernel stack area with scratch space to cover calling conventions.
AR.RSC must be set to enforced lazy mode before writing to the bspstore register. Initializing the
bspstore has effects on all 3 RSE pointers (BSP, BSPSTORE, and RSE.BspLoad).

In order for the operating systems to handle interruptions, the operating system interrupt vector
table base address must be set up. The size of the vector table is 32K bytes and is 32K byte aligned.
Setting the location of the table is accomplished by moving the address into CR.IVA.

Operating systems setup system address translations for the kernel text and data by using the
translation insertion format described in Section 4.1.1.5, ”Translation Insertion Format.” A
combination of a general register, Interruption TLB Insertion Register (ITIR), and the Interruption
Faulting Address register (IFA) are used to insert entries into the TLB. To void TLB faults on
specific text and data areas the operating system can lock critical virtual memory translations in the
TLB by use of Translation Register (TR) section of the TLB. The entries are placed into a TR via
the Insert Translation Register (itr) instruction. The translation will remain unless the software
issues the Purge Translation (ptr) instruction. Other important areas might be locked also, such as
entries for memory mapped I/O, etc.

After the initial translations have been entered, the OS can make final preparations for enabling
virtual addressing. The OS needs to set several important bits in the IPSR, such as data address
translation (dt), register stack translation (rt), instruction address translation (it), enabling
interruption collection (ic), and setting the specific register bank (bn).

The Default Control Register (DCR) specifies the default parameters for PSR values on
interruption, some additional global controls, and whether speculative load faults can be deferred.
The example defers all speculation faults. Also, if the operating system is utilizing the performance
monitors then the DCR.pp bit should be set so that on interruption the PSR.pp bit will be set.

The global pointer (GR1) should point to the global data area. It must be setup properly before
using higher level languages such as C. The startup code should also set the following registers to
zero, the Interruption Function State (CR.IFS, to set frame marker to zero), and AR.RNAT (to make
sure no NaT bits are set before OS kernel begins using the RSE.

Before enabling virtual addressing, the Interruption Instruction Bundle Pointer (IIP) is set to point a
virtual address. This is done so when the return from interruption instruction (rfi) is executed the
instruction fetched will have a virtual address. The rfi will switch modes based on IPSR values
which are moved into the PSR. The IIP value becomes the new IP.
Volume 2: Firmware Overview 2:489

13.2 Runtime Procedure Calls

The PAL, SAL, and EFI firmware layers provide entry points as runtime interfaces to the OS.
These runtime interfaces allow the OS to obtain information about the processor and platform as
well as perform implementation specific functions on the processor and platform.

The calling conventions for these runtime procedures are documented in the respective firmware
architecture specifications. In general the first input argument to the procedure call specifies the
index of the procedure within the list of supported procedures for each firmware layer.

13.2.1 PAL Procedure Calls

PAL procedure calls are classified into two types: static and stacked. The static calls are intended
for boot-time use before main memory is available or in error recovery situations where memory or
the RSE may not be reliable. All parameters will be passed in the general registers GR28 to GR31
of Bank 1. The stacked registers (GR32 to GR127) will not be used for these calls. The static calls
can be called at both boot-time and runtime.

Stacked register calls are intended for use after memory has been made available. The stacked
registers are used for parameter passing and local variable allocation. These calls also allow
memory pointers may be passed as arguments. These calls can be made at boot-time after memory
has been tested and initialized as well as runtime.

For a listing of all the PAL procedures and their classification please see Section 11.9.1, ”PAL
Procedure Summary.”

All PAL calls are re-entrant and can be executed simultaneously on multiple processors.

13.2.1.1 Making a Static PAL Call

Since the static PAL calls do not use stacked registers, these calls are made as a pure jump with
branch register B0 containing the address of the bundle to which control will return. The following
code example describes how to make a static PAL call:

The sample code below is position independent and functions in both physical and virtual
addressing modes. Since the return address is evaluated by using the runtime instruction pointer (IP
value), it will run from any address. This attribute is important for any relocatable code.

The address of the PAL procedure entry point is passed to SAL at the hand-off from PAL to SAL
during reset. SAL will pass this information on to the OS during OS boot as well.
2:490 Volume 2: Firmware Overview

13.2.1.2 Making a Stacked PAL Call

A stacked PAL call uses the stacked registers for argument passing and local variable allocation.
The stacked PAL calls conform to the calling conventions document [SWC], with the exception
that general register GR28 must also contain the function index input argument. The following
code example describes how to make a stacked PAL call.

GetFeaturesCall:

movr14 = ip // Get the ip of the current bundle
movlr28 = PAL_PROC_GET_FEATURES// Index of the PAL procedure

movlr4 = AddressOfPALProc;;// Address of the PAL proc entry point

ld8r4 = [r4];; // Read address from local pointer

movb5 = r4 // Move address into a branch register

// Compute the return address in a position independent manner

addlr14 = (BackHome - GetFeaturesCall),r14;;
movb0 = r14 // b0 is the return link

movr29 = r0 // Initialize rest of input arguments

movr30 = r0 // to zero as required by the

movr31 = r0 // architecture.

br.sptkb5;; // Make the PAL call.

// PAL will return here when the call is completed

BackHome:

movlr4 = AddressOfPALProc;;// Address of the PAL proc entry point

ld8r4 = [r4];; // Read address from local pointer

movb5 = r4 // Move address into a branch register

// Make the PAL_HALT_INFO procedure call. PAL_HALT_INFO uses stacked
register

// convention and parameters are passed with in0-in3

movr28 = PAL_HALT_INFO;;// Index of the PAL procedure

movout0 = r28 // r28 and in0 must both contain the

// index value for stacked PAL calls.

movout1 = ScratchMem_Pointer// Pointer to the memory argument

mov out2 = 0x0 // Write zero to unused input arguments

movout3 = 0x0

br.call.sptk.few b0 = b5;;// PAL stacked call

// PAL will return here when the call is completed
Volume 2: Firmware Overview 2:491

13.2.1.3 PAL Procedure Calls and Performance

PAL procedure calls are designed for a number of different functions varying from boot-time usage
before platform memory is available to processor specific functions used during runtime by the OS.
PAL runtime procedure calls made by the OS are designed to be flexible with minimal overhead.
The following features aid in this goal:

• PAL procedure calls are relocatable. This feature is useful for platforms that have PAL stored
in non-volatile storage, such as flash. During OS boot the PAL procedures are copied into
RAM which will reduce the memory latency.

• A number of PAL procedure calls are defined to be called in both physical and virtual
addressing. This allows the caller to make the call in its currently executing addressing mode,
thus reducing the need to switch between physical and virtual addressing.

13.2.2 SAL Procedure Calls

All SAL procedure calls use the stacked register calling convention. SAL follows the floating-point
register conventions specified in the calling conventions document [SWC], with the exception that
SAL does not use the floating-point registers FR32 to FR127. This exception eliminates the need
for the OS to save these registers across SAL procedure calls.

SAL procedures are non re-entrant. The OS is required to enforce single threaded access to the SAL
procedures except for the following procedures:

• SAL_MC_RENDEZ, SAL_CACHE_INIT, SAL_CACHE_FLUSH

13.2.3 EFI Procedure Calls

EFI procedure calls are classified into the following two categories: boot services and runtime
services. The EFI boot services execute in physical addressing mode only. The runtime services can
execute in either physical or virtual addressing mode. The EFI boot services are only available
during the boot process and are terminated by a call to the EfiExitBootServices() procedure. After
this call, only the SAL and EFI runtime services may be invoked by the OS. The EFI runtime
services execute in physical mode until the OS invokes the EFISetVirtualAddress() function to
switch the EFI to virtual mode. After this point, the EFI runtime services may be invoked in virtual
mode only. For full information on all the EFI boot and runtime services please refer to the EFI
specification [EFI].

13.2.4 Physical and Virtual Addressing Mode Considerations

All of the PAL procedures can be called in the physical addressing mode. A subset of PAL calls can
be made using the virtual addressing mode. For PAL calls that can be invoked using virtual
addressing mode, it is the responsibility of the caller to map these PAL procedures with an ITR as
well as either a DTR or DTC. If the caller chooses to map the PAL procedures using a DTC it must
be able to handle TLB faults that could occur. See Section 11.9.1, “PAL Procedure Summary” for a
summary of all PAL procedures and the calling conventions.
2:492 Volume 2: Firmware Overview

The SAL and the EFI firmware layers have been designed to operate in virtual addressing mode.
EFI provides an interface to the OS loader that describes the physical memory addresses used by
firmware and indicates whether the virtual address of such areas need to be registered by the OS
with EFI. The EFI Specification [EFI] also provides the interfaces for the OS to register the virtual
address mappings. In a MP configuration, the virtual addresses registered by the OS must be valid
globally on all the processors in the system.

The SAL runtime services may be called either in virtual or physical addressing mode. SAL
procedures that execute during machine check, INIT, and PMI handling must be invoked in
physical addressing mode.

The parameters passed to the firmware runtime services must be consistent with the addressing
environment, i.e. PSR.dt, PSR.rt setting. Additionally, the global pointer (gp) register [SWC] must
contain the physical or virtual address for use by the firmware.

13.2.4.1 SAL Procedures that Invoke PAL Procedures

Some of the SAL runtime services, e.g. SAL_CACHE_FLUSH, will need to invoke PAL
procedures. While invoking these SAL procedures in virtual mode, the OS must provide the
appropriate translation resources required by PAL (i.e. ITR and DTC covering the PAL code area).

In general, if SAL needs to invoke a PAL procedure, it will do so in the same addressing mode in
which it was called by the OS (i.e. without changing the PSR.dt, PSR.rt, and PSR.it bits). If a
particular PAL procedure can only be invoked in physical mode, SAL will turn off translations and
then invoke the PAL procedure. SAL will then restore translations before returning to the caller.
The PAL_CACHE_INIT procedure invoked by the SAL_CACHE_INIT is an example of a
procedure that would require such an addressing mode transition.

13.3 Event Handling in Firmware

The PAL and SAL firmware layers are responsible for handling three events. These events are the
machine check abort (MCA), the initialization event (INIT) and the platform management interrupt
(PMI). When the processor detects these events it will pass control to PAL for handling. The
following sections describe the high level overview of the firmware handling of these events.

13.3.1 Machine Check Abort (MCA) Flows

In order to have a highly reliable and fault tolerant computing environment a great deal of
coordination and cooperation between the system entities (i.e. the processor, platform, and system
software) is required. The PAL firmware, the SAL firmware, and the operating system all work
together to meet this goal. This section will provide an overview of the machine check abort
handling.

When the processor detects an error, control is transferred to the PAL_MCA entrypoint. PAL_MCA
will perform error analysis and processor error correction where possible. Subsequently, PAL hands
off control to the SAL MCA component. SAL_MCA will perform error logging and platform error
correction where possible. Errors that are corrected by the PAL and SAL firmware are logged and
control is returned back to the interrupted process/context. For corrected errors, no OS intervention
Volume 2: Firmware Overview 2:493

is required for error handling, but the OS is notified of the event for logging purposes through a low
priority asynchronous corrected machine check interrupt (CMCI). See Section 5.8.3.8, “Corrected
Machine Check Vector (CMCV – CR74)” for more information on the CMCI. If the error was not
corrected by firmware, SAL hands off control to the OS_MCA handler.

Within the firmware the entire machine check is handled with virtual address translations disabled.
However, the OS machine check handler may optionally enable virtual addressing and execute
most of MCA handler in virtual mode.

Figure 13-3 and Figure 13-4 depict an overview of Itanium machine check processing. The control
flows are slightly different for corrected and uncorrected machine checks.

For multi-processor systems, machine checks are classified as local and global. A global MCA
implies a system wide broadcast by hardware of an error condition. During a global MCA
condition, all the processors in the system will be notified of the MCA, detected by one or more
system components, and each of the processors in the system will start processing the MCA in their
respective handlers. The SAL firmware and OS layers will coordinate the handling of the error
among the processors.

A local MCA has a scope of influence that is limited to the particular processor which encountered
the error. This local MCA will not be broadcast to other processors in the system and will be
handled on an individual processor basis. At any point in time, more than one processor in the
system may experience a local MCA and handle it without notifying other processors in the system.

The next sections will provide an overview of the responsibilities that the PAL, SAL and OS have
for handling machine checks. These sections are not an exhaustive description of the functionality
of the handlers but provides a high level description of how the MCA handling is split among the
different components.

Figure 13-3. Correctable Machine Check Code Flow

Figure 13-4. Uncorrectable Machine Check Code Flow

PAL_MC_RESUME

PAL_MCA SAL_MCA
OS_MCA
Log Error

CMC
Interrupt

MCA
1 2

3

4

PAL_MCA SAL_MCA
OS_MCA

Correct/Log ErrorMCA
1 2 3
2:494 Volume 2: Firmware Overview

13.3.1.1 Machine Check Handling in PAL

All machine check abort events are first handled in the PAL firmware layer. The following provides
a brief description of some of the functions of the PAL machine check handler:

• Correct processor errors if possible.

• Attempt to contain the error by requesting a rendezvous for all processors in the system if
needed.

• Hand off control to SAL for further processing, such as error logging.

• Return processor error log information upon request by SAL.

• Return to the interrupted context by restoring the state of the processor.

• Notify the OS about corrected machine check conditions through the CMC interrupt.

13.3.1.2 Machine Check Handling in SAL

Before SAL is ready to handle machine checks, it must register with PAL an uncacheable memory
buffer that PAL can use to save away processor state. This area is known as the min-state save area.
If a machine check occurs before this memory location has been registered, return to the interrupted
context is not possible and the machine check is not recoverable.

The following provides a description of some of the functions of the SAL machine check handler.

• Attempt to rendezvous the other processors in the system on a PAL request.

• Process MCA handling after handoff from PAL.

• Retrieve processor error log information via PAL procedure calls and store this information for
logging purposes.

• Issue a PAL clear log request to clear the processor error logs, which enables further logging.

• Log platform state for MCA and retain it until it is retrieved by the OS.

• Attempt to correct processor machine check errors which are not corrected by PAL.

• Attempt to correct platform machine check errors.

• Branch to the OS MCA handler for uncorrected errors or optionally reset the system.

• Return to the interrupted context via a PAL procedure call.

13.3.1.3 Machine Check Abort Handling in OS

Before the OS kernel is ready to handle machine checks, it must register the address of the
OS_MCA entry point and the GP [SWC] value for the OS_MCA handler with SAL. If the OS does
not register its entry point, the occurrence of a machine check will cause a system reset. In MP
configurations, the OS must also register with SAL:

• A rendezvous interrupt vector which SAL firmware can use to rendezvous the processors.

• The mechanism that the OS will employ to wake up the processors at the end of machine check
processing.

When the OS registers the OS_MCA entry point with SAL, it also supplies the length of the code
(or at least the length of the first level OS_MCA handler). SAL computes and saves the checksum
of this code area. Prior to entering OS_MCA, SAL ensures that the OS_MCA vector is valid by
verifying the checksum of the OS_MCA code. Hence, the OS_MCA code must not contain any self
modifying code.
Volume 2: Firmware Overview 2:495

When an uncorrected machine check event occurs, SAL will invoke the OS_MCA handler. The
functionality of this handler is dependent on the OS. At a minimum, it must call a SAL procedure to
retrieve the error logging and state information and then call another SAL procedure to release
these resources for future error logging and state save.

When the OS_MCA code completes, it decides whether or not to return to the interrupted context.
The OS must take into account the state information retrieved from the SAL with respect to the
continuability of the processor and system. Thus, even if the OS could correct the error, if PAL or
SAL reports that it did not capture the entire processor context, resumption of the interrupted
context will not be possible.

The OS must also determine from values stored by PAL in the min-state save area whether the
machine check occurred while operating with PSR.ic set to 0 and whether the processor supports
recovery for this case. Please refer to Section 11.3.1.1, “Resources Required for Machine Check
and Initialization Event Recovery” for more information on processor recovery under this
condition.

To provide better software error handling, some operating systems build mechanisms to identify
whether machine checks occurred during execution of the OS kernel code or in the application
context. One technique to achieve this is to call the PAL_MC_DRAIN procedure when an
application makes a system call to the OS. This procedure completes all outstanding transactions
within the processor and reports any pending machine checks. This technique impacts system call
and interrupt handling performance significantly, but will improve system reliability by allowing
the OS to recover from more errors than if this mechanism was not included.

13.3.2 INIT Flows

INIT is an initialization event generated by the platform or by software through an inter-processor
interrupt message. The INIT can be due to a platform INIT event or due to a failed rendezvous on
an application processor.

