
X3T10/990D revision 3

dpANS Common Access Method - 3
1

WORKING X3T10
DRAFT Project 990D

Revision 3
16-Mar-98

Information technology -
Common Access Method - 3
(CAM-3)

This is a draft proposed American National Standard of Accredited Standards Committee X3. As such
this is not a completed standard. The X3T10 Technical Committee may modify this document as a result
of comments received during public review and its approval as a standard.

Permission is granted to members of X3, its technical committees, and their associated task groups to
reproduce this document for the purposes of X3 standardization activities without further permission,
provided this notice is included. All other rights are reserved. Any commercial or for-profit replication or
republication of this document is strictly prohibited.

ASC X3T10 Technical Editor: William D. Dallas
Digital Equipment Corporation

110 Spit Brook Road
Nashua NH 03060

USA

Telephone: 603-881-2508
Facsimile: 603-881-2257

Email: dallas@zk3.dec.com

Reference number ISO/IEC **** : 199x
ANSI X3.232 - 199x

X3T10/990D revision 3

dpANS Common Access Method - 3
2

POINTS OF CONTACT
X3T10 Chair X3T10 Vice-Chair
John B. Lohmeyer Lawrence J. Lamers
Symbios Logic Adaptec
1635 Aeroplaza Drive 691 South Milpitas Blvd.
Colorado Springs, CO 80916 Milpitas, CA 95035

Tel: (719) 573-3362 Tel: (408) 957-7817
Fax: (719) 597-3037 Fax: (408) 957-7193
Email: john.lohmeyer@symbios.com Email: ljlamers@aol.com

X3 Secretariat
Lynn Barra
Administrator Standards Processing
X3 Secretariat
1250 Eye Street, NW Suite 200
Washington, DC 20005

Tel: (202 626-5738
Fax: (202) 638-4922

SCSI Reflector
Internet address for distribution via SCSI reflector: t10@symbios.com

SCSI Bulletin Board
Tel: (719) 574-0424

Document Distribution
Global Engineering
15 Inverness Way East
Englewood, CO 80112-5704

Tel: (303) 792-2181 or (800) 854-7179
Fax: (303) 792-2192

X3T10/990D revision 3

dpANS Common Access Method - 3
3

ABSTRACT
To be supplied

PATENT STATEMENT
The developers of this standard have requested that holder's of patents that may be required for the
implementation of the standard, disclose such patents to the publisher. However neither the developers
or the publisher has undertaken a patent search in order to identify which patents may apply to this
standard.

No position is taken with respect to the validity of any claim or any patent rights that may have been
disclosed. Details of submitted statements may be obtained from the publisher concerning any
statement of patents and willingness to grant a license under these rights on reasonable and
nondiscriminatory terms and conditions to applicants desiring to obtain such a license.

X3T10/990D revision 3

dpANS Common Access Method - 3
4

Document Revision Status

Revision 3
− Added Host Target Mode
− Document cleanup
− Some SAM terminology

Planned changes for Revision 4
− Reduce peripheral driver complexity in relation to topology changes and synchronization points.
− Place all structure definitions into tables
− Place all data values and bit definitions into tables
− Change where applicable for SAM terminology
− Add peripheral driver model
− Update definitions
− Add diagrams to show data structure relationships in EDT
− Add methodology to obtain interconnect status (up, down, initializing)

X3T10/990D revision 3

dpANS Common Access Method - 3
5

Table Of Contents

FOREWORD 14

INTRODUCTION 14

1. SCOPE 15

2. NORMATIVE REFERENCES 15

3. DEFINITIONS AND CONVENTIONS 15

3.1 Definitions 15
3.1.1 Block 15
3.1.2 CCB (CAM-3 control block) 15
3.1.3 Connection_ID 15
3.1.4 Device 15
3.1.5 Device Query 15
3.1.6 Immediate CCB 16
3.1.7 Queued CCB 16
3.1.8 CDB (command descriptor block) 16
3.1.9 DMA (direct memory access) 16
3.1.10 freeze 16
3.1.11 HA (host adapter) 16
3.1.12 null 16
3.1.13 optional 16
3.1.14 PD (Peripheral Driver) 16
3.1.15 OSD (Operating System Dependant) 16
3.1.16 Path 16
3.1.17 Port_ID 16
3.1.18 reserved 17
3.1.19 Scan 17
3.1.20 SIM (system interface module) 17
3.1.21 VU (vendor unique) 17
3.1.22 XPT (transport) 17

3.2 Conventions 17

4. CONFORMANCE 17

5. GENERAL DESCRIPTION 18

X3T10/990D revision 3

dpANS Common Access Method - 3
6

5.1 Environment 18

5.2 Peripheral driver functions 20

5.3 XPT functions 20

5.4 SIM functions 20

6. BACKGROUND 20

6.1 Software 21

6.2 CAM-3 (Common Access Method - 3) 21

6.3 OSD (Operating System Dependencies) 21

6.4 Architectural considerations 22

7. CAM-3 DATA TYPE AND STRUCTURE SIZE DEFINITIONS 22

7.1 Data and structure declarations 23

7.2 Data Type Sizes 23

7.3 Structure Member CAM Boundary Rules 24

8. THE XPT MODEL 24

8.1 The Equipment Data Tables (EDTs) 24

8.2 EDT Information Data Persistence and Modification Rules 26
8.2.1 EDT Information Data Persistence Across Boots 26
8.2.2 EDT Information Data Boot Time Information Persistence 29

9. XPT TRANSPORT FUNCTIONALITY 31

9.1 CAM-3 Locking 31

9.2 CAM Locking Rules 32

9.3 XPT CAM-3 Mandatory Services 33
9.3.1 XPT Translation Services 33

9.3.1.1 Structures Used with XPT Translation Services 33
9.3.1.1.1 The Translation Structure 33
9.3.1.1.2 Member Descriptions of the Translation Structure 33

X3T10/990D revision 3

dpANS Common Access Method - 3
7

9.3.1.1.3 The Connections Structure 35
9.3.1.1.4 Member Descriptions of the Connections Structure 35

9.3.1.2 xpt_get_logical_id(TRANSLATION *trans) 37
9.3.1.3 xpt_get_phys_attrib(TRANSLATION *trans) 39
9.3.1.4 xpt_get_connections(CONNECTION *connect) 40

9.3.2 XPT Lock Services 42
9.3.2.1 xpt_lock_init(CAM_VOID_OFFSET lock, CAM_U8 lock_level) 42
9.3.2.2 xpt_lock(CAM_VOID_OFFSET lock) 43
9.3.2.3 xpt_unlock(CAM_VOID_OFFSET lock) 43

9.3.3 XPT Generic Services 44
9.3.3.1 xpt_isr() 44
9.3.3.2 xpt_alloc_pd_specific(TRANSLATION *trans, CAM_VOID (*spec_init()), CAM_U32 size) 44
9.3.3.3 xpt_get_pd_specific(TRANSLATION *trans) 45
9.3.3.4 xpt_dealloc_pd_specific(TRANSLATION *trans) 46
9.3.3.5 xpt_mem_alloc(CAM_U32 size, CAM_U32 flags) 47
9.3.3.6 xpt_mem_free((CAM_VM_OFFSET)addr) 48
9.3.3.7 xpt_ccb_alloc3(CAM_U32 flags) 49
9.3.3.8 xpt_ccb_free3(CCB_HEADER3 *ccb_header3) 50
9.3.3.9 xpt_action3(CCB_HEADER3 *ccb_header3) 50
9.3.3.10 xpt_callback(CCB_HEADER3 *ccb) 51
9.3.3.11 xpt_virt_to_phys(CAM_VM_OFFSET addr, CAM_MAP *cam_map) 51
9.3.3.12 xpt_page_size(CAM_VM_OFFSET addr, CAM_MAP *map) 52
9.3.3.13 xpt_pdrv_reg(CAM_S8 *name, CAM_U32 working_set_size) 52
9.3.3.14 xpt_pdrv_unreg(CAM_U32 pdrv_reg_num) 53
9.3.3.15 xpt_unit_lock_exclus(TRANS *trans, CAM_U32 pdrv_reg_num) 53
9.3.3.16 xpt_unit_unlock_exclus(TRANSLATION *trans, CAM_U32 pdrv_reg_num) 55
9.3.3.17 xpt_bcopy(CAM_VM_OFFSET src, CAM_VM_OFFSET dest, CAM_U32 length) 55
9.3.3.18 xpt_bzero(CAM_VM_OFFSET src, CAM_U32 length) 56
9.3.3.19 xpt_copy_to_phys(CAM_VM_OFFSET virt_src, CAM_PM_OFFSET phys_dest, CAM_U32
length) 56

9.3.4 XPT Queue Services 57
9.3.4.1 xpt_que_init(XPT_QUEHEAD *quehead) 57
9.3.4.2 xpt_insque(XPT_QUEHEAD *data_element, XPT_QUEHEAD *element_position) 58
9.3.4.3 xpt_remque(XPT_QUEHEAD *data_element) 58
9.3.4.4 xpt_insque_head(XPT_QUEHEAD *data_element, XPT_QUEHEAD *quehead) 58
9.3.4.5 xpt_remque_head(XPT_QUEHEAD *quehead) 59
9.3.4.6 xpt_insque_tail(XPT_QUEHEAD *data_element, XPT_QUEHEAD *quehead) 59
9.3.4.7 xpt_remque_tail(XPT_QUEHEAD *quehead) 59

9.3.5 XPT Synchronization services 60
9.3.5.1 xpt_sleep(CAM_VM_OFFSET channel) 60
9.3.5.2 xpt_wakeup(CAM_VM_OFFSET channel) 60

9.4 CAM-3 XPT Optional Services 61
9.4.1 XPT DMA Services 61

9.4.1.1 The XPT_DMA_HANDLE Structure 62
9.4.1.2 The XPT_DMA_SGLIST Structure. 62
9.4.1.3 xpt_dma_map_alloc(CAM_U32 byte_count, CAM_VM_OFFSET OSD, XPT_DMA_HANDLE
*xpt_dma_handle, flags) 62

X3T10/990D revision 3

dpANS Common Access Method - 3
8

9.4.1.4 xpt_dma_map_dealloc(XPT_DMA_HANDLE *xpt_dma_handle) 64
9.4.1.5 xpt_dma_map_load(CAM_U32 byte_count, CAM_VM_OFFSET virtual_addr, CAM_MAP
*cam_map, XPT_DMA_HANDLE *xpt_dma_handle, CAM_VM_OFFSET OSD) 65
9.4.1.6 xpt_dma_map_unload(XPT_DMA_HANDLE *dma_handle) 66

9.4.2 XPT SIM Services 66
9.4.2.1 xpt_io_copyin(CAM_IOHANDLE srcaddr, CAM_VM_OFFSET destaddr, CAM_U32 count) 66
9.4.2.2 xpt_io_copyout(CAM_VM_OFFSET srcaddr, CAM_IOHANDLE destaddr, CAM_U32 count) 67
9.4.2.3 xpt_readbus_d8(CAM_IOHANDLE hba_addr) 68
9.4.2.4 xpt_readbus_d16(CAM_IOHANDLE hba_addr) 68
9.4.2.5 xpt_readbus_d32(CAM_IOHANDLE hba_addr) 68
9.4.2.6 xpt_readbus_d64() 69
9.4.2.7 xpt_writebus_d8(CAM_IOHANDLE hba_addr, CAM_U8 data) 69
9.4.2.8 xpt_writebus_d16(CAM_IOHANDLE hba_addr, CAM_U16 data) 69
9.4.2.9 xpt_writebus_d32(CAM_IOHANDLE hba_addr, CAM_U32 data) 70
9.4.2.10 xpt_writebus_d64(CAM_IOHANDLE hba_addr, CAM_U64 data) 70

10. PRINCIPLES OF OPERATION 70

10.1 Accessing the XPT 70

10.2 Initialization 70

10.3 CCB completion 71
10.3.1 Completion of immediate CCB 71
10.3.2 Completion of queued CCBs 71

10.4 Request queues 72
10.4.1 The logical device and the peripheral driver 72
10.4.2 SIM queuing 72
10.4.3 SIM queue priority 72

10.4.3.1 Error conditions and queues within the subsystem 73

10.5 Asynchronous event callback 74

10.6 Autoevent 75

10.7 SIM Loading at Boot and Run Time 75
10.7.1 The CAM-3 SIM_ENTRY3 Structure 76
10.7.2 Member Descriptions for the CAM-3 SIM_ENTRY3 Structure 77

11. THE CAM-3 SCSI PROTOCOL 79

11.1 XPT SCSI Device Topology Discovery Process 79
11.1.1 SIM Discovery Process Information Methodology 80
11.1.2 Discovery Process XPT Model 82

11.1.2.1 Discovery Process Scan Port ID 83

X3T10/990D revision 3

dpANS Common Access Method - 3
9

11.1.2.2 Discovery Process Scan One Target Identifier 84
11.1.3 XPT Releasing of Binds during Topology Discovery 85
11.1.4 SIM Model for Topology Discovery Process 87
11.1.5 Peripheral Driver Model for Topology Discovery Process 90

11.2 SCSI Asynchronous Events Callbacks 90
11.2.1 xpt_async3 (callable only by SIMs) 92
11.2.2 XPT asynchronous callbacks to peripheral drivers and SIMs 94

11.3 CAM-3 Control Blocks 103

11.4 SCSI Messaging Functionality 103

11.5 CAM-3 SCSI CCB Table Definitions and Value Definitions 104

11.6 CCB_HEADER3 Structure 105
11.6.1 Member Descriptions of the CCB_HEADER3 Structure 106

11.7 SCSI CAM-3 Specific CCB Function Formats 113
11.7.1 CAM-3 NOP CCB 113

11.7.1.1 Member Descriptions for NOP 114
11.7.1.2 Returns for NOP 114

11.7.2 Discovery CCB Functions 114
11.7.2.1 CAM-3 Discovery Start CCB - Scan Port ID function 115

11.7.2.1.1 Member Descriptions for Discovery Start CCB - Port ID function 115
11.7.2.1.2 Returns for Discovery Start CCB - Port ID function 116

11.7.2.2 CAM-3 Discovery Start CCB - Scan Target ID function 116
11.7.2.2.1 Member Descriptions for Discovery Start CCB - Target ID function 117
11.7.2.2.2 Returns for Discovery Start CCB - Target ID function 117

11.7.2.3 CAM-3 Discovery Address CCB 117
11.7.2.3.1 Member Descriptions for Discovery Address CCB function 118
11.7.2.3.2 Returns for Discovery Address CCB function 118

11.7.2.4 CAM-3 Discovery End CCB 119
11.7.2.4.1 Member Descriptions for Discovery End CCB function 119
11.7.2.4.2 Returns for Discovery Address CCB function 120

11.7.3 Binding CCB Functions 120
11.7.3.1 CAM-3 Bind CCB 120

11.7.3.1.1 Member Descriptions for Bind 122
11.7.3.1.2 Returns for Bind 123

11.7.3.2 CAM-3 Bind Release 123
11.7.3.2.1 Member Descriptions for Bind Release 123
11.7.3.2.2 Returns for Bind Release 124

11.7.3.3 CAM-3 Bind Query CCB 124
11.7.3.3.1 Member Descriptions for Bind Query 125
11.7.3.3.2 Returns for Bind Query 125

11.7.4 CAM-3 Get Device Type 125
11.7.4.1 Member Descriptions for Get Device Type 126
11.7.4.2 Returns for Get Device Type 126

X3T10/990D revision 3

dpANS Common Access Method - 3
10

11.7.5 CAM-3 Path Inquiry 126
11.7.5.1 Member Descriptions for Path Inquiry 127
11.7.5.2 Returns for Path Inquiry 132

11.7.6 CAM-3 Release SIM Queue 132
11.7.6.1 Member Descriptions for Release SIM Queue 132
11.7.6.2 Returns for Release SIM Queue 133

11.7.7 CAM-3 Scan SCSI Bus 133
11.7.7.1 Member Descriptions for Scan Bus 134
11.7.7.2 Returns for Scan Bus 134

11.7.8 CAM-3 Scan Logical Unit 135
11.7.8.1 Member Descriptions for Scan Logical Unit 135
11.7.8.2 Returns for Scan Logical Unit 136

11.7.9 CAM-3 Set Asynchronous Callback 136
11.7.9.1 Member Descriptions for Set Asynchronous Callback 136
11.7.9.2 Returns for Set Asynchronous Callback 137

