Computing the Cube Root

Ken Turkowski, turk@apple.com
Apple Computer Technical Report \#KT-32
10 February 1998

There are occasions in perception and computer graphics where it is necessary to compute the cube root.

$$
r=\sqrt[3]{s}
$$

The first thing to note is that

$$
\sqrt[3]{s 2^{3 p}}=\sqrt[3]{s} 2^{p}
$$

From this, we see that the cube root of any number is related in a simple way to that of a number 8^{p} times larger. In other words, that computing the cube root of any number can be reduced to computing the cube root of a number between $\frac{1}{8} \leq s<1$.

The following quadratic polynomial yields approximately 6 bits of accuracy between $\frac{1}{8} \leq s<1$:

$$
r \approx-0.46946116 s^{2}+1.072302 s+0.3812513
$$

Given an estimate for the cube root of a number, the accuracy can be improved quadratically by use of the Newton-Raphson-derived iteration

$$
r_{(n+1)}=\frac{2}{3} r_{(n)}+\frac{1}{3} \frac{s}{r_{(n)}^{2}},
$$

One subsequent iteration yields ≈ 12 bits, 2 iterations yield ≈ 24 bits, 3 iterations yield ≈ 48 bits, 4 iterations yield ≈ 96 bits, so that 2 iterations is sufficient for single precision, and 4 is sufficient for double precision IEEE floating point.

An analysis yields 4 M (multiplication/addition/subtraction) operations and 1 D (division) operation per iteration. For single precision floating point, the total operation count is

$$
4 \mathrm{M}+2 * 4 \mathrm{M}+2 * 1 \mathrm{D}=12 \mathrm{M}+2 \mathrm{D} .
$$

An alternative is to just use one approximating rational polynomial. An analysis shows that a quartic rational polynomial is sufficient to yield 24 bits of precision between $\frac{1}{8} \leq s<1$. This requires

$$
16 \mathrm{M}+1 \mathrm{D} .
$$

On most modern computers, $\mathrm{D}>4 \mathrm{M}$ (i.e. a division takes more than 4 multiplications worth of time), so it is probably preferable to compute a 24 bit result directly.

C Implementation

```
#include <fp.h> /* or <math.h> */
float CubeRoot(float x)
{
    float fr, r;
    int ex, shx;
    /* Argument reduction */
    fr = frexp(x, &ex); /* separate into mantissa and exponent */
    shx = ex % 3;
    if (shx > 0)
            shx -= 3; /* compute shx such that (ex - shx) is divisible by 3 */
    ex = (ex - shx) / 3; /* exponent of cube root */
    fr = ldexp(fr, shx);
    /* 0.125 <= fr < 1.0 */
#ifdef ITERATE
    /* Compute seed with a quadratic qpproximation */
    fr = (-0.46946116F * fr + 1.072302F) * fr + 0.3812513F;/* 0.5<=fr<1 */
    r = ldexp(fr, ex); /* 6 bits of precision */
    /* Newton-Raphson iterations */
    r = (float) (2.0/3.0) * r + (float)(1.0/3.0) * x / (r * r); /* 12 bits */
    r = (float)(2.0/3.0) * r + (float)(1.0/3.0) * x / (r * r); /* 24 bits */
#else ITERATE
    /* Use quartic rational polynomial with error < 2^(-24) */
    fr = (()(45.2548339756803022511987494 * fr +
                192.2798368355061050458134625) * fr +
                119.1654824285581628956914143) * fr +
                13.43250139086239872172837314) * fr +
                0.1636161226585754240958355063)
    /
                ((((14.80884093219134573786480845 * fr +
                151.9714051044435648658557668) * fr +
                168.5254414101568283957668343) * fr +
                33.9905941350215598754191872) * fr +
                1.0);
    r = ldexp(fr, ex); /* 24 bits of precision */
#endif
    return(r);
}
```