The INIT event will pass control to the PAL firmware INIT handler. The PAL INIT handler saves
processor state to the registered min-state save area and sets up the architected hand off state before
branching to SAL. See Section 11.5, “Platform Management Interrupt (PMI)” for more information
on the PAL INIT handling.

The SAL INIT handler logs processor state and platform state information and then calls the
OS_INIT handler if one is registered. The OS_INIT handler gains control in physical mode but
may switch to virtual mode if necessary. The OS may choose to implement a crash dump or an
interactive debugger within the OS_INIT handler.

The OS must register the OS_INIT entry point with SAL, otherwise the occurrence of an INIT
event will cause a system reset. At the end of OS_INIT handling, the OS must return to SAL with
the appropriate exit status.

Figure 13-5 illustrates the flow of control during INIT processing.
2:496 Volume 2: Firmware Overview

13.3.3 PMI Flows

Processors based on the Itanium architecture implement the Platform Management Interrupt (PMI)
to enable platform developers to provide high level system functions, such as power management
and security, in a manner that is transparent not only to the application software but also to the
operating system.

When the processor detects a PMI event it will transfer control to the registered PAL PMI
entrypoint. PAL will set up the hand off state which includes the vector information for the PMI

Figure 13-5. INIT Flow

000938

SAL_INIT

Write processor/
platform info to save

area

Yes

No

INIT due to
failure to respond

to rendezvous
interrupt?

SAL_MC_RENDEZ

OS_INIT
procedures

valid?

CrashDump
Switch

& IA-32 OS?

Yes

No

OS_INIT

No

SAL implementation-
specific warm boot

(SAL_RESET or reset
event)

Return value
from OS

PAL_MC_RESUME

Yes

Inject NMI IPI into
IA-32 OS

Wake up
Interrupt

Return to
Interrupted
Context

Warm Boot

PAL_INITINIT Event
Volume 2: Firmware Overview 2:497

and hand off control to the registered SAL PMI handler. To reduce the PMI overhead time, the PAL
PMI handler will not save any processor architectural state to memory. Please see Section 11.5,
“Platform Management Interrupt (PMI)” for more information on PAL PMI handling.

The SAL PMI handler may choose to save some additional register state to SAL allocated memory
to handle the specific platform event that generated the PMI.

The OS will not see the PMI events generated by the platform. The platform developer can use PMI
interrupts to provide features to differentiate their platform.

PMI handling was designed to be executed with minimal overhead. The SAL firmware code copies
the PAL and SAL PMI handlers to RAM during system reset and registers these entry-points with
the processor. This code is then run with the cacheable memory attribute to improve performance.

There is no special hardware protection of the PMI code’s memory area in RAM. The protection of
this code space is through the OS memory management’s paging mechanism. SAL sets the correct
attributes for this memory space and passes this information to the OS through the EFI System
table entries [EFI].
2:498 Volume 2: Firmware Overview

2

Code Examples A

A.1 OS Boot Flow Sample Code

The sample code given below is a example of setting up operating system register state to prepare
the processor for running in virtual mode as described in Section 13.1.2, “Operating System Boot
Steps” on page 2:487.

// This code will perform the following steps:
//1.Initialize PSR with interrupt disabled (bit 13)
//2.Invalidate ALAT via invala instruction
//3.Invalidate register stack
//4.Set region registers rr[r0] - rr[r7] to RID=0, PS=8K, E=0.

//5.Disable the VHPT

//6.Initialize protection key registers
//7.Initialize SP
//8.Initialize BSP
//9.Enable register stack engine.
//10.Setup IVA
//11.Setup virtual->physical address translation
//12.Setup GP.

.file“start.s”

// globals

 .global main
 .type main, @function // C function we will return to

.global __GLOB_DATA_PTR // External pointer to Global Data area

.global IVT_BASE // External pointer to IVT_BASE

 .text

// This is the entry point where primary boot loader
// passes control.

pstart::

mov psr.l = r0 // Initialize psr.l
;;

invala // Invalidate ALAT
mov ar.rsc = r0 // Invalidate register stack

;;
loadrs

// Initialize Region Registers

mov r2 = (13 << 2) // 8K page size
mov r3 = r0
mov r4 = 61
;;

Loader_RRLoop:
shl r10 = r3, r4
;;
mov rr[r10] = r2
add r3 = 1, r3
Volume 2: Code Examples 2:499

;;
cmp4.geu p6, p7 = 8, r3

(p6)br.cond.sptk.few.clr Loader_RRLoop
;;

// Disable the VHPT walker and set up the minimum size for it (32K) by writing

// to the page table address register (cr.pta)

mov r2 = (15<<2)

;;

mov cr.pta = r2

// Initialize the protection key registers for kernel

mov r2 = (1<< 0)
mov r3 = r0

;;
mov pkr[r3] = r2 // validate pkr[zero]

;;
mov r2 = r0

;;

pkr_loop:
add r3=r3,r0, 1 // start with index 1
;;
cmp.gtu p6,p7 = 8,r3
;;

(p6)mov pkr[r3] = r2
(p6)br.cond.sptk.few.clr pkr_loop // loop until 8

// Setup kernel stack pointer (r12)

movl sp = kstack + (64*1024) // 64K stack

;;

// Set up the scratch area on stack

add sp = - 32, sp

// Setup the Register stack backing store
//
// 1st deal with Register Stack Configuration register
//
// NOTE: the RSC mode must be enforced lazy (00) to write to bspstore
//
// mode: = enforced lazy
// be = little endian

mov ar.rsc = r0

;;

//Now have to setup the RSE backing store pointer
//
//NOTE: initializing the bspstore has effects on all 3 RSE pointers
// (BSP, BSPSTORE, and RSE.BspLoad)

movl r2 = kstack + ((96 + (96/63))*8)

;;
mov ar.bspstore = r2

// Need to setup base address for interrupt vector table...

movl r3 = IVT_BASE

;;
mov cr.iva = r3
2:500 Volume 2: Code Examples

// Setup system address translation for the kernel

//
// The Translation Insertion Format looks like the following...
//
// Below is the register interface to insert entries into the TLB
//
//1) A general register contains an address,attributes,and permissions
//2) ITIR: additional info such as protection key page size info
//3) IFA: specifies the virtual page number for instruction and data
//TLB inserts

//
//Registers used:
//---------------
// | 63 53 | 52 | 51 50 | 49 12 | 11 9 | 8 7 | 6 | 5 |4 1| 0 |
//GR | ig | ed | rv | ppn | ar | pl | d | a | ma | p |
//
// ITIR | rv {63:32} | key {31:8} | ps {7:2} | rv {1:0}|
//
//IFA | vpn {63:12}| ignored {11:0} |
//
//RR[vrn] | reserved{63:32} | rid {31:8}| ignored {7:2) | rv{1} | ignored {0}|
//
//
//where

//ig = ignored bits

//rv= reserved bits
//p = present bit
//ma = memory attribute
//a = accessed bit
//d = dirty bit
//pl= privilege level
//ar= access rights
//ppn= physical page number
//ed= exception deferral
//ps= page size of mapping (2**ps)
//vpn= virtual page number
//
// Setup virtual page number

//
// NOTE:The virtual page number depends on a translation’s
//page size.
//

// Add entry for TEXT section

movl r2 = 0x0

;;
mov cr.ifa = r2

//setup ITIR (Interruption TLB Insertion Register)

movl r3=((24 << 2) | (0 << 8)) // set page size to 16 MB
;;
mov cr.itir = r3

//now setup the general register to use with itr (insert translation
//register), use physical page of zero

movl r10 =((1 << 52)| (0x00000000 << 12)|(3 << 9)|(0 << 7)| \

(1 <<6) | (1 << 5) | (1 << 0))
mov r11 = r0

;;
itr.i itr[r11] = r10 // Insert translation register

//Entry for OS Data section
Volume 2: Code Examples 2:501

add r11 = 1, r11 // skip to tr next index
movl r2 = 0x0 // use vpn 0

;;
mov cr.ifa = r2

//Setup ITIR (Interruption TLB Insertion Register)

movl r3 = ((24 << 2) | (0 << 8)) // 16 MB

;;
mov cr.itir = r3

//Now setup the general register to use with itr (insert translation
//register)

movl r10 =((1 << 52) | (0x0 << 12) | (3 << 9) | (0 << 7) |\

(1 << 6) | (1 << 5) | (1 << 0))

;;
itr.d dtr[r11] = r10 // Insert translation register

;;

//It is now time to set the appropriate bits in the PSR (processor
//status register)

movl r3 = ((1 << 44) | (1 << 36) |(1 << 38) |(1 << 27) |(1 << 17) | \

(1 << 15) | (1 << 14) | (1 << 13))

;;
mov cr.ipsr = r3

//Initialize DCR to defer all speculation faults

movl r2 = 0x7f00

;;
mov cr.dcr = r2

// Initialize the global pointer (gp = r1)

movl gp = __GLOB_DATA_PTR

// Clear out ifs

mov cr.ifs=r0

// Need to do a “rfi” in order to synchronize above instructions and set
// “it” and “ed” bits in the PSR.

movl r3 = main // Setup for main, C code

;;
mov cr.iip = r3 // Setup iip to hit main

;;
rfi

;;

// Setup kernel stack

.data

.globalkstack

.align 16
kstack:
.skip(64*1024)
2:502 Volume 2: Code Examples

Intel® Itanium® Architecture Software Developer’s Manual Index-1

Index

Symbols
32-bit virtual addressing 2:60

pointer “swizzling” model 2:60
sign-extension model 2:60
zero-extension model 2:60

A
AAA instruction 3:369
AAD instruction 3:370
AAM instruction 3:371
AAS instruction 3:372
abort 2:79, 2:408, 3:377, 3:379, 3:381, 3:383, 3:385,

 3:389, 3:390, 3:392, 3:394, 3:403, 3:452
interruption priorities 2:91, 2:92
machine check abort 2:43, 2:491, 2:493
PAL-based interruptions 2:79, 2:80, 2:84, 2:96,

2:408
PSR.mc bit is 0 2:82
reset abort 2:483

abort handling 2:493
Access rights, segment descriptor 3:598
acquire semantics 1:64, 2:70, 2:236, 2:379
ADC instruction 3:373, 3:618
add 1:42, 1:43, 1:45, 1:70, 1:141, 1:171, 3:11, 3:263,

 3:352, 3:357, 3:373, 3:374, 3:375, 3:376
ADD instruction 3:373, 3:375, 3:433, 3:618
addp4 3:12
address space model 2:427, 2:431
address translation 2:39, 2:51, 2:408, 2:427, 2:431,

2:487
addressable units 1:30
advanced load address table 1:55, 1:60, 1:140, 2:418
ALAT 1:55, 1:56, 1:57, 1:58, 1:59, 1:60, 1:140,

1:180, 2:73, 2:74, 2:75, 2:127, 2:417, 2:418
data speculation 1:55, 1:56, 1:60, 1:140, 2:447
related instructions 1:56

alloc 1:14, 1:36, 1:38, 1:40, 1:41, 1:42, 1:46, 1:66,
1:132, 2:57, 2:74, 2:117, 2:118, 2:119

and 3:15
AND instruction 3:377, 3:618
andcm 3:16
APIC flag, CPUID instruction 3:428
APIC, presence of 3:428
application programming model 1:39
application register

compare and exchange value register (CCV – AR 32)
 1:26

epilog count register (EC – AR 66) 1:27
floating-point status register (FPSR – AR 40) 1:26
IA-32 time stamp counter (TSC) 1:26, 1:105, 2:27,

2:471
interval time counter (ITC – AR 44) 1:26
kernel registers (KR 0-7 – AR 0-7) 1:24
loop count register (LC – AR 65) 1:27
previous function state (PFS – AR 64) 1:27

register stack configuration register (RSC – AR 16)
1:24

RSE backing store pointer (BSP – AR 17) 1:25
RSE NaT collection register (RNAT – AR 19) 1:26
user NaT collection register (UNAT – AR 36) 1:26

application register state 1:19
application register model 1:20
ignored fields 1:20, 1:21
ignored register 1:19, 1:20, 1:29
read-only register 1:21, 1:25, 2:105
reserved fields 1:20, 1:21, 3:829
reserved register 1:19, 1:20, 1:21
reserved value 1:21

Arctangent, FPU operation 3:495
arithmetic instructions 1:42, 1:43, 3:322, 3:861
ARPL instruction 3:379
atomic operations 2:235
atomicity 2:57, 2:77, 2:235

B
B (default size) flag, segment descriptor 3:657
backing store pointer (BSP) 2:115, 2:119, 2:122, 2:125

backing store 1:23, 1:25, 1:42, 2:86, 2:115, 2:116,
 2:487

backing store pointer application registers 2:122
backing store switches 2:128
BSPSTORE 2:125

backing store pointer application registers 2:122
banked general registers 2:16, 2:35, 2:81, 2:214
barrier synchronization 2:398, 2:399
BCD integers

packed 3:433, 3:434, 3:449, 3:451
unpacked 3:369, 3:370, 3:371, 3:372

be bit 1:31
PSR.be 2:85, 3:343, 3:349
RSC.be 2:121

Biased exponent 3:822
biased exponent 3:821, 3:822, 3:823, 3:824, 3:827
bit field and shift instructions 1:44, 1:45
boot flow 2:10, 2:483

firmware boot flow 2:483
boot sequence 2:9, 2:483

boot flow 2:10, 2:483
bootstrap processor (BSP) 2:483
BOUND instruction 3:381
BOUND range exceeded exception (#BR) 3:381
br 3:17
br.call 1:27, 1:36, 1:40, 1:65, 1:67, 2:118, 2:119,

2:126, 2:127, 2:421, 2:423, 3:317, 3:339
br.cexit 1:36, 1:37, 1:46, 1:65, 1:67, 1:170, 3:314,

3:316, 3:353, 3:357
br.ctop 1:36, 1:37, 1:46, 1:65, 1:67, 1:170, 1:172,

1:182, 3:314, 3:316, 3:353, 3:357
br.ia 1:10, 1:99, 1:101, 2:460
br.ret 1:27, 1:36, 1:40, 1:65, 1:67, 2:47, 2:57, 2:86,

 2:92, 2:117, 2:118, 2:119, 2:120, 2:124

Entries in this index are described by the volume number and page or range of pages where the entries can be
found. The volume number appears to the left of the colon. The page or range of pages appears to the right of the
colon. A range of pages is separated by a hyphen.