11.7.10 CAM-3 Set Device Type - “To be DELETED by committee” 137
11.7.10.1 Member Descriptions for Set Device Type 137
11.7.10.2 Returns for Set Device Type 137

11.7.11 CAM 3 Abort SCSI Command 137
11.7.11.1 Member Descriptions for Abort SCSI Command 138
11.7.11.2 Returns for Abort SCSI Command 139

11.7.12 CAM-3 Reset SCSI Bus 139
11.7.12.1 Member Descriptions for Reset SCSI Bus 140
11.7.12.2 Returns for Reset SCSI Bus 140

11.7.13 CAM-3 Reset SCSI Device 140
11.7.13.1 Member Descriptions for Reset SCSI Device 141
11.7.13.2 Returns for Reset SCSI Device 141

11.7.14 CAM-3 Terminate I/O Process 141
11.7.14.1 Member Descriptions for Terminate I/O Process 142
11.7.14.2 Returns for Terminate I/O Process 143

11.8 CAM-3 Control Blocks to Request I/O 143
11.8.1 CAM-3 Execute SCSI I/O Request 144

11.8.1.1 Member Descriptions for Execute SCSI I/O Request 145
11.8.1.2 Returns for Execute SCSI I/O Request 153

11.9 Command Linking (optional) 154

12. TARGET MODE (OPTIONAL) 156

12.1 Target mode overview 156

12.2 Phase-cognizant mode 157
12.2.1 Enable LUN for Phase Cognizant mode 158

12.2.1.1 Member Descriptions for ENABLE LUN 158
12.2.1.2 Returns for ENABLE LUN 159

12.2.2 Function description for Phase Cognizant ENABLE LUN 160

X3T10/990D revision 3

dpANS Common Access Method - 3
11

12.2.3 I/O process creation for phase cognizant mode 162
12.2.4 Continuation and completion of an I/O process for phase cognizant mode 163
12.2.5 Non-transparent event handling for phase cognizant mode 165
12.2.6 Execute Target I/O CCB 167

12.2.6.1 Member Descriptions for Execute Target I/O Request 168
12.2.6.2 Final CAM Status for Execute Target I/O CCBs 170

12.3 Host target mode 171
12.3.1 Host target mode functionality not specified 171
12.3.2 SCSI Serial interconnects 171
12.3.3 Host target mode messages 171
12.3.4 Use of the IMMEDIATE NOTIFY CCB 173

12.3.4.1 The events/messages that use the immediate notify mechanism 174
12.3.4.1.1 Sense data preservation where no nexus has been established 174
12.3.4.1.2 Mandatory messages 175

12.3.4.1.2.1 ABORT message 175
12.3.4.1.3 Optional messages 176

12.3.4.1.3.1 Optional messages that are not supported 176
12.3.4.1.3.2 ABORT TAG message 176
12.3.4.1.3.3 CLEAR QUEUE message 177
12.3.4.1.3.4 HEAD OF QUEUE, ORDERED QUEUE and SIMPLE QUEUE TAG messages 178
12.3.4.1.3.5 TERMINATE I/O PROCESS message 178

12.3.4.1.4 Resource unavailable to SIM/HA 179
12.3.4.1.5 HA faults 180

12.3.5 IMMEDIATE NOTIFY CCB 182
12.3.5.1 Member Descriptions for IMMEDIATE NOTIFY CCB 182
12.3.5.2 Returns for IMMEDIATE NOTIFY 183

12.3.6 NOTIFY ACKNOWLEDGE CCB 184
12.3.6.1 Member Descriptions for NOTIFY ACKNOWLEDGE CCB 184
12.3.6.2 Returns for NOTIFY ACKNOWLEDGE 185

12.3.7 Enable target mode LUN for host target mode 185
12.3.8 ENABLE LUN CCB for host target mode 188

12.3.8.1 Member Descriptions for ENABLE LUN CCB for host target mode 189
12.3.8.2 Returns for ENABLE LUN 190

12.3.9 ACCEPT TARGET I/O and CONTINUE TARGET I/O CCB operation 191
12.3.9.1 SIM/HA ACCEPT TARGET I/O CCB acceptance 191
12.3.9.2 SIM/HA CDB reception 191
12.3.9.3 Host peripheral driver CDB completion callback 193
12.3.9.4 SIM/HA CONTINUE TARGET I/O CCB acceptance 193
12.3.9.5 Host target mode peripheral driver continue target I/O callback 194
12.3.9.6 Command reception errors and data phase errors handling 195
12.3.9.7 ACCEPT and CONTINUE TARGET I/O CCB timeouts 197

12.3.10 ACCEPT TARGET I/O CCB 199
12.3.10.1 Member Descriptions for ACCEPT TARGET I/O 200
12.3.10.2 Returns for ACCEPT TARGET I/O 200

12.3.11 CONTINUE TARGET I/O CCB 201
12.3.11.1 Member Descriptions for CONTINUE TARGET I/O 201
12.3.11.2 Returns for CONTINUE TARGET I/O 202

X3T10/990D revision 3

dpANS Common Access Method - 3
12

12.3.12 Disable of a host target mode LUN 203
12.3.13 Exception conditions 204

12.3.13.1 BUS RESET 204
12.3.13.2 BUS DEVICE RESET message 205

12.3.14 CDB reception on a non enabled LUN 206
12.3.15 Retrieving unused ACCEPT TARGET I/O CCBs from the SIM 206

Tables
TABLE 1 OPERATING SYSTEM POINTER STORAGE SIZES 24
TABLE 2 VALID ARGUMENT REQUIREMENTS FOR CALLS TO XPT_ASYNC3() 94
TABLE 3 VALID ARGUMENTS REQUIREMENTS FOR CALLS TO (*CAM_ASYNC_FUNC)() 95
TABLE 4 SUPPORT OF SCSI MESSAGES 104
TABLE 5 CCB_HEADER3 106
TABLE 6 CAM STATUSES 108
TABLE 7 CAM-3 SCSI FUNCTION CODES FOR CCBS 111
TABLE 8 CCB_NOOP3 114
TABLE 9 CCB_DISCOV_PORT_ID3 115
TABLE 10 CCB_DISCOV_TARGET_ID3 116
TABLE 11 CCB_DISCOV_ADDR3 118
TABLE 12 CCB_DISCOV_END3 119
TABLE 13 SIM QUEUE ACTIONS 148
TABLE 14 CAM-3 EXECUTE TARGET I/O CCB LIST 159
TABLE 15 CAM-3 IMMEDIATE NOTIFY CCB LIST 190
TABLE 16 CAM-3 ACCEPT TARGET I/O CCB LIST 190

Figures

FIGURE 1 CAM-3 ENVIRONMENT MODEL 19

Notes

NOTE 1 28
NOTE 2 30
NOTE 3 37
NOTE 4 48
NOTE 5 49
NOTE 6 53
NOTE 7 73
NOTE 8 73
NOTE 9 82
NOTE 10 88
NOTE 11 88
NOTE 12 90
NOTE 13 109
NOTE 14 121
NOTE 15 127
NOTE 16 137

X3T10/990D revision 3

dpANS Common Access Method - 3
13

NOTE 17 154
NOTE 18 162
NOTE 19 162
NOTE 20 164
NOTE 21 171
NOTE 22 172
NOTE 23 175
NOTE 24 180
NOTE 25 181
NOTE 26 182
NOTE 27 186
NOTE 28 186
NOTE 29 187
NOTE 30 187
NOTE 31 191
NOTE 32 192
NOTE 33 193
NOTE 34 193
NOTE 35 193
NOTE 36 195
NOTE 37 196
NOTE 38 197
NOTE 39 198

X3T10/990D revision 3

dpANS Common Access Method - 3
14

Foreword

 (Editors Mark - Create forward)

Introduction

The industry provides a diverse range of peripherals for attachment to a wide range of computing
equipment. Some system manufacturers have developed approaches for their attachment, which are
widely followed, increasing the applications available for the attachment of peripheral devices. In
markets where no standard method of attachment exists, however, variations between third party sellers
have made it nearly impossible for end users to attach more than one peripheral to a host adapter.

In an effort to broaden the application base for peripherals, an ad hoc industry group of companies
representing system integrators, controllers, peripherals, and semiconductors decided to address the
issues involved. That effort has evolved into this continuing standard.

X3T10/990D revision 3

dpANS Common Access Method - 3
15

Information processing systems -- Common Access Method - 3

1. Scope

This standard defines the Common Access Method - 3 (CAM-3) for the control of devices.

The purpose of this standard is to define a method whereby multiple environments may adopt a common
procedure for the support of devices.

The CAM-3 provides a structured method for supporting peripherals with the software (e.g., peripheral
driver) and hardware (e.g., host adapter) associated with any computer.

This standard addresses the following interconnects:
• SCSI

2. Normative references

ANSI X3.131-1994, Small Computer Systems Interface - 2

3. Definitions and Conventions

3.1 Definitions

For the purposes of this standard the following definitions apply

3.1.1 Block
This defines an action to prevent access (e.g., to obstruct the action of or the continuation of a process
thread.

3.1.2 CCB (CAM-3 control block)
The data structure provided by peripheral drivers to the XPT to control execution of a function by the
SIM.

3.1.3 Connection_ID
A data structure that may contain the Port_ID and a protocol physical’s address specifiers based upon
usage. The protocol specific address identifiers may be either the protocol specific address specifiers or
a SIM/HA representation of the protocol specific address identifiers (e.g., a SSA HA may translate a HA
representation specific address identifiers to hop counts).

3.1.4 Device
A physical piece of equipment or mechanism designed to serve a special purpose or perform a special
function (e.g., a SCSI disk device). A device is an addressable entity that performs a function.

3.1.5 Device Query

X3T10/990D revision 3

dpANS Common Access Method - 3
16

A mechanism by which the XPT determines the device configuration of a specific SIM/HA as specified
by the Port_ID (e.g., the addresses of devices seen for a Port_ID by a SIM/HA).

3.1.6 Immediate CCB
Provides valid completion status when the call to xpt_action () returns (e.g., path inquiry).

3.1.7 Queued CCB
Provides status when the completion callback routine is called, or the CAM-3 Status field in the CCB
changes from valid completion Request In Progress to another valid CAM-3 Status.

3.1.8 CDB (command descriptor block)
A data structure containing the SCSI opcode, parameters, and control bits for that operation.

3.1.9 DMA (direct memory access)
A means of data transfer between peripheral and host memory without processor intervention.

3.1.10 freeze
This defines a software action to quiesce activity (e.g., freezes the queue).

3.1.11 HA (host adapter)
The hardware and microcode which provides the interface between system memory and any number of
protocol inter-connects (e.g., SCSI parallel bus host adapter or SCSI FCP serial bus).

3.1.12 null
A value, when specified, indicates that the contents of a field have no meaning. This value is typically,
though not necessarily, zero

3.1.13 optional
This term describes features, which are not required by this standard. However, if any feature defined by
this standard is implemented, it shall be done in the same way as defined by the standard. Describing a
feature as optional in the text is done to assist the reader. If there is a conflict between text and tables
on a feature described as optional, the table shall be accepted as being correct.

3.1.14 PD (Peripheral Driver)
A software module designed to control device models under the CAM-3 framework.

3.1.15 OSD (Operating System Dependant)
This term describes a capability, method of operation, or feature that depends on the specific operating
system on which CAM-3 is implemented.

3.1.16 Path
This term describes the Port_ID of the XPT or a Port_ID of a SIM/HA combined with a physical address a
specific device.

3.1.17 Port_ID
A XPT assigned value for a HA which may have zero or more devices. The Port_ID is a component of a

X3T10/990D revision 3

dpANS Common Access Method - 3
17

Connection_ID.

3.1.18 reserved
Where this term is used for bits, bytes, fields, and code values; the bits, bytes, fields, and code values
are set aside for future standardization. The default value shall be zero. The originator is required to
define a reserved field or bit as zero, but the receiver should not check reserved fields or bits for zero.

3.1.19 Scan
A CAM-3 CCB function that directs a Port_ID to determine its device configuration.

3.1.20 SIM (system interface module)
A software module designed to accept the CAM-3 control blocks routed through the XPT in order to
execute commands and perform other functions.

3.1.21 VU (vendor unique)
This term is used to describe bits, bytes, fields, code values, and features, which are not described in this
standard, and may be used in a way that varies among vendors.

3.1.22 XPT (transport)
A layer of software which, peripheral drivers and SIMs use to request the execution of CAM-3 functions.

3.2 Conventions
Within the tables, there is a direction bit which indicates in or out. The direction is from the view point of
the peripheral driver (i.e., information is out to the SIM from the peripheral driver and in to the peripheral
driver from the SIM

Certain terms used herein are the proper names of signals. These are printed in uppercase to avoid
possible confusion with other uses of the same words (e.g., ATTENTION. Any lower-case uses of these
words have the normal American English meaning).

There are places in this standard where the C programming language is used to define or express a
concept in order to assist the reader. These are not copyrighted program steps and implementers are
encouraged to use the code wherever it suits their application.

4. Conformance
An implementation claiming conformance to the transport layer (XPT) for a specified operating system
and language environment shall:

X3T10/990D revision 3

dpANS Common Access Method - 3
18

− Provide all the mandatory XPT functions and services specified in this standard.
− Correctly, inter-operate with any conforming System Interface Module (SIM) for the specified

environment.
− Provide the necessary interface specifications that a conforming SIM requires to interface with the

XPT.

An implementation claiming conformance to the SIM for a specified operating system and language
environment shall:
− Provide all the mandatory SIM functions and services specified in this standard.
− Correctly, inter-operate with any conforming XPT for the specified environment.
− Provide the necessary interface specifications that a conforming XPT requires to interface with SIMs.

A conforming implementation shall execute all functions as required by this standard, and in response to
these codes shall only return specified status, and return codes. A conforming implementation may
provide additional capabilities via Vendor Unique functions.

Claims of conformance to this standard shall state:
− Whether conformance is claimed with the XPT or the SIM or both.
− Whether the optional capability of target mode or Host Adapter (HA) engines is supported.

5. General description

The application environment for CAM-3 is any computer communicating with a device through a protocol
chip on a motherboard or a host adapter for the defined inter-connects in this standard.

SCSI is a widely used interface, which provides common attachment for a variety of peripherals.

The purpose of the CAM-3 is to define a standard for the support of Host Adapters (HA) and the like by
peripheral driver software.

Software in the operating system dispatches I/O requests to the peripherals in a number of different ways
depending on the software architecture.

5.1 Environment
A model of the CAM-3 usage environment is illustrated in figure 1. Multiple applications are shown
accessing a variety of devices. Several drivers, both peripheral drivers and SIMs, are present to support
the peripherals on the system.

The choice of XPT and SIM packaging is an operating system dependency.

Requests for I/O are made through the CAM-3 XPT interface. The XPT may execute them directly or
pass them to a SIM for execution.

The XPT function is illustrated as a separate element. The XPT services are incorporated into a single
logical module, which integrates both XPT and SIM functionality. The XPT services/functionality may be
provided by the operating system, or can be achieved through associating multiple separately loaded
software modules.

X3T10/990D revision 3

dpANS Common Access Method - 3
19

Figure 1 Cam-3 environment model

Application Application Application

Operating System

SCSI Disk Driver SCSI Tape Driver Network
Driver

Application
Pass Thru

Driver

XPT

SCSI (SPI)
SIM

SCSI (FCP)
FC
SIM

Network
Interconnect

SIM

Vendor Specific
Hardware Adapter

(HA)

Vendor Specific
Hardware Adapter

(HA)

Vendor Specific
Hardware Adapter

(HA)

X3T10/990D revision 3

dpANS Common Access Method - 3
20

5.2 Peripheral driver functions
Peripheral drivers provide the following functionality:

1) Interpreting of application or system level requests.
2) Mapping of application level requests to XPT/SIM control blocks.
3) Requesting of resources to initiate a CAM-3 request:

a) CAM-3 control blocks and supporting blocks that may be needed.
b) Buffer requirements

4) Handling of exception conditions not managed transparently by the architecture (e.g., a SCSI check
condition status, unexpected bus free, resets, etc.).

5) Logging of exception conditions for maintenance analysis programs.
6) Format utility or services required by format utilities.
7) Establishing parameters for HA operation.
8) Set up routing of I/O requests to the correct path.
9) Initialization and configuration functions of a device not handled by a utility at installation and

formatting time.
10) Establishing a time-out value for a task and passing this value in the CCB.

