
Computing the Cube Root
Ken Turkowski, turk@apple.com

Apple Computer Technical Report #KT-32
10 February 1998

There are occasions in perception and computer graphics where it is necessary to compute the cube 
root.

r = s3

The first thing to note is that

s23 p3 = s3 2p .

From this, we see that the cube root of any number is related in a simple way to that of a number 
8p  times larger. In other words, that computing the cube root of any number can be reduced to 
computing the cube root of a number between 1

8 ≤ s <1.

The following quadratic polynomial yields approximately 6 bits of accuracy between 1
8 ≤ s <1 :

r ≈ −0.46946116s2 +1.072302s + 0.3812513

Given an estimate for the cube root of a number, the accuracy can be improved quadratically by use 
of the Newton-Raphson-derived iteration

rn +1( ) = 2
3 rn( ) + 1

3

s

r n( )
2 ,

One subsequent iteration yields ≈12 bits, 2 iterations yield ≈24 bits, 3 iterations yield ≈48 bits, 4 
iterations yield ≈96 bits, so that 2 iterations is sufficient for single precision, and 4 is sufficient for 
double precision IEEE floating point.

An analysis yields 4 M (multiplication/addition/subtraction) operations and 1 D (division) operation 
per iteration. For single precision floating point, the total operation count is

4 M + 2 * 4 M + 2 * 1 D = 12 M + 2 D.

An alternative is to just use one approximating rational polynomial. An analysis shows that a 
quartic rational polynomial is sufficient to yield 24 bits of precision  between 1

8 ≤ s <1. This 
requires

16 M +1 D.

On most modern computers, D > 4 M (i.e. a division takes more than 4 multiplications worth of 
time), so it is probably preferable to compute a 24 bit result directly.
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C Implementation

#include <fp.h> /* or <math.h> */

float CubeRoot(float x)
{

float fr, r;
int ex, shx;

/* Argument reduction */
fr = frexp(x, &ex); /* separate into mantissa and exponent */
shx = ex % 3;
if (shx > 0)

shx -= 3; /* compute shx such that (ex - shx) is divisible by 3 */
ex = (ex - shx) / 3; /* exponent of cube root */
fr = ldexp(fr, shx);
/* 0.125 <= fr < 1.0 */

#ifdef ITERATE
/* Compute seed with a quadratic qpproximation */
fr = (-0.46946116F * fr + 1.072302F) * fr + 0.3812513F;/* 0.5<=fr<1 */
r = ldexp(fr, ex); /* 6 bits of precision */

/* Newton-Raphson iterations */
r = (float)(2.0/3.0) * r + (float)(1.0/3.0) * x / (r * r); /* 12 bits */
r = (float)(2.0/3.0) * r + (float)(1.0/3.0) * x / (r * r); /* 24 bits */

#else ITERATE
/* Use quartic rational polynomial with error < 2^(-24) */
fr = ((((45.2548339756803022511987494 * fr +

192.2798368355061050458134625) * fr +
119.1654824285581628956914143) * fr +
13.43250139086239872172837314) * fr +
0.1636161226585754240958355063)

/
((((14.80884093219134573786480845 * fr +
151.9714051044435648658557668) * fr +
168.5254414101568283957668343) * fr +
33.9905941350215598754191872) * fr +
1.0);

r = ldexp(fr, ex); /* 24 bits of precision */
#endif

return(r);
}
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