Index-2 Intel® Itanium® Architecture Software Developer’s Manual

Index

br.wexit 1:36, 1:37, 1:65, 1:67, 3:314, 3:316, 3:353,
3:356

br.wtop 1:36, 1:37, 1:65, 1:67, 1:175, 1:176, 3:314,
3:316, 3:353, 3:356

branch instructions 1:65, 1:68, 1:133, 3:314, 3:315,
3:331

branch predict instructions 1:14, 1:68, 1:69, 3:318
branch prediction hints 1:68, 1:164
modulo-scheduled loop support 1:66

branching 1:14, 1:22, 1:66, 1:133, 3:456, 3:526
break 3:25
brl 2:451, 3:26
brl.call 1:27, 1:36, 1:40, 1:65, 1:67, 2:118, 2:119,

2:126, 2:127, 2:451, 3:339, 3:340, 3:343
brp 3:28
BSF instruction 3:383
BSR instruction 3:385
bsw 1:46, 2:18, 2:86, 3:30, 3:314, 3:320, 3:343,

3:349, 3:357
BSWAP instruction 3:387
BT instruction 3:388
BTC instruction 3:390, 3:618
BTR instruction 3:392, 3:618
BTS instruction 3:394, 3:618
bundles 1:11, 1:30, 1:32, 1:33, 1:128, 1:129, 3:255
byte ordering 1:30, 1:31

C
cache synchronization 2:69
cache write policy attribute 2:66
cacheability and coherency attribute 2:65
Cacheable 2:64, 2:65, 2:66

cacheable pages 2:66
uncacheable pages 2:66

Caches, invalidating (flushing) 3:574, 3:733
Call gate 3:592
CALL instruction 3:396
Causality 2:394

obeying causality 2:394
CBW instruction 3:405
CDQ instruction 3:431
CF (carry) flag, EFLAGS register 3:373, 3:375, 3:388,

3:390, 3:392, 3:394, 3:407, 3:412, 3:435
character strings 1:74
chk 3:31
chk.a 1:34, 1:56, 1:57, 1:58, 1:140, 1:141, 1:142,

1:144, 2:69, 2:70, 2:88, 2:447, 3:304, 3:309
chk.a.clr 1:58, 1:59, 1:60, 3:304, 3:309, 3:339, 3:346,

 3:352
chk.a.nc 1:59, 1:60, 3:304, 3:309, 3:352
chk.s 1:34, 1:52, 1:54, 1:56, 1:131, 1:143, 1:144,

2:88, 2:447, 3:280, 3:282, 3:303, 3:304
Classify floating-point value, FPU operation 3:539
CLC instruction 3:407
CLD instruction 3:408
CLI instruction 3:409

clr 1:69, 3:286, 3:287, 3:288, 3:289, 3:290, 3:292,
3:293, 3:294, 3:296, 3:297, 3:298, 3:299

clrrrb 1:36, 1:40, 1:46, 1:58, 1:66, 1:67, 2:424, 3:33,
 3:314, 3:320, 3:340, 3:347, 3:357

clrrrb.pr 1:66, 1:67, 3:314, 3:320
CLTS instruction 3:411
CMC instruction 3:412
CMOV flag, CPUID instruction 3:428
CMOVcc instructions 3:413, 3:428
cmp 1:37, 1:46, 1:48, 1:53, 1:131, 2:389, 2:398, 3:34,

 3:265, 3:266, 3:267, 3:268, 3:352, 3:356
CMP instruction 3:417
cmp4 1:37, 1:46, 1:48, 1:53, 3:37, 3:265, 3:266,

3:267, 3:268, 3:352, 3:356, 3:357
CMPS instruction 3:419, 3:683
CMPSB instruction 3:419
CMPSD instruction 3:419
CMPSW instruction 3:419
cmpxchg 1:26, 1:49, 1:51, 1:60, 1:64, 2:69, 2:70,

2:73, 2:177, 2:380, 2:397, 2:398, 3:40, 3:352
CMPXCHG instruction 3:422, 3:618
CMPXCHG8B instruction 3:424
coalescing attribute 2:66

coalesced pages 2:67
coherency 1:120, 1:121, 2:65, 2:66, 2:236, 3:574,

3:733
compare instructions 1:13, 1:14, 1:22, 1:45, 1:46,

1:176, 3:264, 3:323, 3:428
compare types 1:46, 1:47, 1:48
normal compare 1:47
parallel compare 1:70, 1:160, 1:161, 3:326
unconditional compare 1:47

Compatibility
software 3:829

computational models 1:194
Condition code flags, EFLAGS register 3:413
Condition code flags, FPU status word

setting 3:534, 3:536, 3:539
Conditional jump 3:585
Conforming code segment 3:592, 3:598
constant register 2:417
Constants (floating point)

loading 3:485
context switching 1:41, 2:142, 2:424, 2:426, 2:479

address space switching 2:426
non-local control transfer 2:424
performance monitor 2:142, 2:143
RSE backing store 1:25, 2:128
thread switch within the same address space 2:426

control flow optimization 1:151
control flow optimizations 1:159

multiple values for one variable or register 1:161
multiway branches 1:161
parallel compares 1:159, 1:160, 1:161

control registers (CR) 2:16
banked general registers 2:35, 2:81
control register instructions 2:25

Intel® Itanium® Architecture Software Developer’s Manual Index-3

Index

default control register (DCR – CR0) 2:25, 2:26
external interrupt control registers 2:34, 2:104,

2:214, 2:469
global control registers 2:25
interruption control registers 2:29
interruption faulting address (IFA – CR20) 2:31, 2:32
interruption function state (IFS – CR23) 2:33, 2:34
interruption hash address (IHA – CR25) 2:34
interruption immediate (IIM – CR24) 2:34
interruption instruction bundle pointer (IIP – CR19)

2:31
interruption instruction previous address (IIPA –

CR22) 2:32, 2:33
interruption processor status register (IPSR – CR16)

 2:29
interruption status register (ISR – CR17) 2:29, 2:30
interruption status register fields 2:30
interruption TLB insertion register (ITIR – CR21) 2:32
interruption vector address (IVA – CR2) 2:28
interval time counter (ITC – AR44) 2:27
interval timer match register (ITM – CR1) 2:27
ITIR fields 2:32
page table address (PTA – CR8) 2:28

Control registers, moving values to and from 3:634
control speculative 1:12, 2:417, 2:447
corrected machine check 2:108, 2:492, 2:493
corrected machine check (CMC) 2:282
corrected machine check interrupt (CMCI) 2:492
Cosine, FPU operation 3:464, 3:515
cover 1:36, 1:40, 1:41, 1:42, 1:46, 1:67, 2:86, 2:118,

 2:120, 2:123, 2:125, 2:127, 3:42, 3:314
CPL 3:409, 3:730
CPUID instruction 3:426
CPUID registers 1:29
CR0 control register 3:616, 3:715
cross-modifying code 2:403
CS register 3:397, 3:563, 3:577, 3:589, 3:630, 3:657
current frame marker (CFM) 1:19, 1:22, 1:36, 1:40,

2:13, 2:118
size of frame (sof) 1:40
size of locals (sol) 1:40

CWD instruction 3:431
CWDE instruction 3:405
CX8 flag, CPUID instruction 3:428
cycles per instructions (CPI) 2:479
czx 3:43

D
DAA instruction 3:433
DAS instruction 3:434
data access bit 2:57, 2:59, 2:90, 3:377, 3:379, 3:381,

 3:383, 3:385, 3:389, 3:390, 3:392, 3:394
data breakpoint register matching 2:244

DBR.addr 2:244
DBR.mask 2:244
trap code B bits 2:244

data breakpoint registers (DBR) 2:131, 2:132
data debug 2:57, 2:90

data dependencies 1:55, 1:136, 1:137, 1:138, 2:13,
2:382, 2:387

data dependency 1:13, 1:137, 2:13, 2:386, 2:387,
2:388

data key miss fault 2:126, 2:147, 3:377, 3:379, 3:381,
 3:383, 3:385, 3:389, 3:390, 3:392, 3:394

data key permission 2:57, 2:59, 2:89, 2:90, 3:377,
3:379, 3:381, 3:383, 3:385, 3:389, 3:390

data NaT page consumption 2:57, 2:59, 2:72, 2:89,
2:90, 3:377, 3:379, 3:381, 3:383, 3:385

data nested TLB faults 2:59, 2:415
data page not present 2:57, 2:59, 2:89, 2:90, 3:377,

3:379, 3:381, 3:383, 3:385, 3:389, 3:390
data prefetch

load instructions 1:50
semaphore instructions 1:51, 3:302
store instructions 1:50, 3:285, 3:300, 3:302, 3:303,

 3:922
data serialization 2:14, 2:15, 3:337
data speculative 1:12, 1:13, 1:55, 1:142, 2:417
data TLB miss faults 2:57, 2:59
Debug 1:57, 2:175, 3:398, 3:399, 3:400, 3:403,

3:557, 3:561, 3:563, 3:587, 3:591, 3:592
break instruction fault 2:131, 2:147, 2:163
data debug fault 2:93, 2:126, 2:132, 2:147, 2:175
debug breakpoint registers (DBR/IBR) 2:16
debug instructions 2:133
debug model 2:243
debugging 2:131, 2:464, 3:595
debugging facilities 2:131
instruction breakpoints 2:464
instruction debug fault 2:131, 2:147, 2:175, 2:243
lower privilege transfer trap 2:131, 2:180, 2:244
single step trap 2:84, 2:94, 2:97, 2:131, 2:148,

2:149, 2:182, 2:243, 2:464
taken branch trap 2:84, 2:94, 2:97, 2:131, 2:148,

2:149, 2:181, 2:244, 2:464, 3:596
Debug registers, moving value to and from 3:636
DEC instruction 3:435, 3:618
Dekker’s algorithm 2:399, 2:400
Denormalization process 3:824
Denormalized finite number 3:539, 3:823, 3:826
denormalized numbers 3:820, 3:823, 3:824
dep 3:45
Dependencies 1:35, 1:36, 1:37, 1:139, 3:335, 3:336

dependency violation 1:35, 1:37, 1:38, 2:450
instruction execution 3:426, 3:549, 3:574, 3:679,

3:733
instruction group 1:35, 1:36, 1:37, 1:38, 1:65
register dependencies 1:35, 1:36, 1:37, 1:38
WAR dependency 1:37, 3:350

DF (direction) flag, EFLAGS register 3:408, 3:419,
3:560, 3:620, 3:638, 3:654, 3:700, 3:718

DIV instruction 3:437
Divide error exception (#DE) 3:437
division operations

double precision – divide 1:193
double precision – square root 1:193

DMA 1:17, 2:406

Index-4 Intel® Itanium® Architecture Software Developer’s Manual

Index

edge sensitive interrupt messages 2:113
Double-extended-precision, IEEE floating-point format

3:826
Double-precision, IEEE floating-point format 3:826
Double-real floating-point format 3:826
DS register 3:419, 3:601, 3:620, 3:654

E
Edge- and Level-sensitive Interrupts 2:113
EDI register 3:638, 3:700, 3:718, 3:722
Effective address 3:604
EFI 2:453, 2:483, 2:484, 2:485, 2:488, 2:490, 2:491

boot services 2:485, 2:490
EFI boot manager 2:484, 2:485
EFI procedure calls 2:490
EFI system partition 2:484, 2:485
runtime services 2:490, 2:491

EFLAGS register
condition codes 3:414, 3:456, 3:461
flags affected by instructions 3:366
loading 3:597
popping 3:663
popping on return from interrupt 3:577
pushing 3:671
pushing on interrupts 3:563
saving 3:693
status flags 3:417, 3:586, 3:702, 3:727

EIP register 3:396, 3:563, 3:577, 3:589
ENTER instruction 3:440
epc 3:47
ES register 3:419, 3:560, 3:601, 3:654, 3:700, 3:722
ESI register 3:620, 3:638, 3:654, 3:718
ESP register 3:396, 3:658, 3:666
exception deferral 1:53, 2:45, 2:90

combined hardware/software deferral 2:445, 2:446
exception deferral of control speculative loads 2:445
hardware-only deferral 2:445, 2:446
software-only deferral 2:445, 2:446

exception indicator 2:72
exception qualification 2:89
Exceptions

BOUND range exceeded (#BR) 3:381
overflow exception (#OF) 3:563
returning from 3:577

execution unit type 1:23, 1:32, 3:255
Exponent

extracting from floating-point number 3:543
floating-point number 3:821

extended instructions 1:33, 3:255
Extended real

floating-point format 3:826
extensible firmware interface 2:453, 2:483
extensible firmware interface (EFI) 2:249
external interrupt (INT) 2:92, 2:101

control register usage examples 2:469
external (I/O) devices 2:97
external interrupt (INT)

external interrupt architecture 2:465

external interrupt delivery 2:81, 2:101, 2:103, 2:104,
 2:105, 2:467

external interrupt masking 2:102, 2:466
external interrupt sampling 2:103
external interrupt states 2:100
inactive 2:467
in-service/none pending 2:468
in-service/one pending 2:468
internal processor interrupts 2:98
interrupt acknowledge (INTA) cycle 2:112
interrupt enabling 2:102
interrupt masking 2:102
interrupt priorities 2:101, 2:465
interrupt registers 2:16
interrupt sources 2:97, 2:104, 2:113, 2:466
interrupt vectors 2:101, 2:102, 2:104, 2:466, 3:563
locally connected devices 2:98
pending 2:82, 2:98, 2:99, 2:102, 2:467, 2:468,

3:427, 3:455, 3:479, 3:487, 3:508, 3:522
external interrupt control registers 2:34, 2:104, 2:214,

2:466, 2:469
Local ID (LID – CR64) 2:104

external task priority (XTP) 2:109, 2:112
XTP cycle 2:113
XTP register 2:467

extr 3:48
Extract exponent and significand, FPU operation 3:543

F
F2XM1 instruction 3:443, 3:543
fabs 3:49
FABS instruction 3:445
fadd 3:50
FADD instruction 3:446
FADDP instruction 3:446
famax 3:51
famin 3:52
fand 3:53
fandcm 3:54
Far call

CALL instruction 3:396
Far pointer

loading 3:601
Far return

RET instruction 3:686
fault 1:92, 2:26, 2:81, 2:85, 2:92, 2:93, 2:94, 2:95,

2:96, 2:126, 2:407, 2:451, 3:255, 3:353
fault suppression 2:88
FBLD instruction 3:449
FBSTP instruction 3:451
fc 3:55
fchkf 3:56
FCHS instruction 3:454
fclass 1:37, 1:46, 1:48, 1:53, 1:89, 1:90, 1:196, 3:57,

 3:324, 3:352, 3:356
FCLEX/FNCLEX instructions 3:455
fclrf 3:59
FCMOVcc instructions 3:428, 3:456

Intel® Itanium® Architecture Software Developer’s Manual Index-5

Index

fcmp 1:37, 1:46, 1:48, 1:53, 1:88, 3:60, 3:324, 3:339,
 3:352, 3:356, 3:357

FCOM instruction 3:458
FCOMI instruction 3:428, 3:461
FCOMIP instruction 3:461
FCOMP instruction 3:458
FCOMPP instruction 3:458
FCOS instruction 3:464
fcvt.fx 3:63
fcvt.xf 3:65
fcvt.xuf 3:66
FDECSTP instruction 3:466
FDIV instruction 3:467
FDIVP instruction 3:467
FDIVR instruction 3:470
FDIVRP instruction 3:470
Feature information, processor 3:426
Fence 1:64, 2:69, 2:70, 3:429, 3:557, 3:561, 3:577,

 3:595, 3:653, 3:655, 3:926
operations 1:64, 2:69, 2:70, 2:71, 3:408, 3:419,

3:456, 3:470, 3:531, 3:543, 3:556
semantics 1:64, 2:69, 2:70, 2:236, 3:921

fetchadd 1:49, 1:51, 1:60, 1:64, 2:69, 2:70, 2:73,
2:177, 2:380, 2:381, 2:398, 3:67, 3:352

FFREE instruction 3:473
FIADD instruction 3:446
FICOM instruction 3:474
FICOMP instruction 3:474
FIDIV instruction 3:467
FIDIVR instruction 3:470
FILD instruction 3:476
FIMUL instruction 3:491
FINCSTP instruction 3:478
FINIT/FNINIT instructions 3:479, 3:508
firmware address space 2:254
firmware entrypoint 2:282
firmware entrypoints 2:252
firmware interface table (FIT) 2:257
firmware model 2:484
firmware procedure 2:283
FIST instruction 3:480
FISTP instruction 3:480
FISUB instruction 3:528
FISUBR instruction 3:531
FLD instruction 3:483
FLD1 instruction 3:485
FLDCW instruction 3:487
FLDENV instruction 3:489
FLDL2E instruction 3:485
FLDL2T instruction 3:485
FLDLG2 instruction 3:485
FLDLN2 instruction 3:485
FLDPI instruction 3:485
FLDZ instruction 3:485
floating-point applications 1:187

execution bandwidth 1:188
execution latency 1:187

memory bandwidth 1:189
memory latency 1:188
performance limiters 1:187

floating-point architecture 1:11, 1:15, 1:75
Floating-point format

biased exponent 3:822
exponent 3:821
fraction 3:821
real number system 3:820
sign 3:821
significand 3:821

floating-point format 3:820, 3:821, 3:822, 3:824
floating-point instructions 1:26, 1:37, 1:81, 3:320,

3:322, 3:366, 3:487, 3:489, 3:508, 3:524
arithmetic instructions 1:88, 3:322, 3:861
integer multiply and add instructions 1:91
memory access instructions 1:81
non-arithmetic instructions 1:89
register to/from general register transfer instructions

1:87
floating-point programming model 1:75

data types and formats 1:75
floating-point register encodings 1:76, 1:77
floating-point register format 1:75, 1:76
floating-point status register 1:24, 1:26, 1:78, 1:79,

 1:91
real types 1:75

floating-point register (FR)
high FP reg fault 3:360
low FP reg fault 3:359

floating-point register set 1:189
floating-point software assistance (FP SWA) 2:453

SWA faults 2:453, 2:454, 2:456
SWA traps 2:453, 2:454, 2:455

floating-point status register (FPSR) 1:26, 1:37, 1:78,
1:91, 2:453

floating-point system software
floating-point exception handling 2:453, 2:455

Flushing
caches 3:574, 3:733
TLB entry 3:576

flushrs 1:36, 1:41, 1:42, 1:46, 2:57, 2:117, 2:119,
2:120, 2:123, 2:125, 2:126, 2:127, 2:128

fma 3:70
fmax 3:71
fmerge 3:72
fmin 3:74
fmix 3:75
fmpy 3:77
fms 3:78
FMUL instruction 3:491
FMULP instruction 3:491
fneg 3:79
fnegabs 3:80
fnma 3:81
fnmpy 3:82
FNOP instruction 3:494
fnorm 3:83