5.3 XPT functions

XPT services provide the following functionality to process CCBs:

1. Routing of the CCB to the proper SIM.
2. OSD and XPT management of CCB resources.
3. Maintenance of the Equipment Device Table(s). (This consists of owning the table and servicing

requests to read and write the table.).
4. Providing properly formatted control blocks and priming the fields needed to accomplish a request.
5. Routing of asynchronous events back to peripheral drivers.
6. Mapping of operating system serves in a generic fashion as specified.
7. Provide the mandatory infrastructure services.

5.4 SIM functions

1. Perform all interface functions to the HA;
2. Manage or delegate (as appropriate) all the HA protocol steps;
3. Distinguish abnormal behavior and perform error recovery, as required;
4. Manage data transfer path hardware, including DMA circuitry and address mapping, and establish

DMA resource requests (if necessary);
5. Queuing of multiple operations for different logical devices as well as the same logical device;
6. Freeze and unfreeze the queue as necessary to accomplish queue recovery;
7. Post the completed operation to the initiating device driver;
8. Manage protocol specific transactions;
9. implement a timer mechanism, using values provided by the peripheral driver;

6. Background

X3T10/990D revision 3

dpANS Common Access Method - 3
21

CAM-3 is a peripheral interface designed to permit a variety of devices to coexist. These peripherals are
typically, but not necessarily, attached to the host by a single HA and may present different device
specific protocol interfaces.

6.1 Software

OS (operating system) support for peripheral devices is normally achieved through peripheral drivers or
utility programs. No single driver or program can reasonably support all possible peripherals, so
separate drivers may be needed for each protocol class of installed device (e.g., SCSI disk, SCSI tape
and ATA disk). These same protocol drivers need to be able to share the HA hardware that supports that
protocol. These drivers also have to work with a broad range of HA hardware, from highly intelligent
coprocessors to the most primitive, including a chip on a motherboard. A standard programming
interface layer is essential to insulate peripheral drivers and utilities from the HA hardware
implementation, and to allow multiple drivers to share a single hardware interface.

6.2 CAM-3 (Common Access Method - 3)

This standard describes the general definition of the CAM-3 (Common Access Method). CAM-3
functionality has been separated into a few major elements.
− XPT (Transport)

The XPT (transport) defines a software architecture for peripheral drivers and programs to
submit I/O requests to the HA specific SIM module(s). Routing of requests to the correct HA and
posting the results of a request back to the driver are responsibilities of the transport.

− SIM (System Interface Module)
The SIM (System Interface Module) manages HA resources and provides a hardware
independent interface for applications and drivers. The SIM is responsible to process and
execute inter-connect specific requests, and manage the interface to the HA hardware.

There are no requirements on how the SIM is implemented, in RAM (random access memory) or
ROM (read only memory), provided the XPT is properly supported. A ROM-based SIM may
need a transparent (to the user) software layer to match the SIM-required services to the specific
manner in which they are requested of the OS.

− CCB (CAM-3 Control Block)
 The CAM-3 control block is a data structure passed from the peripheral driver to the XPT. The

contents of the data structure describe the action required and provide the fields necessary
for successful processing of a request.

6.3 OSD (Operating System Dependencies)

The system environment in which the CAM-3 is operating is a function of the hardware platform and the
operating system being executed. The byte ordering is different between an Intel-based and a
Motorola-based machine for example, and the calling structure differs greatly between operating
systems.

X3T10/990D revision 3

dpANS Common Access Method - 3
22

Although the fields of a CAM-3 CCB have a common meaning contents may vary by platform and OS.
These dependencies cause differences in operation and implementation, but do not prevent
interoperation on the same platform of two CAM-3 modules implemented by different manufacturers.

6.4 Architectural considerations

Programming effort has been minimized by making the interfaces as similar as possible across OS
platforms, and customizing the SIM for each HA to maximize performance under each OS. HAs vary
widely in the capability and functions they provide so there may be an internal (transparent) interface to
isolate hardware interface routines from routines which make use of OS resources.

In order to prevent each peripheral driver from having to scan for devices at initialization, the XPT and
the SIM(s)/HA(s) ascertains all installed devices for the supported inter-connects and constructs
Equipment Data Table(s) for the supported protocols. Peripheral drivers and SIMs use XPT services to
obtain information contained within the EDT.

Peripheral drivers need to be developed with documentation provided by the operating system vendor in
addition to that supplied by this standard.

XPT routing is a mechanism to support concurrent multiple co-resident SIMs so that different HAs can be
present in the same system. This task is handled by the XPT logical entity. The XPT is implemented
differently under each operating system, but the logical functionality is the same for all operating
systems.

Once one or more SIMs has loaded, the peripheral drivers integrate each type of device into the OS
through the XPT, independent of the installed HA hardware.

List of requirements that CAM-3 is designed to meet:
1. The ability to communicate (e.g., send commands) with any logical device on a supported inter-

connect;
2. No restrictions on the size or format of transferred data;
3. Allow all the capabilities of high end host adapters to be fully utilized and accommodating HAs

which do most of the protocol processing on board;
4. Allow the calling peripheral driver or program to interpret event information returned by logical

devices (e.g., sense data returned by SCSI devices);
5. Fully re-entrant code;
6. Support of multiple HAs;
7. Peripheral drivers may ascertain which optional features are available;
8. Define a single XPT based device scanning algorithm (so that each peripheral driver need not use

host and inter-connect bandwidth to perform this function;
9. Provide a mechanism to abort I/O requests (at request of peripheral driver);
10. Ability to issue multiple I/O requests from one or more peripheral drivers to a single device;
11. Providing peripheral drivers with a mechanism for allocating an event data area and for specifying

the number of event bytes to be automatically returned (e.g., the number of sense bytes returned
as a response to a SCSI CHECK CONDITION status).

7. CAM-3 Data Type and Structure Size Definitions

X3T10/990D revision 3

dpANS Common Access Method - 3
23

To allow easier transportability (not binary compatibility) of CAM-3 peripheral drivers, and SIM/HAs
between different machine platforms and operating systems, this international standard defines data
types and storage classes. The XPT supplier shall adhere to the data definitions defined by this
international standard.

The supplier of the XPT shall also the supply all structure definitions mandated by this international
standard. The structure definitions shall use the defined data types and CAM boundary rules as
specified by CAM-3. The term “CAM_boundary” is a defined term and refers to the address alignment of
a data type within a structure and the structure itself. Refer to Clause 7 and Clause 7.3 for further
details.

Data structure member address boundaries of the CAM-3 defined structures and its members is specified
by CAM-3. It shall be the responsibility of the XPT supplier to preserve those CAM_boundaries as
specified by the CAM_boundary rules. The CAM-3 boundary rules allows CCB structures and members
to be aligned to a known offset for 16, 32, 64, etc. bit processors regardless of the platform or O.S.
defined pointer size.

7.1 Data and structure declarations

The XPT vendor shall provide a single file called cam_definitions.h that shall provide the mechanisms
for peripheral drivers or SIMs to obtain data declarations. This file shall contain the declarations or point
to other data declaration files that define the data structures, data types and bit definitions defined by this
international standard supported by the XPT.

7.2 Data Type Sizes

CAM-3 defines the storage sizes and whether the storage class is signed or unsigned for the structures it
defines. The supplier of the XPT shall define the storage class as follows:

− CAM_U8:
An unsigned eight bit quantity

− CAM_S8:
A signed eight-bit quantity

− CAM_U16:
An unsigned sixteen bit quantity

− CAM_S16:
A signed sixteen-bit quantity

− CAM_U32:
An unsigned thirty two bit quantity

− CAM_S32:
A signed thirty-two bit quantity

− CAM_VM_OFFSET:
A virtual address pointer within the operating system

− CAM_PM_OFFSET:
A physical address pointer within the host

− CAM_VOID_OFFSET:

X3T10/990D revision 3

dpANS Common Access Method - 3
24

 A virtual address pointer within the operating system or a physical address pointer within the host
− CAM_IO_HANDLE:

A virtual address pointer or physical address pointer within an I/O buses address space (e.g., a
register address of a HA on a PCI bus). The obtaining this data type and values is operating system
dependent.

− CAM_VOID:
A void or nothing

Pointer sizes within CAM-3 structures shall be a power of 2 of 32 bits and shall be the size that the O.S.
defines for its pointer size rounded up to a power of 2 of 32 bits. The following is an example of pointer
size rules:

OS Pointer Size Cam-3 Structure Storage Size
1 to 32 bits 32 bits
33 to 64 bits 64 bits
65 to 128 bits 128 bits

Table 1 Operating System Pointer Storage Sizes

7.3 Structure Member CAM Boundary Rules

The defined CAM-3 data types and pointers declared within a defined CAM-3 structure shall be naturally
aligned to their addressed boundary.

The XPT supplier shall ensure the CAM_boundary by padding the structure so that the member aligns
with its address boundary. If the next defined member data type does not naturally align then the XPT
supplier shall ensure this CAM_boundary by padding the structure so that the member naturally aligns
with it address boundary.

All structures and structures within structures shall be aligned to the naturally aligned pointer boundary.

All arrays within a structure shall be aligned to the naturally aligned pointer boundary.

8. The XPT Model

Due to the planned inclusion of device protocols other than SCSI into CAM and the evolution of certain
protocols (SCSI) the XPT's Equipment Data Table has changed to support the SCSI protocols and other
device protocols. The following describes the methods, mechanisms and some of the requirements that
the XPT vendor shall employ for compliance to this standard. Further information and requirements are
specified in the protocol specific Clauses of this standard.

A CAM-3 XPT shall provide all the functionality as defined in CAM-1. This requirement allows peripheral
drivers and SIMs that conform to the CAM-1 specification to operate with a CAM-3 XPT. The
requirement shall be withdrawn in the subsequent version of CAM. It is recommended that both
peripheral drivers and SIMs migrate to CAM-3 compliance.

8.1 The Equipment Data Tables (EDTs)

X3T10/990D revision 3

dpANS Common Access Method - 3
25

The Equipment Data Tables are a collection of data elements that describe logical devices for the device
protocols. There shall be one Equipment Data Table for each protocol supported by the XPT. The XPT
reports the list of device protocols supported in the data returned in the PATH INQUIRY function directed
to the XPT.

The EDT for each protocol shall not be visible (e.g., the organization and structure is vendor unique) to
the peripheral drivers or the SIMs but information contained within an EDT shall be presented through
XPT services. The construction and organization of the EDT(s) is vendor unique but the required
information contained within an EDT and functionality specified shall be maintained.

Each EDT contains Logical Identifiers (LIDs) that are assigned to devices for that protocol when seen
(e.g., responds to a protocol specific command) by XPT. Each protocol specific EDT shall be capable of
storing a 32 bit (CAM_U32) LID and each protocol specific EDT may contain LIDs from 0h to
FFFFFFFFh. An example of this is the XPT supports 2 defined protocols (SCSI and ATA), one EDT
contains LIDs 0h to 100h that describe logical devices for its protocol and the other EDT contains LIDs 0
to 47h.

The Logical Identifier for a device shall be associated with Connection_ID(s) (physical address(es)) so
that the Connection_ID(s) can be obtained by peripheral drivers for routing of CAM-3 CCBs to a SIM/HA.
 A logical device may be uniquely identified either through a protocol specific response (e.g., SCSI-3
World Wide Identifier), the nature of the protocol or other information obtained. An EDT shall be
required to store a unique identifier if the protocol specific Clause specifies the obtaining of a unique
identifier. The EDT may optionally store a unique identifier if the XPT vendor provides mechanisms for a
protocol or version of the protocol that does not provide unique identifiers.

If a logical device can be uniquely identified for a protocol then there shall be one LID assigned for that
logical device for that host. There may be multiple Connection_IDs for the device. An example of this is
a SCSI-3 device on a shared SCSI bus (dual initiator HA1 and HA2) for a single host. The device can be
seen from both HAs and can be uniquely identified by the SCSI-3 World Wide Identifier. There world be
one Logical Identifier (LID) assigned to the device. There are two physical addresses associated to the
LID (e.g., HA1’s Port_ID/Target Id/Logical Unit and HA2’s Port_ID/Target Id/Logical Unit).

The association of LID with Connection_IDs shall be unique within an EDT. This shall mean that a LID
shall not have associated to it more than one Connection_ID having the same values.

The information contained within the EDT(s) either may be persistent across boots of a host or may be
constructed at boot time with information when an assigned Port_ID is has a Topology Discover process
initiated on it. Once a LID is assigned to a logical device for a protocol, the XPT shall not delete that LID
from the EDT unless directed through mechanisms, which are vendor unique (e.g., human intervention
directs removal). This shall mean the following:
− If the EDT(s) LID and specified persistent information is persistent across boots of a host, the XPT

shall not remove the LID assignment and persistent information unless directed to.

− If the EDT(s) information is not persistent across boots then once a LID has been assigned for this
boot, the XPT shall not remove the LID assignment and persistent information unless directed by
mechanisms outside this standard.

X3T10/990D revision 3

dpANS Common Access Method - 3
26

Clause 8.2 specifies the rules for the EDT data information persistence and modification for a LID.

The following information elements shall be associated with a LID in an EDT:
− Unique logical device identifiers:

• Protocol specific logical device identifier, if the protocol supports a unique identifier for a
logical device (e.g., SCSI). If the supported version of protocol for the logical device does
not provide a unique identifier this information element shall be NULL.

• Vendor unique logical device identifier, if the XPT vendor supports a mechanism to uniquely

identify a logical device for a protocol in absence of a protocol specific way of uniquely
identifying a device. An example of this is a SCSI-2 device can be uniquely identified by the
Inquiry response data of the vendor id and product id of the device plus serial number of the
device and the Logical Unit Number (LUN). The storage and encapsulation of this
information is vendor unique.

− Device type identifier:
• This shall be the protocol specific device type (e.g., SCSI Inquiry response data of peripheral

device type). Refer to the protocol specific Clauses for further information.

− Connection_ID Information:
• This shall be the assigned Port_ID for the logical device and the protocol specific address

specifiers (e.g., SCSI target and Logical Unit identifiers). Refer to the protocol specific
Clauses for further information.

8.2 EDT Information Data Persistence and Modification Rules

This Clause specifies the rules that shall be maintained for information contained within an EDT. There
may be other requirements specified by the protocol specific Clauses, refer to those Clauses for further
information.

There are two distinct cases of data persistence for a XPT vendor. These are across host multiple boots
information persistence and at boot time information persistence. The XPT vendor shall support shall
only support one case of data persistence.

The information passed to build or update the EDTs is contained within an XPT structure, refer to
Clauses 8.2.1 and 8.2.2 for information on the data requirements.

8.2.1 EDT Information Data Persistence Across Boots

At the boot of a host, the XPT shall determine in a vendor unique manner if persistent information
storage can be obtained for the protocol specific EDTs. An example of persistent information storage is
that the information pertaining to a protocol specific EDT may reside on the boot device. The XPT
vendor would read the information in off the boot device and construct EDTs based on the protocol. This
obtaining of any persistent storage information for the EDTs shall be done before any SIM registers with
the XPT.

The XPT vendor shall provide the mechanisms to retain/obtain the following information in a vendor

X3T10/990D revision 3

dpANS Common Access Method - 3
27

unique manner across boot of the host.
− LID assignment, if a LID has been assigned to a logical device;
− Any unique identifier associated to an assign LID;
− Protocol specific device type identifier (e.g., SCSI disk);
− If a unique identifier is not associated to a LID, the Connection_ID associated to the LID;

The XPT vendor may also retain/obtain the Connection_ID(s) for uniquely identified devices and the
associated LID(s) or the XPT vendor may create the Connection_IDs when the device is seen at
Port_ID(s).

At boot, the XPT shall issue a CCB Scan function after the successful registration of a Port_ID through
the xpt_bus_register3() service. Upon the successful completion of the CCB Scan function for that
Port_ID, the XPT shall issue CCB Device Query functions to determine the Port_ID's configuration (e.g.,
the physical addresses of devices). For each device obtained by the CCB Device Query functions the
XPT shall issue an protocol specific CCB Execute I/O function to identify the device (see protocol
specific Clauses for further information).

If the device can be uniquely identified (e.g., SCSI-3 World Wide Identifier or vendor unique method) the
XPT shall do the following:

− Search the unique identifiers in the EDT representing this protocol;
• If no match is found (e.g., no other unique id matches this unique id);

⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Associate the unique id to the assigned LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;

• If a match is found (e.g., an unique id matches this unique id);
⇒ Ensure that no other Connection_ID associated to this LID has the same value as this

Connection_IDs Port_ID;
⇒ If a match is found on Port_ID(s);

◊ Update the EDT Connection_ID having the match with new values for this
Connection_ID;

⇒ Compare protocol specific device type value for the LID to the device type value contained
within the passed XPT_TRANSLATION structure;
◊ If values do not match, update device type associated to this LID;

If the device can not be uniquely identified the XPT shall do the following:

− Search the Connection_IDs in the EDT representing this protocol;
• If no match is found (e.g., no other Connection_ID matches this Connection_ID);

⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Set an indication that there is no unique id associated to this LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;

• If a match is found (e.g., an Connection_ID matches this Connection_ID);
⇒ Compare protocol specific device type value for the LID to the device type value contained

within the passed XPT_TRANSLATION structure;
◊ If values do not match, update device type associated to this LID;

X3T10/990D revision 3

dpANS Common Access Method - 3
28

Note 1
A device that can not be uniquely identified will only have one Connection_ID associated to a LID

After the boot process (e.g., at run time) upon the successful completion of the CCB Scan function for a
Port_ID. The XPT shall issue CCB Device Query functions to determine the Port_ID's configuration
(e.g., the physical addresses of devices). For each device obtained by the CCB Device Query functions
the XPT shall issue an protocol specific CCB Execute I/O function to identify the device (see protocol
specific Clauses for further information).

If the device can be uniquely identified (e.g., SCSI-3 World Wide Identifier or vendor unique method) the
XPT shall do the following:
− Search the unique identifiers in the EDT representing this protocol;

• If no match is found (e.g., no other unique id matches this unique id);
⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Associate the unique id to the assigned LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;
⇒ Perform as specified in Clause 11.2 an Asynchronous Event Callback for new logical devices

found during scan;
• If a match is found (e.g., an unique id matches this unique id);

⇒ Ensure that no other Connection_ID associated to this LID has the same values as this
Connection_ID;
◊ Compare the address specifiers;

− If not equal;
• Update the EDT Connection_ID having the match with new values for this

Connection_ID;
• Perform as specified in Clause 11.2 an Asynchronous Event Callback for

address change of a logical device found during scan;
◊ Compare protocol specific device type value for the LID to the device type value

contained within the passed XPT_TRANSLATION structure;
− If values do not match;

• Update device type associated to this LID;
− Perform as specified in Clause 11.2 an Asynchronous Event Callback for device

type change of a logical device found during scan;

If the device can not be uniquely identified the XPT shall do the following:
− Search the Connection_IDs in the EDT representing this protocol;

• If no match is found (e.g., no other Connection_ID matches this Connection_ID);
⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Set an indication that there is no unique id associated to this LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;
⇒ Perform as specified in Clause 11.2 an Asynchronous Event Callback for new logical devices

found during scan;
• If a match is found (e.g., an Connection_ID matches this Connection_ID);

⇒ Compare protocol specific device type value for the LID to the device type value contained
within the passed XPT_TRANSLATION structure;

X3T10/990D revision 3

dpANS Common Access Method - 3
29

◊ If values do not match;
− Update device type associated to this LID;
− Perform as specified in Clause 11.2 an Asynchronous Event Callback for device

type change of a logical device found during scan;

8.2.2 EDT Information Data Boot Time Information Persistence

At the boot of a host, the XPT shall either construct the EDTs for all the protocols supported or construct
an EDT for a protocol when a SIM registers for that protocol.

At boot, the XPT shall issue a CCB Scan function after the successful registration of a Port_ID through
the xpt_bus_register3() service. Upon the successful completion of the CCB Scan function for that
Port_ID, the XPT shall issue CCB Device Query functions to determine the Port_ID's configuration (e.g.,
the physical addresses of devices). For each device obtained by the CCB Device Query functions the
XPT shall issue an protocol specific CCB Execute I/O function to identify the device (see protocol
specific Clauses for further information).

If the device can be uniquely identified (e.g., SCSI-3 WORLD WIDE IDENTIFIER or vendor unique
method) the XPT shall do the following:

− Search the unique identifiers in the EDT representing this protocol;
• If no match is found (e.g., no other unique id matches this unique id);

⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Associate the unique id to the assigned LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;

• If a match is found (e.g., an unique id matches this unique id);

⇒ Ensure that no other Connection_ID associated to this LID has the same values as this
Connection_ID;
◊ If a match is found;

− Update the EDT Connection_ID having the match with new values for this
Connection_ID;

◊ Compare protocol specific device type value for the LID to the device type value
contained within the passed XPT_TRANSLATION structure;
− If values do not match, update device type associated to this LID;

If the device can not be uniquely identified the XPT shall do the following:

− Search the Connection_IDs in the EDT representing this protocol;
• If no match is found (e.g., no other Connection_ID matches this Connection_ID);

⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Set an indication that there is no unique id associated to this LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;

• If a match is found (e.g., an Connection_ID matches this Connection_ID);
⇒ Compare protocol specific device type value for the LID to the device type value contained

X3T10/990D revision 3

dpANS Common Access Method - 3
30

within the passed XPT_TRANSLATION structure;
◊ If values do not match, update device type associated to this LID;

Note 2
A device that can not be uniquely identified will only have one Connection_ID associated to a LID.

After the boot process (e.g., at run time) upon the successful completion of the CCB Scan function for a
Port_ID. The XPT shall issue CCB Device Query functions to determine the Port_ID's configuration
(e.g., the physical addresses of devices). For each device obtained by the CCB Device Query functions
the XPT shall issue an protocol specific CCB Execute I/O function to identify the device (see protocol
specific Clauses for further information).

If the device can be uniquely identified (e.g., SCSI-3 WORLD WIDE IDENTIFIER or vendor unique
method) the XPT shall do the following:
− Search the unique identifiers in the EDT representing this protocol;

• If no match is found (e.g., no other unique id matches this unique id);
⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Associate the unique id to the assigned LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;
⇒ Perform as specified in Clause 11.2 an Asynchronous Event Callback for new logical devices

found during scan;
• If a match is found (e.g., an unique id matches this unique id);

⇒ Ensure that no other Connection_ID associated to this LID has the same value as this
Connection_IDs Port_ID;
◊ If a match is found on Port_IDs;

− Compare the address specifiers;
• If not equal;

⇒ Update the EDT Connection_ID having the match with new values for this
Connection_ID;

⇒ Perform as specified in Clause 11.2 an Asynchronous Event Callback for
address change of a logical device found during scan;

◊ Compare protocol specific device type value for the LID to the device type value
contained within the passed XPT_TRANSLATION structure;
− If values do not match;

• Update device type associated to this LID;
• Perform as specified in Clause 11.2 an Asynchronous Event Callback for device

type change of a logical device found during scan;

If the device can not be uniquely identified the XPT shall do the following:
− Search the Connection_IDs in the EDT representing this protocol;

• If no match is found (e.g., no other Connection_ID matches this Connection_ID);
⇒ Assign a LID value for this device and associate the Connection_ID to the assigned LID;
⇒ Set an indication that there is no unique id associated to this LID;
⇒ Set protocol specific device type value for the assigned LID;
⇒ Set the Device Seen Flag representing this Connection_ID;
⇒ Perform as specified in Clause 11.2 an Asynchronous Event Callback for new logical devices

found during scan;

X3T10/990D revision 3

dpANS Common Access Method - 3
31

• If a match is found (e.g., an Connection_ID matches this Connection_ID);
⇒ Compare protocol specific device type value for the LID to the device type value contained

within the passed XPT_TRANSLATION structure;
◊ If values do not match;

− Update device type associated to this LID;
− Perform as specified in Clause 11.2 an Asynchronous Event Callback for device

type change of a logical device found during scan;

9. XPT Transport Functionality

This Clause describes the set of services (functions) the XPT shall provide and may optionally provide to
the peripheral drivers and the SIM/HAs. The supplier of the XPT (usually the O.S. provider) shall
provide the XPT services listed as mandatory and may optionally provide other XPT services listed as
optional.

The implementation of an XPT service is in a vendor unique manner but shall conform to the following:
− syntax of the XPT service call
− return value of the XPT service call
− behavior specified for the XPT service

The supplier of the XPT may implement any service as function call or as a macro.

The intention of the mandatory XPT services is to provide a common set of functionality for both the
peripheral drivers and the SIMs/HAs that allows for easier transportability across operating systems and
platforms.

9.1 CAM-3 Locking

The XPT shall supply in a vendor unique manner locking constructs to provide the peripheral drivers and
SIMs synchronization mechanisms (e.g., prevents concurrent updating of a data structure by multiple
threads of execution). The XPT shall provide five types locking levels in a descending hierarchy order.
The lock structure contents and semantics shall be opaque to the peripheral drivers and SIMs. The locks
may be an interrupt priority level type lock (e.g., non-symmetrical multi-processor platform, where the
processor priority level is raised allow synchronization) or a lock data structure (e.g., symmetrical multi-
processor platform).

The XPT supplier shall define the lock structure definitions and the XPT locks shall be defined as follows:
− XPT_LOCK_LV1
− XPT_LOCK_LV2
− XPT_LOCK_LV3
− XPT_LOCK_LV4
− XPT_LOCK_LV5

Peripheral drivers and SIMs shall provide the storage for any defined XPT lock they use. An example of
this a SIM writer has determined that they need two XPT locking levels. One for a general purpose
overall structure lock and one for a register accesses lock. The SIM writer may declare for example the
following data structure:

X3T10/990D revision 3

dpANS Common Access Method - 3
32

typedef struct mysim_data
{

CAM_U32 My_flags; /* Generic state flags */
CAM_U32 My_port_number; /* My assigned port number */
CAM_VM_OFFSET My_que_ptr; /* Pointer to my queue structures */
CAM_U8 My_num_targets; /* Number of targets supported */
CAM_U8 My_num_luns; /* Number of Logical Units supported */
XPT_LOCK_LV1 My_sim_lck; /* My data structure lock */
XPT_LOCK_LV2 My_reg_lck; /* register access lock */

} MYSIM_DATA;

The XPT shall provide the following services:
− xpt_lock_init()
− xpt_lock()
− xpt_unlock()

Refer to Clause 9.2 for the syntax and descriptions of these services.

9.2 CAM Locking Rules

The locking services that the XPT shall provide have specific rules which the peripheral drivers and SIMs
shall conform to. These rules allow for a consistent bounded locking model which if implemented
properly by the peripheral driver and SIM writers prevent lock contention deadlock. The following are the
rules that the XPT, CAM peripheral drivers and SIMs shall follow:

− No lock(s) shall be held when calling a XPT service or operating system service unless an explicit
statement specifies that a lock shall be held. This shall mean that no functional module (e.g., XPT,
CAM peripheral driver or SIM) will hold any lock when calling another service/routine outside their
functional module boundary.

− If a lock is held by thread of execution, no attempt shall be made to take the same physical lock.

− No locks shall be held by a thread of execution when calling xpt_thread_block() service.

− The hierarchy of XPT lock levels is specified and the peripheral drivers and SIMs shall adhere to the
following:
− The lock hierarchy level is descending from XPT_LOCK_LV1 to XPT_LOCK_LV5.
− No attempt shall be made to acquire a higher level lock if lower level lock is held by the same

thread of execution. For example, a XPT_LOCK_LV3 is held by a thread of execution it is not
allowed to acquire a XPT_LOCK_LV2 lock, but it is permissible to attempt to acquire the
XPT_LOCK_LV5 lock).

− The order of releasing of acquired XPT locks is specified. The order of releasing acquired locks is in
a LIFO order (e.g., last lock acquired is the first released). An example of this is the following:
− Acquire level 2 lock;
− Acquire level 4 lock;

X3T10/990D revision 3

dpANS Common Access Method - 3
33

− Acquire level 5 lock;
− Release level 5 lock;
− Release level 4 lock;
− Release level 2 lock;

9.3 XPT CAM-3 Mandatory Services

The CAM-3 XPT shall provide the mandatory services detailed in this International standard and may
provide the optional services.

9.3.1 XPT Translation Services

The XPT translation service provides the services to obtain assigned LIDs, addressing information, and
unique identifiers from the Equipment Data Table(s). Valid pieces of information may be translated into
its other components (e.g., protocol and Connection_ID to a Logical Identifier).

9.3.1.1 Structures Used with XPT Translation Services

9.3.1.1.1 The Translation Structure

The supplier of the XPT shall define the translation structure as follows:
typedef struct translation

{
CAM_U32 protocol_type; /* The protocol number - SCSI, NETWORK, ATA, etc. */
CAM_U32 logical_id; /* The assigned Logical ID of the device. */
struct connection_id connection_id; /* Structure contains port_id and address specifiers. */
CAM_U32 num_connect_ids; /* Number of paths to the device (e.g., number of paths the

device was seen on). */
CAM_U32 dev_type; /* Protocol specific device type (e.g., SCSI-3 Inquiry byte 0

bits 0-5) */
CAM_U32 id_lenght; /* The length of the unique identifier */
CAM_U32 pd_reg_num; /* Peripheral drivers registration number */
CAM_VOID_OFFSET pd_specific; /* A peripheral drivers vendor unique specific pointer */
} TRANSLATION;

9.3.1.1.2 Member Descriptions of the Translation Structure

− protocol_type;
This member is the protocol number of the described device (e.g., SCSI, NETWORK). The caller of
the service shall always set this member with a valid protocol number.

− logical_id;
 This member is the XPT assigned logical identifier of the device for the protocol specified.
− connection_id:
 This member is a structure containing the address specifiers for a device. See Clause 9.3.1.1.3 for

further information on the members of this data structure. The members of the connection_id data
structure is as follows:

X3T10/990D revision 3

dpANS Common Access Method - 3
34

• port_id;
This member is the XPT assigned port number of the described device. This member is set
when translating a specific device’s protocol address to a Logical_ID. The caller of a XPT
translation service may set the member.

• addr_spec1;
This member is an array of CAM_U32s that shall contain the first component the of a protocol
specific address for a specific device. The format of the array is as follows:
⇒ addr_spec1[0] shall contain the least significant portion of a protocol specific address (e.g.

the least significant portion of a SCSI-3 target address or lower 32 bits).
⇒ addr_spec1[1] shall contain the most significant portion of a protocol specific address (e.g.

the most significant portion of a SCSI-3 target address or upper 32 bits)

If the protocol uses up to sixty-four (64) bits to address a device on a specific Port_ID then
addr_spec1[0] and addr_spec1[1] shall represent the devices physical address for the specified
Port_ID. See protocol specific addressing for further information. The caller of a XPT translation
service may set the member.

• addr_spec2;
If a protocol uses two (2) specific and distinct components to address a device, addr_spec2
member array shall contain the second address component (e.g., SCSI Logical Unit address).
This member is an array of CAM_U32s that shall contain the second half the of a protocol
specific address for a specific device. The format of the array is as follows:
⇒ addr_spec2[0] shall contain the least significant portion of a protocol specific address (e.g.

the least significant portion of a SCSI-3 Logical Unit address or lower 32 bits).
⇒ addr_spec2[1] shall contain the most significant portion of a protocol specific address (e.g.

the most significant portion of a SCSI-3 Logical Unit address or upper 32 bits).

If the protocol up to sixty-four (64) bits for the second address component to address a device on
a specific Port_ID. Then addr_spec2[0] and addr_spec2[1] shall represent the devices second
physical address component for the specified Port_ID. See protocol specific addressing for
further information. The caller of a XPT translation service may set the member.

− num_connect_ids;
This member shall be the number of paths to the device. It is representative of the number of
physical ports the device has been seen on. If the device has not been seen, the field shall be set to
zero by the XPT translation service. The member shall be set by the XPT translation service.

− dev_type;
This member shall be the protocol specific device type of the device (e.g., SCSI-3 Inquiry byte zero
bits zero through five). The member shall be set by the XPT translation service.

− id_lenght;
This member shall be the storage size of the unique identifier for the represented in CAM_U8s types.
 This member shall include the NULL terminated value if the XPT stores the unique identifiers in
ASCII strings. The member shall be set by the XPT translation service.

− pd_reg_num;
The member shall be the peripheral driver’s registration number if set to a value other then zero.
The caller of a XPT translation service shall set the member to zero or to its acquired peripheral
driver registration number.