Index-6 Intel® Itanium® Architecture Software Developer’s Manual

Index

FNSTENV instruction 3:489
for 3:84
FP precision 1:191
FP subfield handling 1:197
fpabs 3:85
fpack 3:86
fpamax 3:87
fpamin 3:88
FPATAN instruction 3:495
fpcmp 3:89
fpcvt.fx 3:91
fpma 3:93
fpmax 3:95
fpmerge 3:96
fpmin 3:98
fpmpy 3:99
fpms 3:100
fpneg 3:102
fpnegabs 3:103
fpnma 3:104
fpnmpy 3:106
fprcpa 3:107
FPREM instruction 3:497
FPREM1 instruction 3:500
fprsqrta 3:109
FPTAN instruction 3:503
FPU

checking for pending FPU exceptions 3:732
constants 3:485
existence of 3:427
floating-point format 3:820, 3:821
initialization 3:479

FPU control word
loading 3:487, 3:489
RC field 3:480, 3:485, 3:519
restoring 3:506
saving 3:508, 3:524
storing 3:522

FPU data pointer 3:489, 3:506, 3:508, 3:524
FPU flag, CPUID instruction 3:427
FPU instruction pointer 3:489, 3:506, 3:508, 3:524
FPU last opcode 3:489, 3:506, 3:508, 3:524
FPU status word

condition code flags 3:458, 3:474, 3:534, 3:536,
3:539

FPU flags affected by instructions 3:366
loading 3:489
restoring 3:506
saving 3:508, 3:524, 3:526
TOP field 3:478

FPU tag word 3:489, 3:506, 3:508, 3:524
Fraction, floating-point number 3:821
frcpa 1:37, 1:46, 1:48, 1:53, 1:88, 1:192, 1:193, 2:456,

 3:111, 3:322, 3:325, 3:352, 3:357
FRNDINT instruction 3:505
frsqrta 1:37, 1:46, 1:48, 1:53, 1:88, 1:192, 1:193,

2:456, 3:113, 3:322, 3:325, 3:352, 3:357

FRSTOR instruction 3:506
FS register 3:601
FSAVE/FNSAVE instructions 3:506, 3:508
FSCALE instruction 3:511
fselect 3:115
fsetc 3:116
FSIN instruction 3:513
FSINCOS instruction 3:515
FSQRT instruction 3:517
FST instruction 3:519
FSTCW/FNSTCW instructions 3:522
FSTENV/FNSTENV instructions 3:524
FSTP instruction 3:519
FSTSW/FNSTSW instructions 3:526
fsub 3:117
FSUB instruction 3:528
FSUBP instruction 3:528
FSUBR instruction 3:531
FSUBRP instruction 3:531
fswap 3:118
fsxt 3:120
FTST instruction 3:534
FUCOM instruction 3:536
FUCOMI instruction 3:461
FUCOMIP instruction 3:461
FUCOMP instruction 3:536
FUCOMPP instruction 3:536
fwb 3:121
FXAM instruction 3:539
FXCH instruction 3:541
fxor 3:122
FXTRACT instruction 3:511, 3:543
FYL2X instruction 3:545
FYL2XP1 instruction 3:547

G
gate interception 2:213
GDT (global descriptor table) 3:610, 3:613
GDTR (global descriptor table register) 3:610, 3:705
general register (GR)

NaT bit 1:21, 1:130, 1:142, 1:143
General-purpose registers

moving value to and from 3:630
popping all 3:661
pushing all 3:669

getf 3:123
global TLB purge operations 2:69
GS register 3:601

H
hardware debugger 2:134
hint 3:125
HLT instruction 3:549

Intel® Itanium® Architecture Software Developer’s Manual Index-7

Index

I
i bit

PSR.i 2:81, 2:101, 2:103, 2:104, 2:105, 2:217,
2:409, 2:412, 2:466, 2:467, 3:344

I/O port space 2:238, 2:239, 2:240, 2:241, 2:475,
2:476, 2:477, 3:556, 3:560, 3:652, 3:655

I/O port space model 2:238, 2:239
physical I/O port addressing 2:241
virtual I/O port addressing 2:239

IA-32 application execution model 1:99
IA-32 instruction set execution 1:22, 1:39, 1:57,

1:100, 2:237
IA-32 operating mode transitions 1:102
instruction set execution in the Itanium architecture

1:100
instruction set modes 1:99
instruction set transitions 1:101, 2:213, 2:238

IA-32 application register state model 1:102
IA-32 application EFLAG register 1:112
IA-32 floating-point registers 1:114
IA-32 general purpose registers 1:102, 1:104, 1:106
IA-32 instruction pointer 1:107
IA-32 MMX technology registers 1:118
IA-32 segment registers 1:107
IA-32 streaming SIMD extension registers 1:105,

1:119
IA-32 application support 2:248

procedure calls between Itanium and IA-32
instruction sets 2:461

transitioning between Itanium and IA-32 instruction
sets 2:459

IA-32 architecture 1:5, 1:17, 2:5, 3:5, 3:359
IA-32 architecture handlers 2:462

IA-32 vectors that need Itanium-based OS support
2:463

shared Itanium/IA-32 exception vectors 2:462
unique IA-32 exception vectors 2:462
unique Itanium exception vectors 2:462

IA-32 compatible bus transactions 2:248
IA-32 current privilege level 2:216
IA-32 fault and trap handling 2:213
IA-32 faults 3:359
IA-32 floating-point exceptions 2:458
IA-32 GPFault 3:359
IA-32 I/O instructions 2:241, 2:242
IA-32 instruction behavior 2:213, 2:225
IA-32 instruction format 3:360
IA-32 instruction summary 2:226
IA-32 interruption 2:94, 2:246
IA-32 interruption priorities and classes 2:94
IA-32 interruption vector 2:187, 2:245
IA-32 memory ordering 2:236, 2:396
IA-32 MMX technology instructions 1:118, 3:745
IA-32 numeric exception model 2:247
IA-32 physical memory references 2:233
IA-32 privileged system resources 2:213

IA-32 processes during a context switch 2:224
entering IA-32 processes 2:224
exiting IA-32 processes 2:225

IA-32 segmentation 1:120, 2:231
IA-32 streaming SIMD extension instructions 1:119,

3:809
IA-32 system and control register behavior 2:213
IA-32 system EFLAG register 2:217
IA-32 system environment 1:5, 1:9, 1:10, 1:17, 2:5,

2:9, 3:5, 3:427, 3:595, 3:596, 3:631, 3:657
IA-32 system register mapping 2:214
IA-32 system registers 2:220

IA-32 control registers 2:220
IA-32 debug registers 2:223
IA-32 machine check registers 2:224
IA-32 memory type range registers (MTRRs) 2:223
IA-32 model specific and test registers 2:223
IA-32 performance monitor registers 2:224

IA-32 system segment registers 2:215
IA-32 TLB forward progress requirements 2:232
IA-32 trap code 2:187
IA-32 usage of Itanium registers 1:122

ALAT 1:122
NaT/NaTVal response for IA-32 instructions 1:122
register stack engine 1:122, 3:595

IA-32 virtual memory references 2:232
protection keys 2:232
region identifiers 2:232
TLB access bit 2:232
TLB dirty bit 2:232

IA-32 virtual memory support 2:213
ic bit

PSR.ic 2:81, 2:82, 2:84, 2:85, 2:88, 2:89, 2:90,
2:91, 2:101, 2:103, 2:123, 2:146, 2:409

IDIV instruction 3:550
IDT (interrupt descriptor table) 3:563, 3:610
IDTR (interrupt descriptor table register) 3:610, 3:705
IEEE considerations 1:92

additions beyond the IEEE standard 1:98
arithmetic operations 1:97, 3:824
floating-point interruptions 1:92
inexact 1:93, 1:96, 2:455, 2:458, 3:443, 3:447,

3:452, 3:465, 3:468, 3:471, 3:481
integer invalid operations 1:97
mandated operations deferred to software 1:97
NaNs 1:77, 1:97, 3:451, 3:495, 3:497, 3:500,

3:529, 3:532, 3:545, 3:547, 3:820,
3:822, 3:823, 3:824, 3:825, 3:827

overflow 1:93, 1:95, 1:96, 2:454, 2:457, 3:414,
3:437, 3:443, 3:446, 3:449, 3:464

tininess 1:96
underflow 1:93, 1:96, 2:454, 2:458, 3:443, 3:445,

 3:446, 3:447, 3:452, 3:454, 3:456
IEEE floating-point exception filter 2:453, 2:456

denormal/unnormal operand exception (fault) 2:457
divide by zero exception (fault) 2:457
inexact exception (trap) 2:458
invalid operation exception (fault) 2:457

Index-8 Intel® Itanium® Architecture Software Developer’s Manual

Index

overflow exception (trap) 2:457
underflow exception (trap) 2:458

IEEE-754 2:453, 2:456, 2:458, 3:819
ANSI/IEEE-754 standard compliant 1:187

IF (interrupt enable) flag, EFLAGS register 3:409, 3:719
if-conversion 1:153
illegal dependency fault 1:38, 2:147, 2:450
illegal operation fault 1:19, 1:20, 1:21, 1:38, 2:147,

3:255
implicit serialization 2:13
IMUL instruction 3:553
IN instruction 3:556
INC instruction 3:558, 3:618
Indefinite

description of 3:825
real 3:827

Index_Non 2.1 3:359
Infinity, floating-point format 3:824
in-flight resources 2:15
INIT flows 2:494
initialization event (INIT) 2:491

initialization interrupts 2:80, 2:97, 2:407
PALE_INIT 2:80, 2:92

Initialization FPU 3:479
INS instruction 3:560, 3:683
INSB instruction 3:560
INSD instruction 3:560
inserting/purging of translations 2:427
instruction breakpoint register matching 2:245

IBR.addr 2:245
IBR.mask 2:245

instruction breakpoint registers (IBR) 2:131, 2:132
instruction classes 3:336, 3:337, 3:350, 3:352
instruction dependencies 1:136

control dependencies 1:63, 1:136, 2:388
data dependencies 1:55, 1:137, 1:138, 1:139, 2:13

instruction encoding 1:32
bundles 1:11, 1:30, 1:32, 1:33, 1:128, 1:129, 3:255
instruction slots 1:32, 3:255
template 1:32, 1:33, 1:129, 3:255, 3:256

instruction field names 3:257, 3:260
instruction format 1:128, 3:258
instruction interception 2:213
instruction pointer (IP) 1:19, 1:22, 2:84, 2:410, 2:481
instruction serialization 2:14, 2:15, 2:412, 3:337, 3:429,

 3:577
Instruction set

string instructions 3:419, 3:560, 3:620, 3:638,
3:654, 3:722

instruction set architecture (ISA) 1:5, 2:5, 3:5
instruction set features 1:10
instruction set transition model overview 1:10
instruction set transitions 2:33, 2:213, 2:238
instruction slots 1:32, 3:255

instruction slot mapping 1:32, 3:256
instruction stream 1:163, 3:494, 3:508, 3:524, 3:589,

3:647

instruction stream alignment 1:163
instruction stream fetching 1:163

instruction type 1:32, 3:255, 3:695
ALU (A) 3:256
branch (B) 3:256
floating-point (F) 3:256
integer (I) 1:129, 3:256
memory (M) 1:129, 3:256

instruction/data TLB miss 2:57, 2:58, 2:59
INSW instruction 3:560
INT3 instruction 3:563
integer computation instructions 1:42

32-bit addresses and integers 1:43
arithmetic instructions 1:42, 1:43, 3:322, 3:861
bit field and shift instructions 1:44, 1:45
large constants 1:45
logical instructions 1:43

Integer, FPU data type
storing 3:480

integer/floating-point conversion 1:197
Intel Architecture (IA) 3:809
Inter-privilege level call

CALL instruction 3:396
Inter-privilege level return

RET instruction 3:686
inter-processor interrupt (IPI) 2:97, 2:98, 2:109, 2:473
inter-processor interrupt message 2:110, 2:494

data fields 2:110, 2:111
Interrupt 2:70, 2:80, 2:81, 2:92, 2:96, 2:97, 2:98, 2:99,

 2:100, 2:101, 2:102, 2:103, 2:104, 2:105
Interrupt Acknowledge (INTA) 2:109
Interruption 2:79, 2:80, 2:81, 2:82, 2:83, 2:84, 2:85,

2:86, 2:87, 2:91, 2:92, 2:94, 2:96, 2:103
execution environment 2:409
heavyweight interruptions 2:413, 2:415
interruption handler 2:86, 2:407, 2:408, 2:409,

2:412
interruption handling 2:79, 2:82, 2:84, 2:85, 2:86,

2:412
interruption register state 2:410
lightweight interruptions 2:412
nested interruptions 2:415
resource serialization 2:411, 2:412

interruption model 2:81, 2:245
interruption priorities 2:91, 2:92, 2:94
interruption registers 2:214, 2:408, 2:410
interruption vector address (IVA) 2:408
interruption vector table (IVT) 2:79, 2:96, 2:408
interruption vectors 2:85, 2:96, 2:145, 2:149, 2:408

interruption vector definition 2:146
Interruptions 2:79, 2:80, 2:81, 2:84, 2:85, 2:86, 2:87,

 2:91, 2:92, 2:94, 2:96, 2:125, 2:407, 2:408
aborts 2:79, 2:89, 2:91, 2:92, 2:408
faults 2:79, 2:80, 2:85, 2:89, 2:91, 2:92, 2:93, 2:94,

 2:95, 2:407, 3:379, 3:381, 3:383, 3:385
interruption handling during instruction execution 2:82
interruption programming model 2:81
interrupts 2:79, 2:80, 2:81, 2:82, 2:85, 2:89, 2:91,

 2:92, 2:94, 2:97, 2:98, 2:99, 2:101

Intel® Itanium® Architecture Software Developer’s Manual Index-9

Index

IVA-based interruption 2:84, 2:85, 2:96, 2:408
PAL-based interruption 2:84, 2:407
traps 1:93, 2:79, 2:80, 2:84, 2:85, 2:91, 2:92,

2:94, 2:95, 2:407, 3:557, 3:561, 3:631
Interrupts

interrupt vector 4 3:563
returning from 3:577
software 3:563

interval timer 1:105, 2:16, 2:27, 2:28, 2:98, 2:107,
2:471, 2:472

INTn instruction 3:563
INTO instruction 3:563
invala 1:58, 1:60, 2:127, 2:422, 2:487, 3:126, 3:305,

 3:309, 3:352
invala.e 1:58, 1:60, 2:417, 2:418, 2:419, 2:422,

3:305, 3:309, 3:339, 3:352
INVD instruction 3:574
INVLPG instruction 3:576
IOPL (I/O privilege level) field, EFLAGS register 3:409,

 3:671, 3:719
IPI ordering 2:112
IRET instruction 3:577
IRETD instruction 3:577
ISR setting 2:145
Itanium architecture 1:1, 1:5, 1:9, 1:11, 1:12, 1:100,

1:102, 1:127, 1:135, 1:142, 2:1, 2:5, 3:1
Itanium data mem faults 3:360
Itanium instruction 1:103, 3:255, 3:335, 3:428, 3:595,

 3:596
expressing parallelism 1:129
format 3:462, 3:537
Itanium instruction set 1:17, 3:428, 3:595, 3:596
syntax 1:128, 3:337

Itanium instruction mem faults 3:360
Itanium system environment 1:5, 1:9, 1:10, 1:17, 2:5,

 2:9, 2:10, 2:11, 3:5, 3:359, 3:379, 3:381,
3:383, 3:385, 3:387, 3:389, 3:390, 3:392

Itanium-based firmware 1:5, 1:17, 2:5, 3:5
itc 1:24, 1:26, 1:27, 2:27, 2:28, 2:43, 2:44, 2:47,

2:50, 2:58, 2:431, 2:433, 2:434, 2:471
itr 2:40, 2:43, 2:44, 2:47, 2:50, 2:431, 2:432, 2:487,

 2:490, 2:491, 3:129, 3:310, 3:311, 3:340
IVA-based interruptions 2:79, 2:80, 2:85, 2:407, 2:408

J
J-bit 3:821
Jcc instructions 3:585
JMP instruction 3:589
jmpe 1:10, 1:99, 1:101
Jump operation 3:589

L
LAHF instruction 3:595, 3:597
Lamport’s algorithm 2:400, 2:401
LAR instruction 3:598
ld 3:131

ld.a 1:49, 1:55, 1:59, 1:60, 1:140, 1:142, 1:148, 2:68,
 2:69, 2:70, 2:74, 2:380, 2:445, 2:446, 2:447

ld.acq 1:49, 1:58, 1:64, 2:69, 2:70, 2:380, 2:384,
2:385, 2:386, 2:389, 2:391, 2:392, 2:393

ld.c 1:55, 1:56, 1:57, 1:58, 1:140, 1:141, 1:142,
1:148, 2:69, 2:70, 2:446, 2:447

ld.c.clr 1:49, 1:58, 1:59, 1:60, 2:74
ld.c.clr.acq 1:49, 1:58, 1:59, 1:60, 1:64, 2:69, 2:70,