− pd_specific;
This member shall by the XPT translation service to either a NULL or a void pointer under the
following conditions. Refer to the specific XPT translation service for further information.

X3T10/990D revision 3

dpANS Common Access Method - 3
35

• If the pd_reg_num member value is zero then pd_specific shall be set to NULL.
• If the pd_reg_num member is non zero and a peripheral driver specific structure has been

allocated for the specified device and driver. The XPT translation service shall set pd_specific to
the pointer to the allocated peripheral driver specific structure for the described peripheral driver
(pd_reg_num).

• If the pd_reg_num member is non zero and a peripheral driver specific structure has not been
allocated for the specified device and driver. The XPT translation service shall set pd_specific to
NULL.

9.3.1.1.3 The Connections Structure

The connections structure describes a protocol specific Connection_ID(s) (path) to a device. The may be
multiple Connection_IDs to a specific device. The actual member’s meanings are protocol specific and
are described in the protocol specific section of this International standard.

The xpt_get_connections() service may return properly set connection structure(s) relative to the
described device. Refer to xpt_get_connections() for further information.

The supplier of the XPT shall define the XPT connections as follows:

typedef struct connection_id
{
CAM_U32 conn_flags; /* The last known state of this connection id */
CAM_U32 port_id; /* A registered SIM/HA port number */
CAM_U32 addr_spec1[2]; /*Array of 4 CAM_U32s to contain the first half of a

Protocol specific address (i.e., SCSI-3 target
identifier) */

CAM_U32 addr_spec2[2]; /* Array of 4 CAM_U32s to contain the second half of a
Protocol specific address (i.e., SCSI-3 LUN identifier)
*/

} CONNECTION_ID;

typedef struct connections
{
CAM_U32 protocol_type; /* The protocol number - SCSI, NETWORK, etc. */
CAM_U32 logical_id; /* The assigned Logical ID of the device. */
CAM_U32 num_alloc_c_id; /* Number of allocated Connect_IDs (caller) */
CAM_U32 num_ret_c_id; /* Number of valid (returned) Connection_IDs */
CONNECTION_ID *c_id; /* Pointer to array of CONNECT_ID structures */
} CONNECTIONS;

9.3.1.1.4 Member Descriptions of the Connections Structure

The CONNECTION_ID structure members are set by the xpt_get_connections() service. See
xpt_get_connections() for further information.

The CONNECTION_ID structure members:

X3T10/990D revision 3

dpANS Common Access Method - 3
36

− conn_flags;
 This member represents the last known state of this connection identifier. The member is a defined set

of flags that represents the state of the device relative to a Port_ID. The conn_flags member shall
have the following meanings and shall be defined as follows:
• The state of the connection is valid when all the flags in the conn_flags member are set to zero.

The port_id, addr_spec1 and addr_spec2 members are valid based upon the last Topology
Discovery process done for the identified Port_ID. This shall mean that the CONNECTION_ID
can be used with a high degree of confidence to send commands to the identified device.

 #define CONN_VALID 0x00000000

• Connection invalid port_id member valid flag specifies that at one time a valid connection id

existed for the device at the identified Port_ID (port_id member). The last Topology Discovery
process done for the identified Port_ID determined that the device did not respond (exists). The
flag shall denote that the port_id member has a valid Port_ID.

 #define CONN_INVAL_PID 0x00000001

− port_id;

This member is the XPT assigned port number of the described device.
− addr_spec1;

This member is an array of CAM_U32s that shall contain the first component the of a protocol
specific address for a specific device. The format of the array is as follows:
• addr_spec1[0] shall contain the least significant portion of a protocol specific address (e.g. the

least significant portion of a SCSI-3 target address or lower 32 bits).
• addr_spec1[1] shall contain the most significant portion of a protocol specific address (e.g. the

most significant portion of a SCSI-3 target address or upper 32 bits).

If the protocol uses up to sixty-four (64) bits to address a device on a specific Port_ID then
addr_spec1[0] and addr_spec1[1] shall represent the devices physical address for the specified
Port_ID. See protocol specific addressing for further information. The caller of a XPT translation
service may set the member.

− addr_spec2;
If a protocol uses two (2) specific and distinct components to address a device, addr_spec2 member
array shall contain the second address component (e.g., SCSI Logical Unit address). This member
is an array of CAM_U32s that shall contain the second half the of a protocol specific address for a
specific device. The format of the array is as follows:
• addr_spec2[0] shall contain the least significant portion of a protocol specific address (e.g. the

least significant portion of a SCSI-3 Logical Unit address or lower 32 bits).
• addr_spec2[1] shall contain the most significant portion of a protocol specific address (e.g. the

most significant portion of a SCSI-3 Logical Unit address or upper 32 bits).

If the protocol uses up to sixty four (64) bits for the second address component to address a device
on a specific Port_ID. Then addr_spec2[0] and addr_spec2[1] shall represent the devices second
physical address component for the specified Port_ID. See protocol specific addressing for further
information. The caller of a XPT translation service may set the member.

The CONNECTIONS structure members:
− protocol_type;

This member is the protocol number of the described device (e.g., SCSI, NETWORK). The caller of

X3T10/990D revision 3

dpANS Common Access Method - 3
37

the service shall always set this member with a valid protocol number.
− logical_id;
 This member is the XPT assigned logical identifier of the device for the protocol specified.
− num_alloc_c_id;

This member represents number of allocated CONNECTION_ID structures in an array that has been
allocated. The array of CONNECTION_ID structures is represented as a pointer in the c_id member.

− num_ret_c_id;
This member represents the number of valid CONNECTION_ID structures in the array that have
been set. This member is only valid upon the successful return of a XPT translation service
(xpt_get_connections()).

− c_id;
This member points to an array of CONNECTION_ID structures that the caller has allocated.

9.3.1.2 xpt_get_logical_id(TRANSLATION *trans)

Data type returned CAM_U32:

The xpt_get_logical_id() service translates a Connection_ID (physical address) for a device into a
Logical_ID based upon the specified protocol type. The service shall set the pointed to members of the
TRANSLATION structure, as specified below, if translation is successful. The service shall return a zero
if the translation is successful.

The service shall return an error indication if for any reason the service can not translate to a valid
Logical_ID. The error conditions and return values are specified below.

Note 3
This service is useful when a peripheral driver has the physical address of a device (protocol_type, Port_ID, and the physical
address specifiers) and wishes to obtain the assigned Logical_ID of the device. The caller may also use the service to
determine if a device, as specified, has been seen by the XPT (Logical_ID assigned).

Arguments:
− trans;

Shall be a pointer a properly formatted TRANSLATION structure as specific below.

The caller of the xpt_get_logical() service shall set the following members of the TRANSLATION
structure as specified:
− protocol_type;

Shall contain a valid CAM-3 specified protocol type (e.g., SCSI).
− Connection_ID;

− port_id;
Shall contain a valid XPT assigned Port_ID.

− addr_spec1;
May contain a valid value based upon the specified protocol_type specified. This member is the
first component of a device’s physical address (e.g., SCSI target specifier). See protocol specific
addressing for further information

− addr_spec2;
May contain a valid value based upon the specified protocol_type specified. This member is the
second component of a device’s physical address (e.g., SCSI Logical Unit specifier). See
protocol specific addressing for further information.

X3T10/990D revision 3

dpANS Common Access Method - 3
38

− pd_reg_num;
The member shall be the peripheral driver’s registration number if set to a value other then zero.
The caller of a XPT translation service shall set the member to zero or to its acquired peripheral
driver registration number.

Upon the service’s successful translation for the specified device, the service shall set the following
pointed members of the TRANSLATION structure as specified.
− logical_id;

Shall contain a valid XPT assigned logical identifier for the device as specified by the protocol type
and Connection Identifier.

− num_connect_ids;
This member shall be the number of paths to the device. It is representative of the number of
physical ports the device has been seen on. If the device has not been seen, the field shall be set to
zero by the service.

− dev_type;
This member shall be set by the service and shall be the protocol specific device type of the device
(e.g., SCSI-3 Inquiry byte zero bits zero through five).

− id_length;
This member shall be set to either zero (0) or the storage size of the unique identifier for the
represented in CAM_U8s types. This representative number shall include the NULL terminated
value if the XPT stores the unique identifiers in ASCII strings. The value of zero (0) shall be set
when the XPT can not uniquely identify the device.

− pd_specific;
This member shall by the XPT translation service to either a NULL or a void pointer under the
following conditions
− If the pd_reg_num member value is zero then pd_specific shall be set to NULL.
− If the pd_reg_num member is non zero and a peripheral driver specific structure has been

allocated for the specified device and driver. The XPT translation service shall set the
pd_specific to the pointer of the allocated peripheral driver structure for the described peripheral
driver (pd_reg_num).

− If the pd_reg_num member is non zero and a peripheral driver specific structure has not been
allocated for the specified device and driver. The XPT translation service shall set pd_specific to
NULL.

The service shall return an error indication (a non-zero value) when the service can not translate the
passed parameters into a Logical_ID. When the service can not translate, the service shall not set any
member of the pointed to TRANSLATION structure. The following are the conditions in which the
service may return an error indication.
− The specified protocol type is not a valid or supported protocol type.
− The specified Connection_ID does not have a device associated to a logical identifier.

Values returned;
− A zero (0) value shall indicate that the service successfully translated the protocol type and

Connection_ID to a Logical_ID.
− A one (1) value shall indicate that the specified protocol type is not a valid or supported protocol

type.
− A two (2) shall indicate the specified Connection_ID does not have a device associated to a logical

identifier.

X3T10/990D revision 3

dpANS Common Access Method - 3
39

9.3.1.3 xpt_get_phys_attrib(TRANSLATION *trans)

Data type returned CAM_U32;

The xpt_get_phys_attrib() (XPT get physical attributes) service translates a Logical_ID (logical identifier)
for a device into the physical attributes for the device based upon the specified protocol type. The
service shall set the pointed to members of the TRANSLATION structure, as specified below, if
translation is successful. The service shall return a zero if the translation is successful.

The service shall return an error indication if for any reason the service can not translate the Logical_ID
to valid physical attributes. The error conditions and return values are specified below.

Arguments:
− trans;

Shall be a pointer a properly formatted TRANSLATION structure as specific below.

The caller of the xpt_get_logical() service shall set the following members of the TRANSLATION
structure as specified:
• protocol_type;

Shall contain a valid protocol type (e.g., SCSI).
• logical_id;

Shall contain a Logical_ID for the specified protocol.
• pd_reg_num;

The member shall be the peripheral driver’s registration number if set to a value other then zero.
 The caller of a XPT translation service shall set the member to zero or to its acquired peripheral
driver registration number.

Upon the services successful translation for the specified device, the service shall set the following
pointed members of the TRANSLATION structure as specified.

If the XPT has only one Connection_ID for the specified Logical_ID, the XPT shall set the
num_connect_ids (number of connection identifiers) member to a one and shall set Connection_ID as
follows:
− Connection_ID;

− port_id;
Shall contain a valid XPT assigned Port_ID.

− addr_spec1;
May contain a valid value based upon the specified protocol_type specified. This member is the
first component of a device’s physical address (e.g., SCSI target specifier). See protocol specific
addressing for further information

− addr_spec2;
May contain a valid value based upon the specified protocol_type specified. This member is the
second component of a device’s physical address (e.g., SCSI Logical Unit specifier). See
protocol specific addressing for further information.

If the XPT has more then one Connection_ID for the specified Logical_ID, the XPT shall set the

X3T10/990D revision 3

dpANS Common Access Method - 3
40

num_connect_ids (number of connection identifiers) member to that number of Connection_IDs and shall
not set Connection_ID members. The caller after a successful return from the service may call the
xpt_get_connections() service to obtain the Connection_IDs for the device.

− num_connect_ids;
This member shall be the number of paths to the device. It is representative of the number of
physical ports the device has been seen on. If the device has not been seen, the field shall be set to
zero by the service.

− dev_type;
This member shall be set by the service and shall be the protocol specific device type of the device
(e.g., SCSI-3 Inquiry byte zero bits zero through five).

− id_length;
This member shall be set to either zero (0) or the storage size of the unique identifier for the
represented in CAM_U8s types. This representative number shall include the NULL terminated
value if the XPT stores the unique identifiers in ASCII strings. The value of zero (0) shall be set
when the XPT can not uniquely identify the device.

− pd_specific;
This member shall by the XPT translation service to either a NULL or a void pointer under the
following conditions
− If the pd_reg_num member is zero then the pd_specific member shall be set to NULL.
− If the pd_reg_num member is non zero and a peripheral driver specific structure has been

allocated for the specified device and driver. The XPT translation service shall set pd_specific to
the pointer to the allocated peripheral driver structure for the described peripheral driver
(pd_reg_num).

− If the pd_reg_num member is non zero and a peripheral driver specific structure has not been
allocated for the specified device and driver. The XPT translation service shall set pd_specific to
NULL.

The service shall return an error indication (a non-zero value) when the service can not translate the
passed parameters into the devices physical attributes. When the service can not translate, the service
shall not set any member of the pointed to TRANSLATION structure. The following are the conditions in
which the service may return an error indication.
− The specified protocol type is not a valid or supported protocol type.
− The specified Logical_ID does not have a device associated to it (e.g., Logical_ID not assigned).

Values returned;
− A zero (0) value shall indicate that the service successfully translated the protocol type and

Logical_ID into the devices physical attributes.
− A one (1) value shall indicate that the specified protocol type is not a valid or supported protocol

type.
− A two (2) shall indicate the specified Logical_ID does not have a device associated to it.

9.3.1.4 xpt_get_connections(CONNECTION *connect)

Data type returned CAM_U32;

The xpt_get_connections() service sets into the pointed members of the CONNECTION structure the

X3T10/990D revision 3

dpANS Common Access Method - 3
41

physical connections to a specified device. This service is used to obtain a list of Connection_ID(s).

Arguments;
− connect;

Shall be a pointer to a properly formatted CONNECTION structure as specific below:
− protocol_type;

This member is the protocol number of the described device (e.g., SCSI, NETWORK). The
caller of the service shall always set this member with a valid protocol number.

− logical_id;
 This member is the valid XPT assigned logical identifier of the device for the protocol specified.
− num_alloc_c_id;

The caller shall set this member to number of allocated CONNECTION_ID structures in an array
that has been allocated. The array of CONNECTION_ID structures is represented as a pointer in
the c_id member.

− c_id;
The caller shall set this member to the beginning address of the array of CONNECTION_ID
structures that the caller has allocated.

Upon the services successful translation for the specified device, the service shall set the following
pointed members of the CONNECTION structure as specified.
− num_ret_c_id;

This member represents the number of valid CONNECTION_ID structures that have been set into
the array of CONNECTION_ID structures by the service.

For each valid Connection_ID that the XPT has stored for the specified device, the service shall set into
the each CONNECTION_ID structure into the pointed to array the following:
− port_id;

This member is the XPT assigned port number of the described device.

− addr_spec1;
Shall contain a valid value based upon the specified protocol_type specified. This member is the
first component of a device’s physical address (e.g., SCSI target specifier). See protocol specific
addressing for further information

− addr_spec2;
May contain a valid value based upon the specified protocol_type specified. This member is the
second component of a device’s physical address (e.g., SCSI Logical Unit specifier). See protocol
specific addressing for further information.

The service shall set each CONNECTION structure in linear order. The first CONNECTION structure set
shall be the first structure in the array.

Values returned;
− A zero (0) value shall indicate that the service successfully translated the protocol type and

Logical_ID into the devices Connection_IDs
− A one (1) value shall indicate that the specified protocol type is not a valid or supported protocol

type.
− A two (2) shall indicate the specified Logical_ID does not have a device associated to it.

X3T10/990D revision 3

dpANS Common Access Method - 3
42

9.3.2 XPT Lock Services

9.3.2.1 xpt_lock_init(CAM_VOID_OFFSET lock, CAM_U8 lock_level)

Data type returned none

The xpt_lock_init() service shall provide the means for the caller to initialize a declared CAM-3 lock
structure. There shall be only one call to the xpt_lock_init() service per declared CAM-3 lock structure.

The service shall initialize the lock for subsequent use as defined by this international standard and as
needed by the operating system type.

Arguments:
− lock;

Shall be a pointer to an allocated XPT lock structure. The pointer shall point to a XPT lock structure
having one of the following types:
• XPT_LOCK_LV1
• XPT_LOCK_LV2
• XPT_LOCK_LV3
• XPT_LOCK_LV4
• XPT_LOCK_LV5

− lock_level;
Shall be one of the following defined values the corresponds to the XPT lock type;
• #define XPT_LV1 0x01
• #define XPT_LV2 0x02
• #define XPT_LV3 0x03
• #define XPT_LV4 0x04
• #define XPT_LV5 0x05

If the lock argument is a pointer to a XPT_LOCK_LV1 then the lock_level argument shall be
XPT_LV1.

If the lock argument is a pointer to a XPT_LOCK_LV2 then the lock_level argument shall be
XPT_LV2.

If the lock argument is a pointer to a XPT_LOCK_LV3 then the lock_level argument shall be
XPT_LV3.

If the lock argument is a pointer to a XPT_LOCK_LV4 then the lock_level argument shall be
XPT_LV4.

If the lock argument is a pointer to a XPT_LOCK_LV5 then the lock_level argument shall be
XPT_LV5.

X3T10/990D revision 3

dpANS Common Access Method - 3
43

Values returned:
− None

9.3.2.2 xpt_lock(CAM_VOID_OFFSET lock)

Data type returned none

The xpt_lock() service shall provide the means for the caller to perform a synchronization lock for access
to data structures.

There shall be no calls to this service if the pointed to XPT lock structure has not been initialized by the
xpt_lock_init() service.

Arguments:
− lock;

Shall be a pointer to an allocated XPT lock structure. The pointer shall point to a XPT lock structure
having one of the following types:
• XPT_LOCK_LV1
• XPT_LOCK_LV2
• XPT_LOCK_LV3
• XPT_LOCK_LV4
• XPT_LOCK_LV5

Values returned:
− None

9.3.2.3 xpt_unlock(CAM_VOID_OFFSET lock)

Data type returned none

The xpt_unlock() service shall provide the means for the caller to remove a synchronization lock for
access to data structures.

Arguments:
− lock;

Shall be a pointer to an allocated XPT lock structure. The pointer shall point to a XPT lock structure
having one of the following types:
• XPT_LOCK_LV1
• XPT_LOCK_LV2
• XPT_LOCK_LV3
• XPT_LOCK_LV4
• XPT_LOCK_LV5

Values returned:
− None

X3T10/990D revision 3

dpANS Common Access Method - 3
44

9.3.3 XPT Generic Services

9.3.3.1 xpt_isr()

Data type returned CAM_U8;

The xpt_isr() service shall provide a means for components of the CAM-3 subsystem to determine if the
CAM-3 component is in interrupt service context.

Values returned:
− 0X00:

Indicates that the caller is not in interrupt context.
− 0X01:

Indicates that the caller is in interrupt context.

9.3.3.2 xpt_alloc_pd_specific(TRANSLATION *trans, CAM_VOID (*spec_init()),
CAM_U32 size)

Data type returned CAM_U32;

The xpt_alloc_pd_specific() (allocate peripheral driver structure associated to the LID) service translates
the protocol_type, a Logical_ID (logical identifier) and the peripheral driver registration number to
allocate peripheral driver specific structure. The service shall allocate the request size in bytes and
associate it to the peripheral driver’s registration number, the protocol type (e.g., SCSI) and the logical
identifier (Logical_ID) for a device.

The service shall provide the following:
− Ensure that there is a device associated to the passed Logical_ID. If no association, return the

specified error indication.

− Ensure that no other xpt_alloc_pd_specific() or xpt_get_pd_specific() thread of execution will

execute for described device and peripheral driver registration number.

− Ensure that there is no other association for the peripheral driver's registration number, the protocol
type (e.g., SCSI) and the logical identifier (Logical_ID) for a device. If an association is found, the
service shall set into shall set pd_specific member the pointer to the allocated peripheral driver's
specific structure for the described peripheral driver (pd_reg_num) and return a success indication.

− Allocate the required memory as specified by the size argument. If memory can not be obtained,

return the specified error indication.

− Associate the allocated memory to the described device and peripheral driver's registration number.

− Set into set pd_specific member the pointer to the allocated peripheral driver specific structure

− Call the peripheral driver’s initialization routine passing the pointer to the passed TRANSLATION

X3T10/990D revision 3

dpANS Common Access Method - 3
45

structure (trans).

The peripheral driver’s initialization routine shall be designed as follows:
− Having one argument passed with the type of TRANSLATION *.
− Having no return value (CAM_VOID).
− Shall not acquire (take or hold) any locks.

The peripheral driver’s initialization should cast the pd_specific member to its own structure declaration.
The peripheral driver should also initialize all defined locks, acquire other memory requirements and
initialize all queue headers.

Arguments:
− trans;

Shall be a pointer a properly formatted TRANSLATION structure as specific below.

The caller of the xpt_alloc_pd_specific() service shall set the following members of the
TRANSLATION structure as specified:
• protocol_type;

Shall contain a valid CAM-3 protocol type (e.g., SCSI).
• logical_id;

Shall contain a Logical_ID for the specified protocol.
• pd_reg_num;

The member shall be the peripheral driver’s registration number.

− (*spec_init());
The peripheral driver’s device specific structure initialization routine.

− size;
The size in bytes of the peripheral driver’s specific structure to be allocated (e.g. sizeof(struct
mydriver_structure).

Values returned;
− A zero (0) value shall indicate that the service successfully allocated and associated the referenced

peripheral driver structure. The pointer to that allocated structure is in the TRANSLATION structure
in the

− A one (1) value shall indicate that the specified protocol type is not a valid or supported protocol
type.

− A two (2) shall indicate the specified Logical_ID does not have a device associated to it.
− A three (3) shall indicate memory could not be allocated.

9.3.3.3 xpt_get_pd_specific(TRANSLATION *trans)

Data type returned CAM_U32;

The xpt_get_pd_specific() (get a peripheral driver structure associated the LID) service translates the

X3T10/990D revision 3

dpANS Common Access Method - 3
46

protocol_type, a Logical_ID (logical identifier) and the peripheral driver registration number to obtain the
already allocated peripheral driver specific structure. The association shall be between the peripheral
driver's registration number, the protocol type (e.g., SCSI) and the logical identifier (Logical_ID) for a
device.

The service shall look up the logical device (logical_id) for the protocol type specified and find the
peripheral drivers structure as referenced by the peripheral drivers registration number (pd_reg_num).

If the XPT does not support the protocol, the logical identifier is not found or there is no peripheral driver
structure stored for this driver. The service shall return an error indication as specified.

Arguments:
− trans;

Shall be a pointer a properly formatted TRANSLATION structure as specific below.

The caller of the xpt_get_pd_specific() service shall set the following members of the
TRANSLATION structure as specified:
− protocol_type;

Shall contain a valid CAM-3 protocol type (e.g., SCSI).
− logical_id;

Shall contain a Logical_ID for the specified protocol.
− pd_reg_num;

The member shall be the peripheral driver’s registration number.

Upon the services successful search for the specified peripheral driver (e.g., found the peripheral driver
structure). The service shall set the following pointed members of the TRANSLATION structure:
− pd_specific;

The XPT translation service shall set pd_specific member with the pointer to the allocated peripheral
driver's specific structure for the described peripheral driver (pd_reg_num).

Values returned;
− A zero (0) value shall indicate that the service successfully found the referenced peripheral driver

structure.
− A one (1) value shall indicate that the specified protocol type is not a valid or supported protocol

type.
− A two (2) shall indicate the specified Logical_ID does not have a device associated to it.
− A three (3) shall indicate that the referenced peripheral driver structure could not be found. A

xpt_alloc_pd_specific() is suggested.

9.3.3.4 xpt_dealloc_pd_specific(TRANSLATION *trans)

Data type returned CAM_U32;

The xpt_dealloc_pd_specific() (delete a peripheral driver structure associated to the LID) service
translates the protocol_type, a Logical_ID (logical identifier) and the peripheral driver registration number
to delete a peripheral driver specific structure. The service shall deallocate the memory associated to
the peripheral driver's registration number, the protocol type (e.g., SCSI) and the logical identifier

X3T10/990D revision 3

dpANS Common Access Method - 3
47

(Logical_ID) for a device.

The service shall provide the following:
− Ensure that there is a device associated to the passed Logical_ID. If no association, return the

specified error indication.

− Ensure that no other xpt_alloc_pd_specific() or xpt_get_pd_specific() thread of execution will

execute for described device and peripheral driver registration number.

− Disassociate the allocated memory to the described device and peripheral driver's registration
number.

− Set into set pd_specific member a NULL.

− Free the memory.

Arguments:
− trans;

Shall be a pointer a properly formatted TRANSLATION structure as specific below.

The caller of the xpt_get_logical() service shall set the following members of the TRANSLATION
structure as specified:
• protocol_type;

Shall contain a valid CAM-3 protocol type (e.g., SCSI).
• logical_id;

Shall contain a Logical_ID for the specified protocol.
• pd_reg_num;

The member shall be the peripheral driver’s registration number.

Values returned;
− A zero (0) value shall indicate that the service successfully deallocated and disassociated the

referenced peripheral driver structure
− A one (1) value shall indicate that the specified protocol type is not a valid or supported protocol

type.
− A two (2) shall indicate the specified Logical_ID does not have a device associated to it.

9.3.3.5 xpt_mem_alloc(CAM_U32 size, CAM_U32 flags)

Data type returned CAM_VM_OFFSET *;

The xpt_mem_alloc() service shall provide a means for the peripheral drivers, SIMs and the XPT to
allocate memory for buffers and data structures. The xpt_mem_alloc() service shall allocate at least the
specified size in CAM_U8s (e.g., bytes) of memory, if memory can be allocated at this time. The caller
of the service shall not call the service with the XPT_WAITOK flag set to a one when in interrupt service
context. Interrupt context shall be verified and the XPT_WAITOK flag set according before requesting
the xpt_mem_alloc() service.

X3T10/990D revision 3

dpANS Common Access Method - 3
48

Arguments:
− CAM_U32 size:

Specifies the size of memory in CAM_U8s (e.g., bytes) to allocate.

− CAM_U32 flags:
XPT_WAITOK:
The flag set to a one specifies that if the requested size can not be allocated at this time the
service may block (e.g., suspend the execution of the caller) waiting for memory resources.

The flag set to a zero (0) specifies that if the requested size can not be allocated at this time the
service shall not block.

Note 4
The service may not provide synchronization of requests for callers that are blocked (e.g., when resources become
available the first caller that was blocked does not necessarily get the resource). If the caller of this service needs
synchronization, it is up to the caller to provide the mechanisms needed.

XPT_BZERO:
The flag set to a one specifies that if the requested memory has been allocated for the caller,
before return to the caller, the service shall set each CAM_U8 (e.g., byte) of the allocated
memory to a zero (0).

Values returned:
− Non NULL value:

Shall indicate that the request was successful and the value is a pointer to the memory allocated.
− NULL value:

Shall indicate that the request failed.

Example:
struct xyz *xyz_ptr;

xyz_ptr = (struct xyz *)xpt_mem_alloc(sizeof(struct xyz), (XPT_WAITOK | XPT_BZERO));

9.3.3.6 xpt_mem_free((CAM_VM_OFFSET)addr)

Data type returned CAM_VOID

The xpt_mem_free() service shall provide a means for peripheral drivers, SIMs and the XPT to free
(e.g., return to the O.S.) memory buffers allocated by the xpt_mem_alloc() service.

Arguments:
− CAM_VM_OFFSET addr:

Shall specify the memory pointer that points to the allocated memory to be freed (e.g. returned to the
O.S.). The argument addr * shall contain a pointer to memory that was previously allocated in a call
to the xpt_mem_alloc() service. There shall be only one call to the xpt_mem_free() service for each
memory buffer allocated by the xpt_mem_alloc() service.

 Example:
struct xyz *xyz_ptr;

X3T10/990D revision 3

dpANS Common Access Method - 3
49

xyz_ptr = (struct xyz *)xpt_mem_alloc(sizeof(struct xyz), (XPT_WAITOK | XPT_BZERO));

if (xyz_ptr != (struct xyz *)NULL){
xpt_mem_free((CAM_VM_OFFSET)xyz_ptr);

}

9.3.3.7 xpt_ccb_alloc3(CAM_U32 flags)

Data type returned CCB_HEADER3 *;

The xpt_ccb_alloc3() service shall provide the means for the peripheral drivers, SIMs and the XPT to
allocate CAM-3 CCBs for use. It shall be the responsibility of the XPT to ensure that the pointer of the
CAM-3 CCB conform to the following:
− The pointer shall point to a memory buffer large enough to contain any of the possible XPT/SIM

function request CAM-3 CCBs.
− Ensure that the SIM and peripheral drivers working set pointers are initialized to memory buffers

large enough to contain any registered peripheral driver or SIM and the working set buffers are
zeroed.

The xpt_ccb_alloc3() service shall return a NULL pointer if memory resources are not immediately
available.

The returned CAM-3 CCB shall be properly initialized for use as an I/O request CCB. The allocated
CAM-3 CCB may be used (i.e., sent to the XPT), multiple times. If the CAM-3 CCB is sent the XPT/SIM
more then one time after initial allocation from the xpt_ccb_alloc3() service, the requester shall set the
following fields to the following values:
(Editors Mark - fill in fields.)

Once the CCB is no longer needed for the XPT/SIM function request, the CAM-3 CCB shall be returned
using the xpt_ccb_free3() service.

Arguments:
− CAM_U32 flags:

XPT_WAITOK:
The flag set to a one specifies that if the CAM-3 CCB can not be allocated at this time. The
service may block (e.g., suspend the execution of the caller) waiting for resources, if the service
can not provide the CCB. The caller of the service shall not call the service with the
XPT_WAITOK flag set to a one when in interrupt service context.

The flag set to a zero (0) specifies that if the CAM-3 CCB can not be allocated at this time the
service shall not block. The xpt_ccb_alloc3() service shall return a NULL pointer if a CAM-3
CCB is not available for allocation.

Note 5
The service may not provide synchronization of requests for callers that are blocked (e.g., when resources become
available the first caller that was blocked does not necessarily get the resource first). If synchronization is needed
by the caller of this service, it is up to the caller to provide the mechanisms needed.

X3T10/990D revision 3

dpANS Common Access Method - 3
50

Values returned:
− Non NULL *:
 Indicates that the service has allocated a CAM-3 CCB for the caller and the value is the pointer to the

CCB_HEADER3.
− NULL *:

Indicates that the service could not allocate a CAM-3 CCB at this time.

9.3.3.8 xpt_ccb_free3(CCB_HEADER3 *ccb_header3)

Data type returned CAM_VOID.

The xpt_ccb_free3() service shall provide the means for the peripheral drivers, SIMs and the XPT to free
CAM-3 CCBs after use. The xpt_ccb_free3() service takes a pointer to the CAM-3 CCB_HEADER3 that
the caller has finished with so it can be returned to the CAM subsystem.

Arguments:
− CCB_HEADER3 *ccb_header3 :

Pointer to the CAM-3 CCB_HEADER3 to be freed to the CAM subsystem.

Values returned:
− None;

9.3.3.9 xpt_action3(CCB_HEADER3 *ccb_header3)

Data type returned CAM_U32;

All CAM-3 CCB requests to the XPT or a SIM/HA are placed through the xpt_action3() service call. The
CAM Status information for callback on completion CCBs shall be obtained at the callback point via the
CAM status fields. The CAM Status information for non callback on completion - non immediate CCBs
shall be obtained by polling the CAM status field for a non Request in Progress status. The CAM Status
information for immediate CCBs shall be obtained on return from the service call by examining the CAM
Status field.

Arguments:
− ccb_header3:

A CCB_HEADER3 pointer that may be passed to a SIM/HA or the XPT, depending upon the CCB
function code and/or Port_ID.

Values returned:
− For Immediate CAM-3 CCBs:

Any Valid CAM Status
− For Queued CAM-3 CCBs

Request In Progress - Indicates that the CCB has been accepted. Any other valid CAM Status -
Indicates that the CCB has not been accepted

The ultimate status of any CAM-3 CCB shall be obtained from the CAM status field of the CCB.

X3T10/990D revision 3

dpANS Common Access Method - 3
51

9.3.3.10 xpt_callback(CCB_HEADER3 *ccb)

Data type returned CAM_VOID.

The xpt_callback() service shall not be used by peripheral drivers. The service shall only be used by the
XPT and SIMs.

The XPT or SIMs shall not call this service with a pointer to a CAM-3 CCB that does not specify Callback
on completion.