2:74
ld.c.nc 1:49, 1:59, 1:60, 2:74
ld.s 1:49, 1:52, 1:54, 1:144, 2:68, 2:69, 2:70, 2:380,

 2:445, 2:446, 2:447
ld.sa 1:49, 1:59, 1:60, 1:144, 2:68, 2:69, 2:70, 2:74,

 2:380, 2:418, 2:445, 2:446, 2:447
ld16 3:292
ld8.fill 1:26, 1:36, 1:50, 1:53, 1:54, 1:143, 2:417,

2:418, 3:286, 3:287, 3:292, 3:293, 3:294
ldf 3:135
ldf.a 1:49, 1:55, 1:59, 1:60
ldf.c 1:55
ldf.c.clr 1:49, 1:59, 1:60, 2:74
ldf.c.nc 1:49, 1:59, 1:60, 2:74
ldf.fill 1:49, 1:50, 1:54, 1:81, 1:143, 2:70, 2:417,

2:418, 3:288, 3:289, 3:296, 3:297, 3:298
ldf.s 1:49, 1:52, 1:54, 2:70
ldf.sa 1:49, 1:59, 1:60, 2:70
ldfp 3:138
ldfp.a 1:49, 1:55, 1:57, 1:59, 1:60
ldfp.c 1:55
ldfp.c.clr 1:49, 1:59, 1:60
ldfp.c.nc 1:49, 1:59, 1:60
ldfp.s 1:49, 1:52, 1:54, 2:70
ldfp.sa 1:49, 1:59, 1:60, 2:70
LDS instruction 3:601
LDT (local descriptor table) 3:613
LDTR (local descriptor table register) 3:613, 3:713
LEA instruction 3:604
LEAVE instruction 3:606
LES instruction 3:601
level sensitive external interrupts 2:113
lfetch 3:141
LFS instruction 3:601
LGDT instruction 3:610
LGS instruction 3:601
LIDT instruction 3:610
LLDT instruction 3:613
LMSW instruction 3:616
Load effective address operation 3:604
load instruction 1:155, 2:380, 3:871, 3:874, 3:877,

3:880, 3:882
loadrs 1:25, 1:36, 1:42, 1:46, 2:57, 2:92, 2:117,

2:119, 2:120, 2:123, 2:124, 2:125, 2:126
loadrs field 1:42, 2:120, 2:124

RSC.loadrs 1:42, 2:124, 2:125, 2:487
LOCK prefix 3:422, 3:424, 3:618, 3:737, 3:739
Locking operation 3:618
LODS instruction 3:620, 3:683

Index-10 Intel® Itanium® Architecture Software Developer’s Manual

Index

LODSB instruction 3:620
LODSD instruction 3:620
LODSW instruction 3:620
Log (base 2), FPU operation 3:547
Log epsilon, FPU operation 3:545
logical instructions 1:43
long branch handler 2:449
LOOP instructions 3:622
loop support 1:66, 1:165, 1:168

capacity limitations 1:179
conflicts in the ALAT 1:180
counted loop 1:67, 1:165, 1:170, 1:171
counted loop branches 1:170
epilog 1:66, 1:167, 1:168, 1:173
epilog count register (EC) 1:27
explicit prolog and epilog 1:184
implementing reductions 1:183
induction variable 1:166
initiation interval (II) 1:167
kernel 1:66, 1:167, 1:168, 1:173
kernel iteration 1:168
kernel loop 1:168
loop count application register (LC) 1:67, 1:165
loop unrolling 1:133, 1:166, 1:181
loop unrolling prior to software pipelining 1:181
loops with predicated instructions 1:176
multiple-exit loops 1:177
prolog 1:66, 1:167, 1:168, 1:173
redundant load elimination in loops 1:186
register rotation 1:15, 1:168, 1:169
software pipelining and advanced loads 1:179
software pipelining considerations 1:179
software-pipelined loop branches 1:170
source iteration 1:168
source loop 1:168
while loop 1:68, 1:172, 1:174, 3:684, 3:685

LOOPcc instructions 3:622
LSL instruction 3:624
LSS instruction 3:601
LTR instruction 3:628

M
machine check 2:43, 2:44, 2:79, 2:92, 2:222, 2:224,

2:408, 2:492, 2:493, 2:494, 3:428, 3:677,
3:735

machine check (MC) 2:282
machine check abort

PALE_CHECK 2:79, 2:92
machine check abort flows

machine check abort handling in OS 2:493
machine check handling in PAL 2:493
machine check handling in SAL 2:493

machine check aborts 2:483
machine checks 2:265
Machine status word, CR0 register 3:616, 3:715
major opcode 1:33, 3:255, 3:256, 3:257
master boot record 2:485
mc bit

PSR.mc 2:82, 2:84, 2:85, 2:101, 2:410, 3:345,
3:349

MCA 2:483
MCA (machine check architecture), CPUID instruction

3:428
MCE (machine check exception) flag, CPUID instruction

3:428
memory acceptance fence 2:475
memory access control 1:197

allocation control 1:61, 1:199
data prefetch 1:198
load-pair instructions 1:197, 1:198

memory access instructions 1:48, 1:49, 1:60, 2:379
memory access ordering 1:63, 2:70

memory ordering instructions 1:64
memory ordering rules 1:64

memory addressing model 1:30, 1:119
memory alignment 2:234
memory attribute 2:44, 2:63, 2:64, 2:65, 2:73, 2:74,

2:75, 3:428
effects of memory attributes on advanced/check loads

 2:73
effects of memory attributes on memory reference

instructions 2:73
memory attribute transition 2:74
physical addressing memory attribute 2:65
virtual addressing memory attribute 2:64, 2:74

memory dependency 1:34, 2:69
read-after-write 1:35, 1:37, 1:38, 1:63, 2:69
write-after-read 1:35, 1:37, 1:38, 1:63, 2:69
write-after-write 1:35, 1:37, 1:38, 1:63, 2:69

memory endianess 1:120
memory fence 1:64, 2:396
memory fences 2:112, 2:382
memory hierarchy 1:61

hierarchy control and hints 1:60
memory consistency 1:63, 3:922, 3:923, 3:924

memory mapped I/O model 2:238, 2:476
memory model 1:119, 2:231
memory ordering 1:64, 2:69, 2:128, 2:379, 2:380,

2:382, 2:387, 2:388, 2:389, 2:426, 3:926
acquire semantics 1:64, 2:70, 2:236, 2:379
memory ordering executions 2:382
memory ordering interactions 1:121
memory ordering model 2:236, 2:382, 2:395, 2:396
memory ordering semantics 1:64, 2:382
release semantics 1:64, 2:69, 2:236, 2:379

Memory ordering fence 1:64
memory reference 1:135, 1:136, 2:38, 3:378, 3:380,

3:382, 3:384, 3:386, 3:389, 3:391, 3:393
memory synchronization 2:396
mf 1:64, 2:112, 2:382, 3:145
mf.a 2:69, 2:70, 2:112, 2:475, 2:476, 2:477, 2:478,

3:305, 3:309
Min/Max/AMin/AMax 1:196
mix 3:146
MMX technology 1:15, 1:100, 1:103, 1:104, 1:118,

3:359, 3:428, 3:745, 3:746, 3:747, 3:749

Intel® Itanium® Architecture Software Developer’s Manual Index-11

Index

mov 1:29, 1:36, 1:37, 1:45, 1:48, 1:66, 1:72, 1:73,
2:13, 2:18, 2:19, 2:47, 2:50, 2:122, 2:125

mov ar 3:149
mov cr 3:152
mov fr 3:153
mov gr 3:154
mov imm 3:154
mov indirect 3:156
MOV instruction 3:630
MOV instruction (control registers) 3:634
MOV instruction (debug registers) 3:636
mov ip 3:159
mov pr 3:160
mov psr 3:161
mov um 3:162
movl 3:163
MOVS instruction 3:638, 3:683
MOVSB instruction 3:638
MOVSD instruction 3:638
MOVSW instruction 3:638
MOVSX instruction 3:640
MOVZX instruction 3:641
MSR flag, CPUID instruction 3:427
MSRs (model specific registers)

existence of 3:427
reading 3:677
writing 3:735

MTRRs (memory type range registers)
flag, CPUID instruction 3:428

MUL instruction 3:371, 3:643
multimedia instructions 1:11, 1:15, 1:39, 1:70

data arrangement 1:72
parallel arithmetic 1:70
parallel shifts 1:71

multimedia support 1:15
multiple address space (MAS) 1:15, 2:37, 2:427, 2:428
multiple status fields 1:193, 1:194
multiply-add instruction 1:192
multiprocessor (MP)

multiprocessor instruction cache coherency 2:235
multiprocessor TLB coherency 2:233

mux 3:164

N
NaN

description of 3:822, 3:824
encoding of 3:823, 3:827
operating on 3:825
SNaNs vs. QNaNs 3:824
testing for 3:534

NaNs 1:77, 1:97, 1:196, 3:451, 3:495, 3:497, 3:500,
 3:529, 3:532, 3:545, 3:547, 3:820, 3:822

NaT (not a thing) 1:127
NaT page consumption fault 2:72
NaTPage attribute 2:72
NaTVal (not a thing value) 1:21
Near call

CALL instruction 3:396
Near return

RET instruction 3:686
NEG instruction 3:618, 3:645
non-access instructions 2:87
non-cacheable memory 2:69
Nonconforming code segment 3:592
Non-number encodings, FPU 3:822
non-programmer-visible state 2:382
non-speculative 1:52, 2:67, 2:68, 2:69, 2:74, 2:447
non-speculative memory references 1:135, 2:63

data prefetch hint 1:136
loads from memory 1:135
stores to memory 1:135

non-temporal hint 1:199
nop 3:167
NOP instruction 3:647
no-recovery model 2:88, 2:89
Normalized finite number 3:821, 3:823
normalized numbers 1:77, 3:820, 3:821, 3:823
not a thing attribute (NaTPage) 2:72
NOT instruction 3:618, 3:648
Notation

reserved bits 3:829
NT (nested task) flag, EFLAGS register 3:577

O
OF (carry) flag, EFLAGS register 3:553
OF (overflow) flag, EFLAGS register 3:373, 3:375,

3:563, 3:643, 3:698, 3:708, 3:710, 3:725
OLR 2:282
operand screening support 1:195
operating environments 1:9, 1:10
Optimization of Memory References

Using Post-increment Loads and Stores 1:147
optimization of memory references 1:144

data interference 1:145
loop optimization 1:147
minimizing check code 1:148
optimizing code size 1:146

or 3:168
OR instruction 3:618, 3:650
orderable instruction 2:380, 2:384
ordered cacheable operations 2:393
ordering semantics 1:64, 2:69, 2:70, 2:383, 2:384

acquire 1:64, 2:69, 2:70, 2:236, 2:237, 2:379,
2:384

fence 1:64, 2:69, 2:70, 2:236, 2:237, 2:379, 2:384,
 3:429, 3:557, 3:561, 3:577, 3:595

release 1:64, 2:69, 2:70, 2:236, 2:237, 2:379,
2:384, 3:686

unordered 1:64, 2:69, 2:70, 2:236, 2:379, 2:384,
3:456, 3:458, 3:461, 3:474, 3:534

OS boot flow sample code 2:497
OS kernel 2:485, 2:487
OS loader 2:484, 2:485
OUT instruction 3:652

Index-12 Intel® Itanium® Architecture Software Developer’s Manual

Index

OUTS instruction 3:654, 3:683
OUTSB instruction 3:654
OUTSD instruction 3:654
OUTSW instruction 3:654
overflow 1:14, 1:93, 1:95, 1:96, 2:454, 2:457, 3:414,

3:437, 3:443, 3:449, 3:476, 3:483, 3:485
Overflow exception (#OF) 3:563

P
pack 3:169
PACKSSDW instruction 3:751
PACKSSWB instruction 3:751
PACKUSWB instruction 3:754
padd 3:171
PADDB instruction 3:756
PADDD instruction 3:756
padding restrictions 2:234
PADDSB instruction 3:759
PADDSW instruction 3:759
PADDUSB instruction 3:762
PADDUSW instruction 3:762
PADDW instruction 3:756
PAE (physical address extension) flag, CPUID instruction

 3:427
PAL 1:5, 2:5, 2:320, 2:483, 2:485, 2:488, 2:489,

2:490, 2:491, 2:493, 3:5
entrypoints 2:252
procedures 2:252

PAL power on/reset 2:259
PALE_RESET 2:79

PAL procedure calling conventions 2:288
PAL procedure calls 2:488
PAL procedures 2:284, 2:483, 2:488, 2:490, 2:491

stacked PAL call 2:489
stacked registers 1:132, 2:488, 2:489
static PAL call 2:488

PAL self-test control word 2:264
PAL_BUS_GET_FEATURES 2:295
PAL_BUS_SET_FEATURES 2:297
PAL_CACHE_FLUSH 2:298
PAL_CACHE_INFO 2:302
PAL_CACHE_INIT 2:305
PAL_CACHE_LINE_INIT 2:306
PAL_CACHE_PROT_INFO 2:307
PAL_CACHE_READ 2:309
PAL_CACHE_SHARED_INFO 2:311
PAL_CACHE_SUMMARY 2:313
PAL_CACHE_WRITE 2:314
PAL_COPY_INFO 2:316
PAL_COPY_PAL 2:317
PAL_DEBUG_INFO 2:318
PAL_ENTER_IA_32_ENV 2:319
PAL_FIXED_ADDR 2:327
PAL_FREQ_BASE 2:328
PAL_FREQ_RATIOS 2:329
PAL_HALT 2:330

PAL_HALT_INFO 2:333
PAL_HALT_LIGHT 2:334
PAL_LOGICAL_TO_PHYSICAL 2:335
PAL_MC_CLEAR_LOG 2:338
PAL_MC_DRAIN 2:339
PAL_MC_DYNAMIC_STATE 2:340
PAL_MC_EXPECTED 2:351
PAL_MC_RESUME 2:273
PAL_MEM_ATTRIB 2:354
PAL_PERF_MON_INFO 2:355
PAL_PLATFORM_ADDR 2:356
PAL_PMI_ENTRYPOINT 2:357
PAL_PREFETCH_VISIBILITY 2:358
PAL_PROC_GET_FEATURES 2:359
PAL_PROC_SET_FEATURES 2:362
PAL_PTCE_INFO 2:363
PAL_REGISTER_INFO 2:364
PAL_RSE_INFO 2:365
PAL_TEST_INFO 2:366
PAL_TEST_PROC 2:367
PAL_VERSION 2:369
PAL_VM_INFO 2:370
PAL_VM_PAGE_SIZE 2:371
PAL_VM_SUMMARY 2:372
PAL_VM_TR_READ 2:374
PAL-based interrupt states 2:100
PAL-based interruptions 2:79, 2:80, 2:84, 2:96, 2:407,

 2:408
PALE_CHECK 2:265
PALE_INIT 2:274
PALE_RESET 2:259
PAND instruction 3:765
PANDN instruction 3:767
pavg 3:174
pavgsub 3:177
pcmp 3:179
PCMPEQB instruction 3:769
PCMPEQD instruction 3:769
PCMPEQW instruction 3:769
PCMPGTB instruction 3:772
PCMPGTD instruction 3:772
PCMPGTW instruction 3:772
PE (protection enable) flag, CR0 register 3:616
performance counters 1:28, 2:135, 2:136, 2:223,

2:479, 3:679
Performance Monitor Events 2:140
performance monitors 1:28, 2:135, 2:137, 2:215,

2:479, 2:480
performance monitor code sequences 2:141
performance monitor configuration (PMC) 2:135,

2:137
performance monitor data (PMD) 2:135, 2:479
performance monitor data registers (PMD) 1:19, 1:28
performance monitor interrupt service routine 2:141
performance monitor overflow registers 2:139
performance monitor registers 2:135, 2:137, 2:480
performance monitoring mechanisms 2:479