The XPT or SIM shall set all appropriate queued CCB fields marked as specified by the CCB function
and shall provide autoevent information (e.g., autosense data for SCSI inter-connects) as specified in
this standard before calling the xpt_callback() service. Refer to Clause 10.6 (autoevent) and the
appropriate CCB tables for further information.

The xpt_callback() service routine may queue the CCB for later callback or callback the peripheral
immediately. The queued CCB includes a pointer to the peripheral driver's callback routine (in the
Callback on Completion field).

The xpt_callback() service shall pass the address of the CAM-3 CCB when calling a peripheral driver's
callback routine for a completed CAM-3 CCB.

Arguments:
− ccb;

Pointer to a CCB_HEADER3

Values returned:
− None

9.3.3.11 xpt_virt_to_phys(CAM_VM_OFFSET addr, CAM_MAP *cam_map)

Data type returned CAM_PM_OFFSET;

The xpt_virt_to_phys() service shall convert the passed virtual address (addr) argument to its associated
physical address and return that address. The cam_map argument is O.S. dependent pointer (see O.S.
dependent clauses for further details). The caller shall pass a NULL cam_map value if the CAM_MAP *
is not available to the caller (e.g., a kernel virtual I/O transfer may not have an associated map). The
caller of the xpt_virt_to_phys() service shall ensure that if a non-NULL cam_map value is passed, that
the CAM_MAP * is associated with the passed virtual address (addr).

Arguments:
− addr :

Pointer a valid virtual address that shall be converted to a physical address.
− cam_map :

X3T10/990D revision 3

dpANS Common Access Method - 3
52

Pointer to the O.S. dependent map structure if available. Refer to the O.S. specific clauses for more
information.

Values returned:
− All values:

The value is the associated physical address.

Example:
routine (CCB_SCSIIO3 *ccb)
{

CAM_PM_OFFSET p_addr;
p_addr = xpt_virt_to_phys((CAM_VM_OFFSET *)ccb->cam_data_ptr, ccb->cam_req_map);

}

9.3.3.12 xpt_page_size(CAM_VM_OFFSET addr, CAM_MAP *map)

Data type returned CAM_U32;

The xpt_page_size() service shall return the virtual page size that is associated with the passed virtual
address (addr). The cam_map argument is an O.S. dependent argument (see O.S. dependent clauses
for further details). The caller shall pass a NULL cam_map value if the CAM_MAP * is not available to
the caller (e.g., usually a kernel virtual I/O transfer does have an associated map). The caller of the
xpt_page_size() service shall ensure that if a non-NULL CAM_MAP *value is passed, that CAM_MAP * is
associated with the passed virtual address (addr).

Arguments:
− addr:

A pointer to a valid virtual address that shall be converted to a physical address.
− cam_map:

Pointer to the O.S. dependent map structure if available. Refer to the O.S. specific clauses for more
information.

Values returned:
− All values:

The value is the page size for the passed virtual address.

9.3.3.13 xpt_pdrv_reg(CAM_S8 *name, CAM_U32 working_set_size)

Data type returned CAM_U32

The xpt_pdrv_reg() service shall provide the means for peripheral drivers and SIM/Has to register with
the XPT. The xpt_pdrv_reg() service shall return a unique number (the driver registration number) for a
peripheral driver that calls this service. The argument name shall point to a NULL terminated string that
represents the peripheral driver’s name (e.g., “cam_xyz_disk_driver”). The argument working_set_size
shall represent the number of bytes that this peripheral driver needs for its working set size.

The service shall ensure that the driver’s name has not been already assigned a registration number.

X3T10/990D revision 3

dpANS Common Access Method - 3
53

This should be accomplished by comparing the peripheral driver’s name to stored peripheral driver
names, which have assigned driver registration numbers. If a match is found the returned value shall be
the already assigned value.

The service shall ensure that the all CCBs allocated after the return of this service call shall have the
largest number of bytes for a peripheral working set.

Note 6
An example of this is that three peripheral drivers have registered with the XPT. Peripheral driver 1 has requested 30
bytes, peripheral driver 2 has requested 60 bytes, and peripheral driver 3 has requested 65 bytes. The XPT will supply
CCBs with peripheral driver working set of at least 65 bytes after peripheral driver 3 has registered.

A peripheral driver shall ensure that it registers with the XPT only once at peripheral driver initialization.
The assigned peripheral driver's registration number shall be used by the driver when requesting an
advisory lock on a logical device. The peripheral driver shall call the xpt_pdrv_unreg() service when it is
unloaded.

Arguments:
− name:

Shall point to a NULL terminated string that represents the peripheral drivers name
− working_set_size:

Number of bytes this peripheral driver needs for a peripheral driver working set size.

Values returned:
− A positive value:

The value shall be the peripheral driver's registration number for this peripheral driver.
− A zero (0)

Shall indicate that the service has encountered an error and the peripheral driver is not registered.

9.3.3.14 xpt_pdrv_unreg(CAM_U32 pdrv_reg_num)

Data type returned CAM_VOID;

The xpt_pdrv_unreg() service shall provide the means for peripheral drivers to unregister with the XPT.
The xpt_pdrv_unreg() service shall break all associations made when this peripheral driver registration
number was assigned. This peripheral driver's registration number shall be available for re-assignment
upon return of this service.

Arguments:
− pdrv_reg_num:

The peripheral driver registration number to disassociate with a peripheral driver (e.g., number
available for re-assignment).

Values Returned:
− None

9.3.3.15 xpt_unit_lock_exclus(TRANS *trans, CAM_U32 pdrv_reg_num)

X3T10/990D revision 3

dpANS Common Access Method - 3
54

Data type returned CAM_U8;

The xpt_unit_lock_exclus() service shall provide an exclusive lock service for the peripheral drivers, to
exclusively lock an identified logical device. The argument trans passed by the caller shall be a pointer
to a TRANSLATION structure and the TRANSLATION structure shall have the following members set.
− protocol type
− logical_id

The argument pdrv_reg_num shall be the peripheral driver's XPT registration number for the caller
requesting the lock.

Arguments:
− trans

Pointer to a valid TRANSLATION structure.
− pdrv_reg_num:

The callers peripheral drivers registration number obtained from the xpt_pdrv_reg() service.

The service shall behave as follows:
− Maintain an indication that an exclusive lock has been granted for the identified logical device.

− Ensure when an exclusive lock is requested, there are no exclusive locks currently against the
identified Logical_ID that another peripheral driver holds.

− Ensure that the identified logical device is represented in the protocol specific Equipment Data Table
as a valid logical device.

− The service shall store the peripheral driver registration for a granted lock against a logical device
when an exclusive lock is granted.

The peripheral drivers should ensure that they only call the service once for a granted lock (e.g., when
they are ready to operate with the identified logical device). The peripheral driver shall not operate with
any Logical_ID, which it has not been granted a lock.

Values returned:
Zero (0x0):
− The requested lock has been granted.

− A positive value:
Bit 0 = 1:

An exclusive lock has been requested and an exclusive lock already exists on the Logical Unit
which another register peripheral driver holds.

Bit 1 = 1:
The identified logical device for the identified protocol does not exist in the Protocol Translation
Table. A Scan logical device function is suggested.

X3T10/990D revision 3

dpANS Common Access Method - 3
55

9.3.3.16 xpt_unit_unlock_exclus(TRANSLATION *trans, CAM_U32
pdrv_reg_num)

Data type returned CAM_U8;

The xpt_unit_unlock_exclus() service shall provide an unlock service for the peripheral drivers to unlock
a logical device. The argument trans passed by the caller shall be a pointer to a TRANSLATION
structure and the TRANSLATION structure shall have the following members set.

− protocol type
− logical_id

Arguments:
− trans
 Pointer to a valid TRANSLATION structure.
− pdrv_reg_num:

The callers peripheral drivers registration number obtained from the xpt_pdrv_reg() service.

The service shall behave as follows:

− Ensure that the requested lock to be released is currently active against the logical device and is
currently held by the calling peripheral driver.
− Compare caller’s pdrv_reg_num argument to the stored value for the lock.

− If the compare succeeds (e.g., pdrv_reg_num argument equals stored value), the service shall

release the lock and all indications that a lock is held for the logical device and shall indicate
success to the caller.

− If the compare fails, the service shall not release the lock and shall indicate failure to the caller.

The peripheral drivers shall ensure that they only call the service once for the granted lock (e.g., when
they are ready to cease operations with the identified logical device).

Values returned:
− Zero (0x0):

The requested lock has been release.
− A positive value (release of lock denied)

Bit 0 = 1:
A lock release has been requested and no lock exists on the identified device.

Bit 1 = 1:
A lock release has been requested and lock exists on the identified device but the registered
peripheral driver does not hold the lock.

9.3.3.17 xpt_bcopy(CAM_VM_OFFSET src, CAM_VM_OFFSET dest, CAM_U32
length)

X3T10/990D revision 3

dpANS Common Access Method - 3
56

Data type returned CAM_VOID;

The xpt_bcopy() service shall copy n number of bytes from the src pointer to dest pointer. If either the
src or dest argument is in user address space, the process that represents the user address space
pointer shall be the currently mapped process.

Arguments:
− src:

Specifies a pointer to a buffer (array of bytes). The pointer may reside in kernel address space or
user address space.

− dest:
Specifies a pointer to a memory buffer of at least n bytes. The pointer may reside in kernel address
space or user address space.

− length:
Specifies the number of bytes to be copied.

Values Returned:
− None

9.3.3.18 xpt_bzero(CAM_VM_OFFSET src, CAM_U32 length)

Date type returned CAM_VOID;

The xpt_bzero() service shall zero n bytes of memory beginning at the address specified by src.

Arguments:
− src:

Specifies a pointer to a buffer of at least length bytes.

− length:
Specifies the number of bytes to be zeroed.

Values returned:
− None

9.3.3.19 xpt_copy_to_phys(CAM_VM_OFFSET virt_src, CAM_PM_OFFSET
phys_dest, CAM_U32 length)

Data type returned CAM_VOID;

The xpt_copy_to_phys() service shall copy the specified amount of virtually addressed memory to
physically addressed memory. The addresses shall reside only in system memory space and not in the
memory space of the I/O buses.

X3T10/990D revision 3

dpANS Common Access Method - 3
57

Arguments:
− virt_src:

Specifies the virtual address of the data to be copied.

− phys_dest:
Specifies the physical address where the data is placed.

− length:
Specifies the number of bytes to copy.

Values returned:
− None

9.3.4 XPT Queue Services

The XPT defined queues shall be constructed of doubly linked lists. Each element is linked into the
queue through a queue header. All queue headers shall be of the generic form XPT_QUEHEAD. A
given element may have multiple queue headers. This allows each element to be simultaneously linked
onto multiple queues.

The callers of the XPT Queues Service may call these services with acquired XPT lock levels. Any
caller of the XPT queue services that manipulates queues should have acquired an XPT lock level
before inserting or removing an element from a queue to prevent queue corruption.

The XPT_QUEHEAD structure shall be defined as follows:

typedef struct xpt_quehead
{

struct xpt_quehead *flink; /* Forward pointer */
struct xpt_quehead *blink; /* Backward pointer */

} XPT_QUEHEAD;

9.3.4.1 xpt_que_init(XPT_QUEHEAD *quehead)

Data type returned CAM_VOID;

The xpt_que_init() service shall initialize the specified XPT_QUEHEAD structure (e.g., argument
quehead) so that both structure members shall point to the XPT_QUEHEAD structure.

Peripheral drivers and SIMs should call this service prior to calling the other XPT Queue Services to
initialize the members of the XPT_QUEHEAD data structure.

Arguments:
− *quehead:

Shall point to a XPT_QUEHEAD structure.

X3T10/990D revision 3

dpANS Common Access Method - 3
58

Values returned:
− None

9.3.4.2 xpt_insque(XPT_QUEHEAD *data_element, XPT_QUEHEAD
*element_position)

Data type returned CAM_VOID;

The xpt_insque() service shall add the data element that the data_element argument specifies to the
queue. The xpt_insque() service shall insert the data_element in the next position after the argument
element_position in the queue.

Arguments:
− *data_element:

Shall point to a XPT_QUEHEAD structure and shall be the data element inserted into the queue.

− *element_position:
Shall point to a XPT_QUEHEAD structure and shall be the position of where the caller wishes to
place the data_element.

Values returned:
− None

9.3.4.3 xpt_remque(XPT_QUEHEAD *data_element)

Data type returned CAM_VOID;

The xpt_remque() service shall remove the data element that the data_element argument specifies from
the queue.

Arguments:
− *data_element:

Shall point to a XPT_QUEHEAD structure and shall be the data element removed from the queue.

Values returned:
− None

9.3.4.4 xpt_insque_head(XPT_QUEHEAD *data_element, XPT_QUEHEAD
*quehead)

Data type returned CAM_VOID;

The xpt_insque_head() service shall add the data element that the data_element argument specifies to
the head of the queue.

Arguments:

X3T10/990D revision 3

dpANS Common Access Method - 3
59

− *data_element:
Shall point to a XPT_QUEHEAD structure and shall be the data element inserted into the queue.

− *quehead:
Shall point to the head of the queue as defined by the XPT_QUEHEAD structure.

Values returned:
− None

9.3.4.5 xpt_remque_head(XPT_QUEHEAD *quehead)

Data type returned XPT_QUEHEAD *;

The xpt_remque_head() service shall remove a data element from the head of the queue that the
quehead argument specifies. The return of the service shall either be a pointer to a XPT_QUEHEAD
structure within a data element removed from the queue or a XPT_QUEHEAD NULL pointer if no data
elements are on the queue.

Arguments:
− quehead:

Shall point to the head of the queue as defined by the XPT_QUEHEAD structure.

Values returned:
− A pointer to a XPT_QUEHEAD structure indicating an element has been removed.

− NULL pointer to a XPT_QUEHEAD structure indicating that the queue is empty.

9.3.4.6 xpt_insque_tail(XPT_QUEHEAD *data_element, XPT_QUEHEAD
*quehead)

Data type returned CAM_VOID;

The xpt_insque_tail() service shall add the data element that the data_element argument specifies to the
tail of the queue.

Arguments:
− *data_element:

Shall point to a XPT_QUEHEAD structure and shall be the data element inserted into the queue.

− *quehead:
Shall point to the head of the queue as defined by the XPT_QUEHEAD structure.

Values returned:
− None

9.3.4.7 xpt_remque_tail(XPT_QUEHEAD *quehead)

X3T10/990D revision 3

dpANS Common Access Method - 3
60

Data type returned XPT_QUEHEAD *;

The xpt_remque_tail() service shall remove a data element from the tail of the queue that the quehead
argument specifies. The return of the service shall either be a pointer to a XPT_QUEHEAD structure
within a data element removed from the queue or a XPT_QUEHEAD NULL pointer if no data elements
are on the queue.

Arguments:
− quehead:

Shall point to the head of the queue as defined by the XPT_QUEHEAD structure.

Values returned:
− A pointer to a XPT_QUEHEAD structure indicating an element has been removed.

− NULL pointer to a XPT_QUEHEAD structure indicating that the queue is empty.

9.3.5 XPT Synchronization services

The XPT synchronization services provide mechanisms that allow threads of execution to synchronize on
events that shall happen at a time in the future. The xpt_sleep() service and xpt_wakeup() services
block and then wake up a thread of execution. An example of this is that a peripheral driver may call
these services to wait for the completion of a CCB. The peripheral driver after sending a CCB to the
XPT for transport to a SIM/HA may call xpt_sleep() with the address of the CCB. The callback on
completion service that may be specified in a CCB may call the xpt_wakeup() service with the address of
the CCB when called. It shall be the responsibility of the wakened process to check if the condition for
which it was sleeping (blocked) has occurred.

9.3.5.1 xpt_sleep(CAM_VM_OFFSET channel)

Data type returned CAM_VOID;

The xpt_sleep() service shall put the calling thread of execution (process thread) to sleep (blocked) on
the address specified by the channel argument. This address should be unique to prevent unexpected
wake/sleep cycles, which can occur if a number of different threads of execution (process threads) are
sleeping (blocked), on the same address.

The service shall not be called when in interrupt context.

Arguments:
− channel:

Shall specify an address associated with the calling thread of execution to be put to sleep.