Intel® Itanium® Architecture Software Developer’s Manual Index-13

Index

Performance-monitoring counters
reading 3:679

PGE (page-table-entry global flag), CPUID instruction
3:428

physical addressing 2:61, 2:64, 2:65, 2:76, 2:490,
2:491, 3:427, 3:428, 3:635

Pi
loading 3:485

pk bit 2:430
PSR.pk 2:82, 2:85, 2:430, 3:345, 3:350

platform management interrupt (PMI) 2:92, 2:278,
2:407, 2:483, 2:491, 2:495

PMADDWD instruction 3:775
pmax 3:181
PMI Flows 2:495
pmin 3:182
pmpy 3:183
pmpyshr 3:184
PMULHW instruction 3:777
PMULLW instruction 3:779
POP instruction 3:657
POPA instruction 3:661
POPAD instruction 3:661
popcnt 3:186
POPF instruction 3:663
POPFD instruction 3:663
population count 1:74, 3:277
POR instruction 3:781
power management 2:80, 2:281, 2:495

NORMAL 1:160, 3:539, 3:903, 3:905
predicate register (PR)

predicate register transfers 1:48
Predication 1:11, 1:13, 1:45, 1:131, 1:134, 1:151,

1:152, 1:153, 1:154, 1:155, 1:156
cache pollution reduction 1:156
downward code motion 1:155, 1:156
guidelines for removing branches 1:158
instruction prefetch hints 1:164
instruction scheduling 1:136, 1:138, 1:152
off-path predication 1:154
optimizing program performance using predication

1:153
performance costs of branches 1:151
predication considerations 1:156
predication in the itanium architecture 1:152
prediction resources 1:69, 1:151, 1:152
upward code motion 1:154, 1:155

Prefixes
LOCK 3:618
REP/REPE/REPZ/REPNE/REPNZ 3:683

preservation of floating-point state in the OS 2:421
preserved 2:282
preserved registers 2:417, 2:422
preserving ALAT coherency 2:422
privilege levels 1:22, 2:13, 3:595, 3:596, 3:686

current privilege level (CPL) 2:13, 3:730
privilege level transfer 1:74
processor status register (PSR) 2:13, 2:16, 2:18

processor status register fields 2:19
processor status register instructions 2:18

privileged operation fault 2:147
probe 2:47, 2:50, 2:63, 2:87, 3:187, 3:310, 3:311,

3:357
Procedure 1:39, 1:40, 1:41, 3:379, 3:396, 3:397,

3:398, 3:399, 3:400, 3:401, 3:402, 3:403
procedure calls 1:39, 1:132, 2:417, 2:461, 2:488,

2:490
br.call 1:27, 1:36, 1:40, 1:65, 1:67, 3:317
br.ret 1:27, 1:36, 1:40, 1:65, 1:67, 2:47, 2:57,

2:86, 2:92, 3:315, 3:317
branch instructions 1:68, 1:133, 3:314, 3:315,

3:331
branches and hints 1:132
loops and software pipelining 1:133
register stack engine 1:39, 1:132, 2:86, 2:115,

3:595
rotating registers 1:23, 1:133
stacked register 1:40, 2:488, 2:490

Procedure stack
popping values from 3:657
pushing values on 3:666

Processor 2:249
processor abstraction layer 1:5, 1:17, 2:5, 2:483, 3:5
processor abstraction layer (PAL) 2:249, 2:251, 2:283
processor caches 2:75, 2:382
processor identifiers (CPUID) 1:19

processor identification registers 1:29
processor interrupt block 2:109, 2:110, 2:111, 2:473
processor min-state save area 2:270
processor ordered 2:236
processor state 2:289

system state 2:13, 2:15, 2:16
processor state parameter 2:268
processor status register (PSR) 2:13, 2:16, 2:18,

2:137, 2:410
programmed I/O 2:404, 2:405
protected mode 1:10, 1:100, 1:102, 1:109, 1:110,

1:111, 2:222, 2:460, 3:366, 3:374, 3:376
protection key registers (PKR) 2:16, 2:48
protection keys 1:16, 2:16, 2:48, 2:49, 2:427, 2:429,

 2:430, 2:431, 2:437
psad 3:189
PSE (page size extensions) flag, CPUID instruction

3:427
pseudo-code functions 3:245
pshl 3:190
pshladd 3:191
pshr 3:192
pshradd 3:194
PSLLD instruction 3:783
PSLLQ instruction 3:783
PSLLW instruction 3:783
PSRAD instruction 3:786
PSRAW instruction 3:786
PSRLD instruction 3:789
PSRLQ instruction 3:789

Index-14 Intel® Itanium® Architecture Software Developer’s Manual

Index

PSRLW instruction 3:789
psub 3:195
PSUBB instruction 3:792
PSUBD instruction 3:792
PSUBSB instruction 3:795
PSUBSW instruction 3:795
PSUBUSB instruction 3:798
PSUBUSW instruction 3:798
PSUBW instruction 3:792
ptc.e 2:41, 2:43, 2:50, 2:57, 2:428, 2:434, 2:435,

2:436, 3:198, 3:310, 3:313, 3:341, 3:342
ptc.g 2:41, 2:43, 2:44, 2:47, 2:50, 2:57, 2:63, 2:69,

2:70, 2:435, 2:436, 3:310, 3:312, 3:341
ptc.g, ptc.ga 3:199
ptc.ga 1:58, 2:41, 2:43, 2:44, 2:47, 2:50, 2:57, 2:63,

 2:69, 2:70, 2:428, 2:435, 2:436, 3:310
ptc.l 3:201
ptr 2:40, 2:43, 2:47, 2:50, 2:57, 2:431, 2:433, 2:487,

 3:202, 3:310, 3:312, 3:341, 3:342, 3:345
PUNPCKHBW instruction 3:801
PUNPCKHDQ instruction 3:801
PUNPCKHWD instruction 3:801
PUNPCKLBW instruction 3:804
PUNPCKLDQ instruction 3:804
PUNPCKLWD instruction 3:804
PUSH instruction 3:666
PUSHA instruction 3:669
PUSHAD instruction 3:669
PUSHF instruction 3:671
PUSHFD instruction 3:671
PXOR instruction 3:807

Q
QNaN

description of 3:824
operating on 3:825

qualified exception deferral 2:90

R
RAR (read-after-read) dependency 3:335
RAW (read-after-write) dependency 3:335
RC (rounding control) field, FPU control word 3:480,

3:485, 3:519
RCL instruction 3:673
RCR instruction 3:673
RDMSR instruction 3:427, 3:677, 3:681
RDPMC instruction 3:679
RDTSC instruction 3:427, 3:681
reader of a resource 3:335
real mode 1:10, 1:100, 1:102, 1:109, 1:111, 2:460,

3:489, 3:506, 3:508, 3:524, 3:577, 3:663
real number 3:445, 3:447, 3:451, 3:454, 3:464, 3:468,

 3:471, 3:480, 3:492, 3:495, 3:497, 3:500
Real numbers

encoding 3:822, 3:823, 3:827
indefinite 3:827

notation 3:821
system 3:820

recovery model 2:88, 2:89
region identifier (RID) 2:38, 2:48, 2:427
region register (RR) 2:48, 2:427
register dependency 1:34, 1:35, 1:36

read-after-write (RAW) 1:35
write-after-read (WAR) 1:35
write-after-write (WAW) 1:35

register file transfers 1:72
register preservation 2:417

preservation at different points in the OS 2:420
preservation of stacked registers in the OS 2:420
preserving floating-point registers 2:418
preserving general registers 2:418

register rotation 1:15, 1:23, 1:168, 1:169
initializing rotating predicates 1:48, 1:169

register stack 1:14, 1:22, 1:23, 1:39, 1:40, 1:41, 1:42,
 2:86, 2:115, 2:116, 2:118, 2:487, 3:446

clean partition 2:118, 2:124
current frame 1:22, 1:40, 2:86, 2:115, 2:118, 2:487,

 3:440
dirty partition 2:118, 2:124
invalid partition 2:118, 2:124
register stack instructions 1:41
register stack operation 1:39

register stack configuration 1:23, 1:24, 1:42, 2:117,
2:120, 2:487

RSC 1:23, 1:24, 1:25, 1:42, 2:117, 2:120, 2:121,
2:125, 2:487, 3:354, 3:355

register stack engine 1:24, 1:39, 2:86, 2:115
release semantics 1:64, 2:69, 2:236, 2:379
release stores 2:380, 2:382, 2:393
Remainder, FPU operation 3:497, 3:500
REP/REPE/REPZ/REPNE/REPNZ prefixes 3:419,

3:560, 3:654, 3:683
reserved 1:19, 1:20, 1:21, 2:97, 2:283, 3:255, 3:426,

 3:428, 3:429, 3:563, 3:597, 3:599, 3:625
Reserved bits 3:829
RET instruction 3:686
rfi 1:10, 1:34, 1:36, 1:38, 1:46, 1:67, 1:99, 2:18, 2:19,

 2:57, 2:79, 2:81, 2:84, 2:86, 2:87, 2:88, 2:92
ROL instruction 3:673
ROR instruction 3:673
Rotate operation 3:673
Rounding

round to integer, FPU operation 3:505
RPL field 3:379
RSE 1:24, 1:25, 1:26, 1:39, 1:132, 2:86, 2:115, 2:116,

 2:117, 2:119, 2:120, 2:121, 2:123, 2:124
RSE byte order 2:121
RSE control instructions 2:123
RSE initialization 2:130
RSE internal state 2:117
RSE interruptions 2:125
RSE mode 1:25, 2:120
RSE operation instructions and state modification

2:119
RSE privilege level 1:25, 2:120

Intel® Itanium® Architecture Software Developer’s Manual Index-15

Index

rsm 2:18, 2:19, 2:33, 2:103, 2:104, 2:138, 2:230,
2:412, 2:466, 2:479, 3:207, 3:309, 3:312

RSM instruction 3:692
rum 1:73, 2:13, 2:18, 2:138, 2:479, 3:209, 3:309,

3:312, 3:338, 3:345, 3:357

S
SAL 1:5, 1:17, 2:5, 2:460, 2:483, 2:484, 2:485,

2:488, 2:490, 2:491, 2:492, 2:493, 2:494
SAL procedure calls 2:490

SAL instruction 3:694, 3:726
SALE_ENTRY 2:261
SAR instruction 3:694, 3:726
SBB instruction 3:618, 3:698
Scale, FPU operation 3:511
SCAS instruction 3:683, 3:700
SCASB instruction 3:700
SCASD instruction 3:700
SCASW instruction 3:700
scratch 2:283
scratch registers 2:81, 2:417, 2:422
Segment descriptor

segment limit 3:624
Segment limit 3:624
Segment registers

moving values to and from 3:630
Segment selector

RPL field 3:379
self test state parameter 2:262
self-modifying code 2:402
Semaphore 3:302

semaphore instructions 1:35, 1:51, 2:380, 3:302
semaphore operations 1:51, 2:235, 2:382, 2:391,

2:392
Semaphores

behavior of uncacheable and misaligned
semaphores 2:381

sequential consistency (SC)
SC system 2:395

sequential semantics 2:70
inter-processor interrupt messages 2:70, 2:110,

2:111
sequential pages 2:70

serialization 2:13, 2:14, 2:15, 2:411, 2:412, 3:335,
3:336, 3:337, 3:429, 3:577, 3:595

SETcc instructions 3:702
setf 3:210
SF (sign) flag, EFLAGS register 3:373, 3:375
SGDT instruction 3:705
SHAF instruction 3:693
shl 3:212
SHL instruction 3:694, 3:726
shladd 3:213
shladdp4 3:214
SHLD instruction 3:708
shr 3:215

SHR instruction 3:694, 3:726
SHRD instruction 3:710
shrp 3:216
SIDT instruction 3:705
Sign, floating-point number 3:821
signed infinities 3:819, 3:822, 3:824
Signed infinity 3:824
Signed zero 3:822
signed zeros 3:819, 3:820, 3:822
Significand

extracting from floating-point number 3:543
of floating-point number 3:821

Sine, FPU operation 3:513, 3:515
single address space (SAS) 1:16, 2:37, 2:427, 2:429,

 2:431
single instruction multiple data (SIMD) 3:810
single stepping 2:87
Single-precision, IEEE floating-point format 3:826
Single-real floating-point format 3:826
SLDT instruction 3:713
SMSW instruction 3:715
SNaN

description of 3:824
operating on 3:825
typical uses of 3:825

sof field
CFM.sof 2:84, 2:118, 2:119, 2:123, 2:124, 2:127

software pipelining 1:11, 1:15, 1:133, 1:167, 1:179,
1:181

sol field
CFM.sol 2:119, 2:124, 2:127

special instruction notations 3:261
special use registers 2:417
Speculation 1:11, 1:12, 1:130, 1:135, 1:139, 1:144,

1:145, 2:67, 2:68, 2:69, 2:445, 2:447
advanced load 1:49, 1:55, 1:56, 1:57, 1:59, 1:140,

 1:141, 1:142, 1:148, 2:69, 2:73, 2:74
advanced load check 1:56, 1:57, 1:142, 3:303,

3:304
advanced load example 1:141
always-defer model 2:88
check load 1:49, 1:55, 1:57, 1:58, 1:59, 1:141,

1:142, 2:73, 2:74
combining data and control speculation 1:144
control speculation 1:12, 1:51, 1:52, 1:53, 1:54,

1:59, 1:130, 1:139, 1:142, 1:143, 2:447
control speculation example 1:143
control speculative load 1:12, 1:142, 1:143, 1:144
data speculation 1:12, 1:55, 1:56, 1:59, 1:60,

1:131, 1:139, 1:140, 2:447
recovery code 1:12, 1:13, 1:56, 1:141, 1:142,

1:143, 1:144, 2:446, 2:447
recovery code example 1:141
speculation attributes 2:67
speculation check 1:52, 1:56, 1:144, 3:282, 3:303,

 3:304
speculation considerations 1:144
speculation model in the itanium architecture 1:139,

 1:140

Index-16 Intel® Itanium® Architecture Software Developer’s Manual

Index

speculation recovery code 2:447
speculation related exception handlers 2:447
speculative 1:12, 1:13, 1:52, 1:55, 2:67, 2:68, 2:69,

 2:74, 2:447
speculative load exceptions 2:89
speculatively accessible 2:68
speculatively inaccessible 2:68
unaligned handler 2:447

speculative advanced load 1:144
spill/fill 1:54, 1:81, 1:87, 2:86, 2:115, 2:116, 2:119
spin lock 2:397, 2:398
square root operations 1:192
Square root, FPU operation 3:517
srlz 3:217
SS register 3:601, 3:631, 3:658
ssm 2:18, 2:19, 2:33, 2:103, 2:138, 2:412, 2:479,

3:218, 3:309, 3:312, 3:341, 3:357, 3:692
st 1:13, 1:49, 1:60, 2:70, 2:384, 2:386, 2:387, 2:388,

 2:389, 2:391, 2:394, 2:395, 3:219, 3:357
st.rel 1:49, 1:60, 1:64, 2:69, 2:70, 2:112, 2:380, 2:384,

 2:385, 2:387, 2:388, 2:389, 2:392, 2:393
st.spill 1:49, 1:60, 2:70
st1 1:58, 3:286, 3:287, 3:295, 3:357, 3:854, 3:857,

3:858
st16 3:295
st8.spill 1:26, 1:36, 1:37, 1:51, 1:53, 1:54, 1:143,

2:417, 2:418, 3:286, 3:287, 3:295, 3:338
stack frame 1:14, 1:22, 1:23, 1:25, 1:36, 1:39, 1:40,

1:41, 1:42, 2:115, 2:116, 3:440, 3:441, 3:442
Stack pointer (ESP register) 3:666
stacked calling convention 2:283
stacked registers 1:21, 1:40, 1:132, 2:115, 2:116,

2:117, 2:118, 2:417, 2:420, 2:487
deallocated 2:127
stacked general registers 1:21, 2:115, 2:418

state mappings 3:359
static calling convention 2:283
static general registers 1:21, 2:115, 2:418
Status flags, EFLAGS register 3:414, 3:417, 3:456,

3:461, 3:586, 3:702, 3:727
STC instruction 3:717
STD instruction 3:718
stf 1:49, 1:60, 2:70, 3:221, 3:288, 3:289, 3:298, 3:299,

 3:357

stf.spill 1:49, 1:51, 1:54, 1:60, 1:81, 1:143, 2:70,
2:417, 2:418, 3:288, 3:289, 3:298, 3:299

STI instruction 3:719
store buffers 2:382, 2:389, 2:390, 2:391
store instruction 2:380, 3:871, 3:874, 3:877, 3:880,

3:882, 3:923, 3:924, 3:926
STOS instruction 3:683, 3:722
STOSB instruction 3:722
STOSD instruction 3:722
STOSW instruction 3:722
STR instruction 3:724
streaming SIMD extension technology 1:100, 3:359,

3:428

String operations 3:419, 3:560, 3:620, 3:638, 3:654,
3:722

sub 3:223
SUB instruction 3:372, 3:434, 3:618, 3:725
subpaging 2:442, 2:443
sum 1:73, 2:13, 2:18, 2:138, 2:479, 3:224, 3:309,

3:312, 3:338, 3:345, 3:357, 3:433, 3:446
supervisor accesses 2:234
sxt 3:225
sync 3:226
system abstraction layer 1:5, 1:17, 2:5, 2:483, 3:5
system abstraction layer (SAL) 2:249, 2:283
system architecture features 1:15, 2:11

support for multiple address space operating systems
 1:15

support for single address space operating systems
1:16

system performance and scalability 1:16
system security and supportability 1:16

system calls 2:422, 2:423, 2:424
system descriptors 2:215
system flag interception 2:213
system memory model 2:231
system register model 2:17, 2:213

IA-32 state 1:104, 1:106, 2:213, 2:214
shared 1:106, 2:214, 2:215, 3:618
undefined 1:103, 1:104, 1:106, 2:214, 3:383, 3:385,

 3:387, 3:388, 3:390, 3:392, 3:394, 3:429
unmodified 1:103, 1:104, 1:106, 2:214, 3:580

system register resources 2:13, 2:15, 2:16

T
tak 2:49, 2:50, 2:63, 2:87, 2:430, 3:227, 3:310, 3:313,

 3:341, 3:342, 3:345, 3:352, 3:357
Tangent, FPU operation 3:503
Task gate 3:593
Task register

loading 3:628
storing 3:724

Task switch
CALL instruction 3:396
return from nested task, IRET instruction 3:577

tbit 1:37, 1:46, 1:48, 1:53, 1:131, 3:228, 3:279, 3:352,
 3:356, 3:357

template 1:32, 1:33, 1:129, 3:255, 3:256
temporal hint 1:199, 3:925
TEST instruction 3:727
thash 2:50, 2:54, 2:55, 2:56, 2:440, 2:441, 3:230,

3:310, 3:313, 3:340, 3:341, 3:345, 3:352
Time-stamp counter, reading 3:681
Tiny number 3:823
TLB 1:57, 2:16, 2:29, 2:32, 2:37, 2:38, 2:39, 2:40,

2:41, 2:42, 2:43, 2:44, 2:45, 2:46, 2:47, 2:48
page not present vector 2:96, 2:150, 2:442
TLB miss 2:42, 2:51, 2:52, 2:55, 2:56, 2:57, 2:58,

 2:59, 2:439
TLB miss handlers 2:59, 2:438, 2:441

Intel® Itanium® Architecture Software Developer’s Manual Index-17

Index

TLB purges 2:39, 2:42, 2:44
translation insertion format 2:45
VHPT translation vector 2:96, 2:150, 2:440

TLB entry, invalidating (flushing) 3:576
tnat 1:37, 1:46, 1:48, 1:53, 1:54, 3:231, 3:279, 3:280,

 3:352, 3:356, 3:357
tpa 2:50, 2:63, 2:86, 2:87, 3:233, 3:310, 3:313,

3:341, 3:342, 3:345, 3:352, 3:357
translation caches (TCs) 2:433

TC insertion 2:433
TC purge 2:431, 2:434

translation lookaside buffer (TLB) 2:16, 2:37, 2:39,
3:428, 3:576

translation registers (TRs) 2:431
TR insertion 2:432
TR purge 2:431, 2:432, 2:433

trap 1:93, 1:95, 2:84, 2:85, 2:94, 2:95, 2:96, 2:407,
 3:410, 3:563, 3:564, 3:565, 3:566, 3:567

TS (task switched) flag, CR0 register 3:411
TSC (time stamp counter) flag, CPUID instruction 3:427
TSD flag, CR4 register 3:681
TSS

relationship to task register 3:724
ttag 2:50, 2:53, 2:54, 2:55, 2:56, 2:439, 3:234, 3:310,

 3:313, 3:345, 3:352, 3:357

U
UC memory attribute 2:240
UD2 instruction 3:729
unaligned reference handler 2:447, 2:448, 2:449
Uncacheable 2:64, 2:65, 3:925

uncacheable pages 2:66
unchanged 2:19, 2:157, 2:283, 3:464, 3:479, 3:503,

3:511, 3:513, 3:515, 3:664, 3:686, 3:863
Undefined

format opcodes 3:534
undefined behavior 1:38
underflow 1:14, 1:93, 1:96, 2:454, 2:458, 3:443,

3:445, 3:446, 3:447, 3:448, 3:452, 3:454
Underflow, numeric 3:823
unimplemented addresses 2:63

unimplemented physical address bits 2:62
unimplemented virtual address bits 2:62

unnormalized numbers 1:77
unordered semantics 2:379
Unordered values 3:458, 3:461, 3:534, 3:536
unpack 3:235
unsupported data reference handler 2:449, 2:450
user mask (UM) 1:19, 1:28

V
vector numbers 2:80, 2:101, 2:465, 3:367, 3:571
VERR instruction 3:730
Version information, processor 3:426

VERW instruction 3:730
VHPT 2:28, 2:29, 2:34, 2:37, 2:38, 2:39, 2:41, 2:47,

 2:48, 2:50, 2:51, 2:52, 2:53, 2:54, 2:55
TLB and VHPT search faults 2:59
TLB/VHPT search 2:58, 2:59
translation searching 2:57
VHPT configuration 2:51
VHPT searching 2:52
VHPT short format 2:52
VHPT short-format index 2:55
VHPT updates 2:438
VHPT walker 2:39, 2:41, 2:48, 2:51, 2:52, 2:53,

2:54, 2:55, 2:56, 2:57, 2:58, 2:59
virtual addressing 2:37, 2:38, 2:63, 2:74, 2:487,

2:490, 2:491
virtual aliasing 2:61
virtual hash page table (VHPT) 2:28, 2:34, 2:37, 2:51
virtual region number (VRN) 2:38, 2:62, 2:427
virtualized interrupt flag 2:217
visible 1:64, 2:69, 2:70, 2:380, 2:386, 3:598, 3:624,

 3:926
VM (virtual 8086 mode) flag, EFLAGS register 3:577
VM86 1:10, 1:100, 1:102, 1:109, 1:110, 2:219, 2:222,

 2:460, 3:569, 3:570
VME (virtual 8086 mode enhancements) flag, CPUID

instruction 3:427
VME extensions 2:217, 2:222

W
WAIT/FWAIT instructions 3:732
WAR (write-after-read) dependency 3:335
WAW (write-after-write) dependency 3:335
WBINVD instruction 3:733
Write BSPSTORE 2:129
Write-back and invalidate caches 3:733
writer of a resource 3:335
WRMSR instruction 3:427, 3:735

X
XADD instruction 3:618, 3:737
xchg 1:49, 1:51, 1:60, 1:64, 2:69, 2:70, 2:73, 2:177,

 2:380, 2:392, 3:237, 3:357, 3:387, 3:618
XCHG instruction 3:618, 3:739
XLAT/XLATB instruction 3:741
xma 3:239
xmpy 3:241
xor 3:242
XOR instruction 3:618, 3:743

Z
Zero, floating-point format 3:822
ZF (zero) flag, EFLAGS register 3:422, 3:424, 3:598,

3:622, 3:624, 3:683, 3:730
zxt 3:243

Index-18 Intel® Itanium® Architecture Software Developer’s Manual

Index

	Part I: System Architecture Guide
	About this Manual 1
	1.1 Overview of Volume 1: Application Architecture
	1.1.1 Part 1: Application Architecture Guide
	1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture

	1.2 Overview of Volume 2: System Architecture
	1.2.1 Part 1: System Architecture Guide
	1.2.2 Part 2: System Programmer’s Guide
	1.2.3 Appendices

	1.3 Overview of Volume 3: Instruction Set Reference
	1.3.1 Part 1: Intel® Itanium® Instruction Set Descriptions
	1.3.2 Part 2: IA-32 Instruction Set Descriptions

	1.4 Terminology
	1.5 Related Documents
	1.6 Revision History

	Intel® Itanium® System Environment 2
	2.1 Processor Boot Sequence
	2.2 Intel® Itanium® System Environment Overview

	System State and Programming Model 3
	3.1 Privilege Levels
	3.2 Serialization
	3.2.1 Instruction Serialization
	3.2.2 Data Serialization
	3.2.3 Definition of In-flight Resources

	3.3 System State
	3.3.1 System State Overview
	3.3.2 Processor Status Register (PSR)
	3.3.3 Control Registers
	3.3.4 Global Control Registers
	3.3.4.1 Default Control Register (DCR – CR0)
	3.3.4.2 Interval Time Counter and Match Register (ITC – AR44 and ITM – CR1)
	3.3.4.3 Interruption Vector Address (IVA – CR2)
	3.3.4.4 Page Table Address (PTA – CR8)

	3.3.5 Interruption Control Registers
	3.3.5.1 Interruption Processor Status Register (IPSR – CR16)
	3.3.5.2 Interruption Status Register (ISR – CR17)
	3.3.5.3 Interruption Instruction Bundle Pointer (IIP – CR19)
	3.3.5.4 Interruption Faulting Address (IFA – CR20)
	3.3.5.5 Interruption TLB Insertion Register (ITIR – CR21)
	3.3.5.6 Interruption Instruction Previous Address (IIPA – CR22)
	3.3.5.7 Interruption Function State (IFS – CR23)
	3.3.5.8 Interruption Immediate (IIM – CR24)
	3.3.5.9 Interruption Hash Address (IHA – CR25)

	3.3.6 External Interrupt Control Registers
	3.3.7 Banked General Registers

	Addressing and Protection 4
	4.1 Virtual Addressing
	4.1.1 Translation Lookaside Buffer (TLB)
	4.1.1.1 Translation Registers (TR)
	4.1.1.2 Translation Cache (TC)
	4.1.1.3 Unified Translation Lookaside Buffers
	4.1.1.4 Purge Behavior of TLB Inserts and Purges
	4.1.1.5 Translation Insertion Format
	4.1.1.6 Page Access Rights
	4.1.1.7 Page Sizes

	4.1.2 Region Registers (RR)
	4.1.3 Protection Keys
	4.1.4 Translation Instructions
	4.1.5 Virtual Hash Page Table (VHPT)
	4.1.5.1 VHPT Configuration
	4.1.5.2 VHPT Searching
	4.1.5.3 Region-based VHPT Short Format
	4.1.5.4 VHPT Long Format

	4.1.6 VHPT Hashing
	4.1.6.1 Region-based VHPT Short-format Index
	4.1.6.2 Long-format VHPT Hash

	4.1.7 VHPT Environment
	4.1.8 Translation Searching
	4.1.9 32-bit Virtual Addressing
	4.1.10 Virtual Aliasing

	4.2 Physical Addressing
	4.3 Unimplemented Address Bits
	4.3.1 Unimplemented Physical Address Bits
	4.3.2 Unimplemented Virtual Address Bits
	4.3.3 Instruction Behavior with Unimplemented Addresses

	4.4 Memory Attributes
	4.4.1 Virtual Addressing Memory Attributes
	4.4.2 Physical Addressing Memory Attributes
	4.4.3 Cacheability and Coherency Attribute
	4.4.4 Cache Write Policy Attribute
	4.4.5 Coalescing Attribute
	4.4.6 Speculation Attributes
	4.4.7 Sequentiality Attribute and Ordering
	4.4.8 Not a Thing Attribute (NaTPage)
	4.4.9 Effects of Memory Attributes on Memory Reference Instructions
	4.4.10 Effects of Memory Attributes on Advanced/Check Loads
	4.4.11 Memory Attribute Transition
	4.4.11.1 Virtual Addressing Memory Attribute Transition
	4.4.11.2 Physical Addressing Attribute Transition – Disabling Prefetch/ Speculation and Removing ...

	4.5 Memory Datum Alignment and Atomicity

	Interruptions 5
	5.1 Interruption Definitions
	5.2 Interruption Programming Model
	5.3 Interruption Handling during Instruction Execution
	5.4 PAL-based Interruption Handling
	5.5 IVA-based Interruption Handling
	5.5.1 Efficient Interruption Handling
	5.5.2 Non-access Instructions and Interruptions
	5.5.3 Single Stepping
	5.5.4 Single Instruction Fault Suppression
	5.5.5 Deferral of Speculative Load Faults

	5.6 Interruption Priorities
	5.6.1 IA-32 Interruption Priorities and Classes

	5.7 IVA-based Interruption Vectors
	5.8 Interrupts
	5.8.1 Interrupt Vectors and Priorities
	5.8.2 Interrupt Enabling and Masking
	5.8.2.1 Re-enabling External Interrupt Delivery
	5.8.2.2 External Interrupt Sampling
	5.8.2.3 Disabling of External Interrupt Delivery and rsm

	5.8.3 External Interrupt Control Registers
	5.8.3.1 Local ID (LID – CR64)
	5.8.3.2 External Interrupt Vector Register (IVR – CR65)
	5.8.3.3 Task Priority Register (TPR – CR66)
	5.8.3.4 End of External Interrupt Register (EOI – CR67)
	5.8.3.5 External Interrupt Request Registers (IRR0-3 – CR68,69,70,71)
	5.8.3.6 Interval Timer Vector (ITV – CR72)
	5.8.3.7 Performance Monitoring Vector (PMV – CR73)
	5.8.3.8 Corrected Machine Check Vector (CMCV – CR74)
	5.8.3.9 Local Redirection Registers (LRR0-1 – CR80,81)

	5.8.4 Processor Interrupt Block
	5.8.4.1 Inter-Processor Interrupt Messages
	5.8.4.2 Interrupt and IPI Ordering
	5.8.4.3 Interrupt Acknowledge (INTA) Cycle
	5.8.4.4 External Task Priority (XTP) Cycle

	5.8.5 Edge- and Level-sensitive Interrupts

	Register Stack Engine 6
	6.1 RSE and Backing Store Overview
	6.2 RSE Internal State
	6.3 Register Stack Partitions
	6.4 RSE Operation
	6.5 RSE Control
	6.5.1 Register Stack Configuration Register
	6.5.2 Register Stack NaT Collection Register
	6.5.3 Backing Store Pointer Application Registers
	6.5.4 RSE Control Instructions
	6.5.5 Bad PFS Used by Branch Return

	6.6 RSE Interruptions
	6.7 RSE Behavior on Interruptions
	6.8 RSE Behavior with an Incomplete Register Frame
	6.9 RSE and ALAT Interaction
	6.10 Backing Store Coherence and Memory Ordering
	6.11 RSE Backing Store Switches
	6.11.1 Switch from Interrupted Context
	6.11.2 Return to Interrupted Context
	6.11.3 Synchronous Backing Store Switch

	6.12 RSE Initialization

	Debugging and Performance Monitoring 7
	7.1 Debugging
	7.1.1 Data and Instruction Breakpoint Registers
	7.1.2 Debug Address Breakpoint Match Conditions

	7.2 Performance Monitoring
	7.2.1 Generic Performance Counter Registers
	7.2.2 Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])
	7.2.3 Performance Monitor Events
	7.2.4 Implementation-independent Performance Monitor Code Sequences
	7.2.4.1 Performance Monitor Interrupt Service Routine
	7.2.4.2 Performance Monitor Context Switch

	Interruption Vector Descriptions 8
	8.1 Interruption Vector Descriptions
	8.2 ISR Settings
	8.3 Interruption Vector Definition
	Name VHPT Translation vector (0x0000)
	Name Instruction TLB vector (0x0400)
	Name Data TLB vector (0x0800)
	Name Alternate Instruction TLB vector (0x0c00)
	Name Alternate Data TLB vector (0x1000)
	Name Data Nested TLB vector (0x1400)
	Name Instruction Key Miss vector (0x1800)
	Name Data Key Miss vector (0x1c00)
	Name Dirty-Bit vector (0x2000)
	Name Instruction Access-Bit vector (0x2400)
	Name Data Access-Bit vector (0x2800)
	Name Break Instruction vector (0x2c00)
	Name External Interrupt vector (0x3000)
	Name Page Not Present vector (0x5000)
	Name Key Permission vector (0x5100)
	Name Instruction Access Rights vector (0x5200)
	Name Data Access Rights vector (0x5300)
	Name General Exception vector (0x5400)
	Name Disabled FP-Register vector (0x5500)
	Name NaT Consumption vector (0x5600)
	Name Speculation vector (0x5700)
	Name Debug vector (0x5900)
	Name Unaligned Reference vector (0x5a00)
	Name Unsupported Data Reference vector (0x5b00)
	Name Floating-point Fault vector (0x5c00)
	Name Floating-point Trap vector (0x5d00)
	Name Lower-Privilege Transfer Trap vector (0x5e00)
	Name Taken Branch Trap vector (0x5f00)
	Name Single Step Trap vector (0x6000)
	Name IA-32 Exception vector (0x6900)
	Name IA-32 Intercept vector (0x6a00)
	Name IA-32 Interrupt vector (0x6b00)

	IA-32 Interruption Vector Descriptions 9
	9.1 IA-32 Trap Code
	9.2 IA-32 Interruption Vector Definitions
	Name IA_32_Exception (Divide) – Divide Fault
	Name IA_32_Exception (Debug) – Code Breakpoint Fault
	Name IA_32_Exception (Debug) – Data Breakpoint, Single Step, Taken Branch Trap
	Name IA_32_Exception (Break) – INT 3 Trap
	Name IA_32_Exception (Overflow) – Overflow Trap
	Name IA_32_Exception (Bound) – Bounds Fault
	Name IA_32_Exception (InvalidOpcode) – Invalid Opcode Fault
	Name IA_32_Exception (DNA) – Device Not Available Fault
	Name Double Fault
	Name Invalid TSS Fault
	Name IA_32_Exception (NotPresent) – Segment Not Present Fault
	Name IA_32_Exception (StackFault) – Stack Fault
	Name IA_32_Exception (GPFault) – General Protection Fault
	Name Page Fault
	Name IA_32_Exception (FPError) – Pending Floating-point Error
	Name IA_32_Exception (AlignmentCheck) – Alignment Check Fault
	Name Machine Check
	Name IA_32_Exception (StreamingSIMD) – Streaming SIMD Extension Numeric Error Fault
	Name IA_32_Interrupt (Vector #N) – Software Trap
	Name IA_32_Intercept (Instruction) – Instruction Intercept Fault
	Name IA_32_Intercept (Gate) – Gate Intercept Trap
	Name IA_32_Intercept (SystemFlag) – System Flag Trap
	Name IA_32_Intercept (Lock) – Locked Data Reference Fault

	Itanium®-based Operating System Interaction Model with IA-32 Applications 10
	10.1 Instruction Set Transitions
	10.2 System Register Model
	10.3 IA-32 System Segment Registers
	10.3.1 IA-32 Current Privilege Level
	10.3.2 IA-32 System EFLAG Register
	10.3.2.1 Virtualized Interrupt Flag

	10.3.3 IA-32 System Registers
	10.3.3.1 IA-32 Control Registers
	10.3.3.2 IA-32 Debug Registers
	10.3.3.3 IA-32 Memory Type Range Registers (MTRRs)
	10.3.3.4 IA-32 Model Specific and Test Registers
	10.3.3.5 IA-32 Performance Monitor Registers
	10.3.3.6 IA-32 Machine Check Registers

	10.4 Register Context Switch Guidelines for IA-32 Code
	10.4.1 Entering IA-32 Processes
	10.4.2 Exiting IA-32 Processes

	10.5 IA-32 Instruction Set Behavior Summary
	10.6 System Memory Model
	10.6.1 Virtual Memory References
	10.6.2 IA-32 Virtual Memory References
	10.6.3 IA-32 TLB Forward Progress Requirements
	10.6.4 Multiprocessor TLB Coherency
	10.6.5 IA-32 Physical Memory References
	10.6.6 Supervisor Accesses
	10.6.7 Memory Alignment
	10.6.8 Atomic Operations
	10.6.9 Multiprocessor Instruction Cache Coherency
	10.6.10 IA-32 Memory Ordering
	10.6.10.1 Instruction Set Transitions

	10.7 I/O Port Space Model
	10.7.1 Virtual I/O Port Addressing
	10.7.2 Physical I/O Port Addressing
	10.7.2.1 I/O Port Addressing Restrictions

	10.7.3 IA-32 IN/OUT instructions
	10.7.4 I/O Port Accesses by Loads and Stores

	10.8 Debug Model
	10.8.1 Data Breakpoint Register Matching
	10.8.2 Instruction Breakpoint Register Matching

	10.9 Interruption Model
	10.9.1 Interruption Summary
	10.9.2 IA-32 Numeric Exception Model

	10.10 Processor Bus Considerations for IA-32 Application Support
	10.10.1 IA-32 Compatible Bus Transactions

	Processor Abstraction Layer 11
	11.1 Firmware Model
	11.1.1 Processor Abstraction Layer (PAL) Overview
	11.1.2 Firmware Entrypoints
	11.1.3 PAL Entrypoints
	11.1.4 SAL Entrypoints
	11.1.5 OS Entrypoints
	11.1.6 Firmware Address Space

	11.2 PAL Power On/Reset
	11.2.1 PALE_RESET
	11.2.2 PALE_RESET Exit State
	11.2.2.1 Definition of SALE_ENTRY State Parameter
	11.2.2.2 Definition of Self Test State Parameter

	11.2.3 PAL Self-test Control Word

	11.3 Machine Checks
	11.3.1 PALE_CHECK
	11.3.1.1 Resources Required for Machine Check and Initialization Event Recovery

	11.3.2 PALE_CHECK Exit State
	11.3.2.1 Processor State Parameter (GR 18)
	11.3.2.2 Multiprocessor Rendezvous Requirements for Handling Machine Checks
	11.3.2.3 Processor Min-state Save Area Layout
	11.3.2.4 Definition of SALE_ENTRY State Parameter

	11.3.3 Returning to the Interrupted Process

	11.4 PAL Initialization Events
	11.4.1 PALE_INIT
	11.4.2 PALE_INIT Exit State
	11.4.2.1 Processor State Parameter (GR18)
	11.4.2.2 Definition of SALE_ENTRY State Parameter

	11.5 Platform Management Interrupt (PMI)
	11.5.1 PMI Overview
	11.5.2 PALE_PMI Exit State
	11.5.3 Resume from the PMI Handler

	11.6 Power Management
	11.7 PAL Glossary
	11.8 PAL Code Memory Accesses and Restrictions
	11.9 PAL Procedures
	11.9.1 PAL Procedure Summary
	11.9.2 PAL Calling Conventions
	11.9.2.1 Overview of Calling Conventions
	11.9.2.2 Processor State
	11.9.2.3 Return Buffers
	11.9.2.4 Invalid Arguments

	11.9.3 PAL Procedure Specifications
	Get Processor Bus Dependent Configuration Features
	Set Processor Bus Dependent Configuration Features
	Flush Data or Instruction Caches
	Get Detailed Cache Information
	Initialize Caches
	Initialize a Data Cache line
	Get Detailed Cache Protection Information
	Read Values from the Processor Cache
	Get Information on Caches Shared by Logical Processors
	Get Cache Hierarchy Summary
	Write Values into the Processor Cache
	Return Parameters to Copy PAL Code to Memory
	Copy PAL Code to Memory
	Get Debug Registers Information
	Enter IA-32 System Environment
	Get Fixed Geographical Address of Processor
	Get Processor Base Frequency
	Get Processor Frequency Ratios
	Halt Processor
	Get Halt State Information for Power Management
	Cause Processor to Enter Coherent Halt State
	Get Information on Logical to Physical Processor Mappings
	Clear Processor Error Logging Registers
	Complete Outstanding Transactions
	Returns Dynamic Processor State
	Get Processor Error Information
	Set/Reset Expected Machine Check Indicator
	Register Memory with PAL for Machine Check and Init
	Restore Minimal Architected State and Return
	Get Memory Attributes
	Get Processor Performance Monitor Information
	Set Processor Interrupt Block Address and I/O Port Space Address
	Setup SAL PMI Entrypoint in Memory
	Make Processor Prefetches Visible
	Get Processor Dependent Features
	Set Processor Dependent Features
	Get PTCE Purge Loop Information
	Return Information about Implemented Processor Registers
	Get RSE Information
	Information for Processor Self-test
	Perform a Processor Self-test
	Get PAL Version Number Information
	Get Virtual Memory Information
	Get Virtual Memory Page Size Information
	Get Virtual Memory Summary Information
	Read a Translation Register

	Part II: System Programmer’s Guide
	About the System Programmer’s Guide 1
	1.1 Overview of the System Programmer’s Guide
	1.2 Related Documents

	MP Coherence and Synchronization 2
	2.1 An Overview of Intel® Itanium® Memory Access Instructions
	2.1.1 Memory Ordering of Cacheable Memory References
	2.1.2 Loads and Stores
	2.1.3 Semaphores
	2.1.3.1 Considerations for using Semaphores
	2.1.3.2 Behavior of Uncacheable and Misaligned Semaphores

	2.1.4 Memory Fences

	2.2 Memory Ordering in the Intel® Itanium® Architecture
	2.2.1 Memory Ordering Executions
	2.2.1.1 Assumptions and Notation
	2.2.1.2 The Intel® Itanium® Architecture Provides a Relaxed Ordering Model
	2.2.1.3 Enforcing Basic Ordering
	2.2.1.4 Allow Loads to Pass Stores to Different Locations
	2.2.1.5 Preventing Loads from Passing Stores to Different Locations
	2.2.1.6 Data Dependency Does Not Establish MP Ordering
	2.2.1.7 Data Dependency Establishes Local Ordering
	2.2.1.8 Store Buffers May Satisfy Local Loads
	2.2.1.9 Preventing Store Buffers from Satisfying Local Loads
	2.2.1.10 Semaphores Do Not Locally Bypass
	2.2.1.11 Ordered Cacheable Operations are Seen in the Same Order by All Observers
	2.2.1.12 Obeying Causality

	2.2.2 Memory Attributes
	2.2.3 Understanding Other Ordering Models: Sequential Consistency and IA-32

	2.3 Where the Intel® Itanium® Architecture Requires Explicit Synchronization
	2.4 Synchronization Code Examples
	2.4.1 Spin Lock
	2.4.2 Simple Barrier Synchronization
	2.4.3 Dekker’s Algorithm
	2.4.4 Lamport’s Algorithm

	2.5 Updating Code Images
	2.5.1 Self-modifying Code
	2.5.2 Cross-modifying Code
	2.5.3 Programmed I/O
	2.5.4 DMA

	2.6 References

	Interruptions and Serialization 3
	3.1 Terminology
	3.2 Interruption Vector Table
	3.3 Interruption Handlers
	3.3.1 Execution Environment
	3.3.2 Interruption Register State
	3.3.3 Resource Serialization of Interrupted State
	3.3.4 Resource Serialization upon rfi

	3.4 Interruption Handling
	3.4.1 Lightweight Interruptions
	3.4.2 Heavyweight Interruptions
	3.4.3 Nested Interruptions

	Context Management 4
	4.1 Preserving Register State across Procedure Calls
	4.1.1 Preserving General Registers
	4.1.2 Preserving Floating-point Registers

	4.2 Preserving Register State in the OS
	4.2.1 Preservation of Stacked Registers in the OS
	4.2.2 Preservation of Floating-point State in the OS

	4.3 Preserving ALAT Coherency
	4.4 System Calls
	4.4.1 epc/Demoting Branch Return
	4.4.2 break/rfi
	4.4.3 NaT Checking for NaTs in System Calls

	4.5 Context Switching
	4.5.1 User-level Context Switching
	4.5.1.1 Non-local Control Transfers (setjmp/longjmp)
	4.5.1.2 User-level Co-routines

	4.5.2 Context Switching in an Operating System Kernel
	4.5.2.1 Thread Switch within the Same Address Space
	4.5.2.2 Address Space Switching

	Memory Management 5
	5.1 Address Space Model
	5.1.1 Regions
	5.1.1.1 RID Management
	5.1.1.2 Multiple Address Space Operating Systems
	5.1.1.3 Cross-address Space Copies in a MAS OS

	5.1.2 Protection Keys
	5.1.2.1 Single Address Space Operating Systems

	5.2 Translation Lookaside Buffers (TLBs)
	5.2.1 Translation Registers (TRs)
	5.2.1.1 TR Insertion
	5.2.1.2 TR Purge

	5.2.2 Translation Caches (TCs)
	5.2.2.1 TC Insertion
	5.2.2.2 TC Purge

	5.3 Virtual Hash Page Table
	5.3.1 Short Format
	5.3.2 Long Format
	5.3.3 VHPT Updates

	5.4 TLB Miss Handlers
	5.4.1 Data/Instruction TLB Miss Vectors
	5.4.2 VHPT Translation Vector
	5.4.3 Alternate Data/Instruction TLB Miss Vectors
	5.4.4 Data Nested TLB Vector
	5.4.5 Dirty Bit Vector
	5.4.6 Data/Instruction Access Bit Vector
	5.4.7 Page Not Present Vector
	5.4.8 Data/Instruction Access Rights Vector

	5.5 Subpaging

	Runtime Support for Control and Data Speculation 6
	6.1 Exception Deferral of Control Speculative Loads
	6.1.1 Hardware-only Deferral
	6.1.2 Combined Hardware/Software Deferral
	6.1.3 Software-only Deferral

	6.2 Speculation Recovery Code Requirements
	6.3 Speculation Related Exception Handlers
	6.3.1 Unaligned Handler

	Instruction Emulation and Other Fault Handlers 7
	7.1 Unaligned Reference Handler
	7.2 Unsupported Data Reference Handler
	7.3 Illegal Dependency Fault
	7.4 Long Branch

	Floating-point System Software 8
	8.1 Floating-point Exceptions in the Intel® Itanium® Architecture
	8.1.1 The Software Assistance Exceptions (Faults and Traps)
	8.1.1.1 SWA Faults
	8.1.1.2 SWA Traps
	8.1.1.3 Approximation Instructions and Architecturally Mandated SWA Faults

	8.1.2 The IEEE Floating-point Exception Filter
	8.1.2.1 Invalid Operation Exception (Fault)
	8.1.2.2 Divide by Zero Exception (Fault)
	8.1.2.3 Denormal/Unnormal Operand Exception (Fault)
	8.1.2.4 Overflow Exception (Trap)
	8.1.2.5 Underflow Exception (Trap)
	8.1.2.6 Inexact Exception (Trap)

	8.2 IA-32 Floating-point Exceptions

	IA-32 Application Support 9
	9.1 Transitioning between Intel® Itanium® and IA-32 Instruction Sets
	9.1.1 IA-32 Code Execution Environments
	9.1.2 br.ia
	9.1.3 JMPE
	9.1.4 Procedure Calls between Intel® Itanium® and IA-32 Instruction Sets
	9.1.4.1 Itanium®-based Caller to IA-32 Callee
	9.1.4.2 IA-32 Caller to Itanium®-based Callee

	9.2 IA-32 Architecture Handlers
	9.3 Debugging IA-32 and Itanium®-based Code
	9.3.1 Instruction Breakpoints
	9.3.2 Data Breakpoints
	9.3.3 Single Step Traps
	9.3.4 Taken Branch Traps

	External Interrupt Architecture 10
	10.1 External Interrupt Basics
	10.2 Configuration of External Interrupt Vectors
	10.3 External Interrupt Masking
	10.3.1 PSR.i
	10.3.2 IVR Reads and EOI Writes
	10.3.3 Task Priority Register (TPR)
	10.3.4 External Task Priority Register (XTPR)

	10.4 External Interrupt Delivery
	10.5 Interrupt Control Register Usage Examples
	10.5.1 Notation
	10.5.2 TPR and XPTR Usage Example
	10.5.3 EOI Usage Example
	10.5.4 IRR Usage Example
	10.5.5 Interval Timer Usage Example
	10.5.6 Local Redirection Example
	10.5.7 Inter-processor Interrupts Layout and Example
	10.5.8 INTA Example

	I/O Architecture 11
	11.1 Memory Acceptance Fence (mf.a)
	11.2 I/O Port Space

	Performance Monitoring Support 12
	12.1 Architected Performance Monitoring Mechanisms
	12.2 Operating System Support

	Firmware Overview 13
	13.1 Processor Boot Flow Overview
	13.1.1 Firmware Boot Flow
	13.1.2 Operating System Boot Steps

	13.2 Runtime Procedure Calls
	13.2.1 PAL Procedure Calls
	13.2.1.1 Making a Static PAL Call
	13.2.1.2 Making a Stacked PAL Call
	13.2.1.3 PAL Procedure Calls and Performance

	13.2.2 SAL Procedure Calls
	13.2.3 EFI Procedure Calls
	13.2.4 Physical and Virtual Addressing Mode Considerations
	13.2.4.1 SAL Procedures that Invoke PAL Procedures

	13.3 Event Handling in Firmware
	13.3.1 Machine Check Abort (MCA) Flows
	13.3.1.1 Machine Check Handling in PAL
	13.3.1.2 Machine Check Handling in SAL
	13.3.1.3 Machine Check Abort Handling in OS

	13.3.2 INIT Flows
	13.3.3 PMI Flows

	Code Examples A
	A.1 OS Boot Flow Sample Code