Values returned:
− None

9.3.5.2 xpt_wakeup(CAM_VM_OFFSET channel)

X3T10/990D revision 3

dpANS Common Access Method - 3
61

Data type returned CAM_VOID;

The xpt_wakeup() service shall schedule all threads of execution to run (e.g., placed into a runnable
state) that are sleeping (blocked) on the address specified by the channel argument. The calling thread
of execution (process thread) to sleep (blocked) on the address specified by the channel argument. It is
possible there are no threads of execution sleeping on the channel at the time the wakeup is issued.
This situation can occur for a variety of reasons and shall not represent an error condition.

Arguments:
− channel:

Shall specify the address on which the wakeup is to be issued.

Values returned;
− None

9.4 CAM-3 XPT Optional Services

The following services may be provided by the supplier of the XPT.

9.4.1 XPT DMA Services

The XPT DMA services shall provide the mechanisms that support direct memory access (DMA) of data
transfers for HAs that are capable of DMA transfers. The XPT DMA services operate on a generic data
type of XPT_DMA_HANDLE. The data type provides an operating system independent means of
conveying bus addresses and byte counts to SIMs/HAs for DMA transfers.

The XPT_DMA_HANDLE data type and its members shall only be used as reference (read) by a SIM.
This shall mean that no SIM shall modify its contents or members directly. Modifications of the
XPT_DMA_HANDLE shall be accomplished through calls to the services in Clause 9.4.1. Once a
XPT_DMA_HANDLE is allocated through a call to the xpt_dma_map_alloc(), it may be passed to other
routines within the SIM and to other XPT DMA Services. Once a XPT_DMA_HANDLE is deallocated
through a call to the xpt_dma_map_dealloc() service it shall not be referenced again until reallocated.

The XPT_DMA_HANDLE may be embedded in another structure that contains other data a needed by
the OS or the XPT to keep track of resources and information on OSD data. This data shall be
transparent to the callers of the XPT DMA services. An example of this is the following:

typedef struct osd_dma_context
{

XPT_DMA_HANDLE *osd_sgp; /* Pointer to allocated resources */
OSD_MAP *osd_map; /* Pointer to map struct that the *sgp resources came from */
OSD_BUS *osd_bus; /* Pointer to an OSD struct that contains information on

the bus (e.g., PCI bus) */
} OSD_DMA_CONTEXT;

X3T10/990D revision 3

dpANS Common Access Method - 3
62

9.4.1.1 The XPT_DMA_HANDLE Structure

typedef struct xpt_dma_handle
{

XPT_DMA_SGLIST*xpt_sgp; /* Pointer to an array of XPT_DMA_SGLIST that contains the
bus address and byte counts */

CAM_U32 xpt_val_ents; /* Number of entries in the list (XPT_DMA_SGLIST */
CAM_U32 xpt_num_ents; /* Number of loaded entries in the list */

} XPT_DMA_HANDLE;

Member descriptions for the XPT_DMA_HANDLE structure:
− *xpt_sgp:

This member shall point to an array of structures having a data type of XPT_DMA_SGLIST. The
member shall be set by the xpt_dma_map_alloc() service if the call is successful.

− xpt_val_ents:
This member shall contain the number of XPT_DMA_SGLIST data types in the array to which the
xpt_sgp member points. The member shall be set by the xpt_dma_map_alloc() service if the call is
successful.

− xpt_num_ents:
This member shall contain the number of loaded XPT_DMA_SGLIST data types in the array to which
the xpt_sgp member points. The member shall be set by the xpt_dma_map_load() and the
xpt_dma_map_unload() services if the call(s) are successful.

9.4.1.2 The XPT_DMA_SGLIST Structure.

typedef struct xpt_dma_sglist {
CAM_VOID_OFFSET bus_addr; /* Base address to start this DMA segment */
CAM_U32 byte_count; /* Byte count for this segments DMA */

} XPT_DMA_SGLIST;

9.4.1.3 xpt_dma_map_alloc(CAM_U32 byte_count, CAM_VM_OFFSET OSD,
XPT_DMA_HANDLE *xpt_dma_handle, flags)

Data type returned CAM_U32;

The xpt_dma_map_alloc() service shall allocate the resources (mapping registers, I/O channels, and
other hardware and software resources) for DMA data transfers. The size of the DMA data transfer is
specified in the byte_count argument.

The xpt_dma_map_alloc() service returns to the xpt_dma_handle argument a handle to DMA resources
associated with the mapping of an in-memory I/O buffer. SIM writers can view the DMA handle, as the
tag to the allocated system resources needed to perform a DMA operation.

The xpt_dma_map_alloc() service shall allocate only the necessary resources for a SIM/HA to perform a
maximum transfer of size byte_count. The maximum transfer size is the size of the returned byte count
if the returned byte count is not equal to byte_count. All SIM/HAs shall be prepared for a returned byte

X3T10/990D revision 3

dpANS Common Access Method - 3
63

count that is less than byte_count. The reason for this is that system resources can have physical limits
that may never satisfy an allocation request of size byte_count. To actually initialize and set up the
resources, the SIM/HA shall make a call to the xpt_dma_map_load() service.

The xpt_dma_map_alloc() service shall not put the caller to sleep (block) and returns the value zero (0)
if:
− The SIM writer sets the flags argument to XPT_DMA_SLEEP and the specified byte_count exceeds

all available system resources (e.g. the system cannot provide the resources for a data transfer of
size byte_count).

If the returned byte count does not equal byte_count, the device driver can perform one of the following
tasks:

− A SIM/HA can partition the DMA data transfer into a byte_count that is less than or equal to the
returned byte count and then perform a sequence of DMA data transfer operations until the transfer
has completed.

− If the SIM/HA needs more resources associated with the specified byte_count than
xpt_dma_map_alloc() can allocate, the SIM calls xpt_dma_map_dealloc() to release and deallocate
these resources. The SIM then recalls xpt_dma_map_alloc() (possibly with the DMA_SLEEP flag set)
until the necessary resources are available.

Arguments:
− byte_count:

Specifies the maximum number of data bytes to transfer during the DMA operation. The XPT uses
this size to determine the resources (mapping registers, I/O channels, and other software resources)
to allocate.

− OSD:
This is a pointer to an Operating System specific structure and is defined by the supplier of the XPT
or the O.S. The service uses the OSD pointer to obtain the O.S. dependent bus-specific interfaces
and data structures that it needs to allocate the necessary mapping resources.

− *xpt_dma_handle:
Specifies a pointer to a XPT_DMA_HANDLE to DMA resources associated with the mapping of an
in-memory I/O buffer onto an I/O bus. The XPT_DMA_HANDLE provides the information to access
bus address/byte count pairs. A bus address/byte count pair is represented by the ba and bc
members of a xpt_sg_entry structure pointer. SIM writers can view the XPT_DMA_HANDLE as the
tag to the allocated system resources needed to perform a DMA operation.

The SIM/HA passes an argument of type XPT_DMA_HANDLE * the xpt_dma_map_alloc() service
returns to this variable the address of the DMA handle. The SIM uses this address in a call to
xpt_dma_map_load.

− flags:
XPT_DMA_SLEEP:

Specifies that the caller requests that it be blocked if the resources requested are not currently
available.

X3T10/990D revision 3

dpANS Common Access Method - 3
64

XPT_DMA_CONTIG:
The XPT_DMA_CONTIG flag is a request for contiguous memory space on an I/O bus for a
virtually mapped buffer in system memory space that may be physically not contiguous. The call
to the xpt_dma_map_alloc() or xpt_dma_map_load() services with the DMA_CONTIG flag shall
not fail if a contiguous I/O address space cannot be used to map the memory buffer (e.g. if more
than one dma_map_load interface).

The XPT_DMA_CONTIG flag is useful for I/O devices whose DMA typically crosses one or more
system pages. Since system hardware scatter-gather resources can be set up and used to do
scatter-gather mapping of a virtually contiguous, physically not contiguous I/O buffer during the
calls to xpt_dma_map_alloc() or xpt_dma_map_load(). This DMA mapping makes a physically
not contiguous memory buffer appear physically contiguous to an HA.

Even if an HAs DMA engine has scatter-gather resources or support, direct memory access is
typically faster if the system scatter-gather resources are used. This is due to the system's lower
overhead to set up scatter-gather resources relative to an HA reading and processing multiple
scatter-gather data structures.

XPT_DMA_ALL:
Specifies that xpt_dma_map_alloc() shall return a non-zero value only if the system can satisfy a
transfer size of byte_count. If the system cannot support a transfer of size byte_count (even if
all DMA resources were made available), the xpt_dma_map_alloc() service shall not allocate
any portion of the resources associated with the specified byte_count and returns a byte count of
zero (0). The behavior of no allocation of resources unless xpt_dma_map_alloc() can allocate
the resources needed to do an uninterruptible transfer of the requested size, avoids extra calls to
xpt_dma_map_dealloc().

Values returned:
− A positive value:

Upon successful completion, xpt_dma_map_alloc() returns a byte count (in bytes) that indicates the
DMA transfer size it can map. A positive value returned not equal to the byte count request, shall
indicate the resources that have been obtain but not all that is needed.

− A zero value (0):
Indicates a failure to obtain the needed resources as specified (e.g., flags or no resources).

9.4.1.4 xpt_dma_map_dealloc(XPT_DMA_HANDLE *xpt_dma_handle)

Data type returned CAM_U32;

The xpt_dma_map_dealloc() service shall release and deallocates the resources for DMA data transfers
that were previously allocated in a call to xpt_dma_map_alloc() or xpt_dma_map_load() service.

Arguments:
− *xpt_dma_handle:

Specifies a XPT_DMA_HANDLE pointer to DMA resources associated with the mapping of an in-

X3T10/990D revision 3

dpANS Common Access Method - 3
65

memory I/O buffer onto a controller's I/O bus. The XPT_DMA_HANDLE provides the information to
access bus address/byte count pairs. A bus address/byte count pair is represented by the ba and bc
members of a sg_entry structure pointer. SIM/HA writers can view the XPT_DMA_HANDLE pointer
as the tag to the allocated system resources needed to perform a DMA operation.

Values returned:
− A positive value:

Upon successful completion, xpt_dma_map_dealloc() shall return a positive value.
− A zero (0) value:

An error has occurred when releasing the resources.

9.4.1.5 xpt_dma_map_load(CAM_U32 byte_count, CAM_VM_OFFSET
virtual_addr, CAM_MAP *cam_map, XPT_DMA_HANDLE *xpt_dma_handle,
CAM_VM_OFFSET OSD)

Data type returned CAM_U32;

The xpt_dma_map_load service shall load and set the system resources necessary to perform a DMA
transfer of size byte_count to the virtual address specified in the virtual_addr argument. This virtual
address must be valid in the context of the OSD CAM_MAP pointer. The OSD CAM_MAP pointer may
be a NULL pointer if it is not associated with a user process request (e.g., the DMA request is associated
with a kernel virtual buffer).

The SIM shall call the xpt_dma_map_alloc() service prior to calling the xpt_dma_map_load() service.
The xpt_dma_map_load() service shall use the xpt_dma_handle argument (allocated in
xpt_dma_map_alloc) to load and set the appropriate DMA mapping resources.

Arguments:
− byte_count:

Specifies the maximum size (in bytes) of the data to be transferred during the DMA transfer
operation. The XPT uses this size to determine the resources (mapping registers, I/O channels, and
other software resources) to load and set.

− virtual_addr:
Shall specify the virtual address where the DMA transfer occurs. The service uses this address with
the OSD CAM_MAP pointer to obtain the physical addresses of the system memory pages to load
into DMA mapping resources.

− cam_map:
Specifies an OSD specific pointer to map structures associated with the valid context for the virtual
address specified in virtual_addr. If the cam_map * is a null, the address is a kernel space address.

− *xpt_dma_handle:
Specifies a pointer to a XPT_DMA_HANDLE to DMA resources associated with the mapping of an
in-memory I/O buffer onto an I/O bus which was allocated in the call to the xpt_dma_map_alloc()
service. The XPT_DMA_HANDLE provides the information to access bus address/byte count pairs.
A bus address/byte count pair is represented by the ba and bc members of a xpt_sg_entry structure

X3T10/990D revision 3

dpANS Common Access Method - 3
66

pointer. SIM writers can view the XPT_DMA_HANDLE as the tag to the allocated system resources
needed to perform a DMA operation.

The SIM/HA passes an argument of type XPT_DMA_HANDLE * the xpt_dma_map_alloc() service
returns to this variable the address of the DMA handle. The SIM uses this address in a call to
xpt_dma_map_load.

− OSD:
This is a pointer to an Operating System specific structure and is defined by the supplier of the XPT
or the O.S. The service uses the OSD pointer to obtain the O.S. dependent bus-specific interfaces
and data structures that it needs to allocate the necessary mapping resources.

Values returned:
− A positive value:

Upon successful completion, xpt_dma_map_load() returns a byte count that shall indicate the DMA
transfer size. A positive value returned not equal to the byte count request shall indicate resources
have been obtained but not all that is needed.

− A zero (0) value:
Indicates a failure to obtain the needed resources as specified (e.g., flags or no resources).

9.4.1.6 xpt_dma_map_unload(XPT_DMA_HANDLE *dma_handle)

Data type returned CAM_U32;

The xpt_dma_map_unload() service shall unload (invalidates) the resources that were loaded and set up
in a previous call to xpt_dma_map_load(). A call to xpt_dma_map_unload() shall not release or
deallocate the resources that were allocated in a previous call to xpt_dma_map_alloc() service.

Arguments:
− *xpt_dma_handle:

Specifies a pointer to a XPT_DMA_HANDLE to DMA resources associated with the mapping of an
in-memory I/O buffer onto an I/O bus which was allocated in the call to the xpt_dma_map_alloc()
service.

Values returned:
− A positive value:

Upon successful completion, xpt_dma_map_unload shall return a positive value.
− A zero (0) value:

An error has occurred when releasing the resources.

9.4.2 XPT SIM Services

The following services may be used by SIMs to allow movement of data and control information to HAs.

9.4.2.1 xpt_io_copyin(CAM_IOHANDLE srcaddr, CAM_VM_OFFSET destaddr,
CAM_U32 count)

X3T10/990D revision 3

dpANS Common Access Method - 3
67

Data type returned CAM_VOID;

The xpt_io_copyin() service shall copy data as specified by the count argument from bus address space
(e.g., PCI bus) as specified by the srcaddr argument to kernel system memory as specified by the
destaddr argument. The CAM_IOHANDLE srcaddr shall identify the location in bus address space where
the copy of data shall originate and shall be physically contiguous as specified by the argument count.
The destaddr argument shall not represent user process address space.

The xpt_io_copyin() service shall assume no alignment of data associated with srcaddr and destaddr.

Arguments:
− srcaddr:

Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

− destaddr:
Shall specify the kernel virtual address where xpt_io_copyin() service copies the data to in-system
memory.

− count
Shall specify the number of CAM_U8s (bytes) to be copied.

Values returned
− None

9.4.2.2 xpt_io_copyout(CAM_VM_OFFSET srcaddr, CAM_IOHANDLE destaddr,
CAM_U32 count)

Data type returned CAM_VOID;

The xpt_io_copyout() service shall copy data as specified by the count argument from kernel system
memory as specified by the srcaddr argument to bus address space (e.g., PCI bus) specified by the
destaddr argument. The CAM_IOHANDLE destaddr shall identify the location in bus address space
where the copy of data shall be placed and shall be physically contiguous as specified by the argument
count. The srcaddr argument shall not represent user process address space.

The xpt_io_copyout() service shall assume no alignment of data associated with srcaddr and destaddr.

Arguments:
− destaddr:

Shall specify the kernel virtual address where xpt_io_copyin() service copies the data to in-system
memory.

− srcaddr:
Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space.

X3T10/990D revision 3

dpANS Common Access Method - 3
68

− count:
Shall specify the number of CAM_U8s (bytes) to be copied.

Values returned:
− None

9.4.2.3 xpt_readbus_d8(CAM_IOHANDLE hba_addr)

Data type returned CAM_U8;

The xpt_readbus_d8() service shall read a CAM_U8 (byte) from a HA device register located in the bus
I/O address space as specified by argument hba_addr.

Arguments:
− hba_addr:

Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

Values returned:
− A CAM_U8 read from the HA.

9.4.2.4 xpt_readbus_d16(CAM_IOHANDLE hba_addr)

Data type returned CAM_U16;

The xpt_readbus_d16() service shall read a CAM_U16 (short) from a HA device register located in the
bus I/O address space as specified by argument hba_addr. The hba_addr argument shall point to a
naturally aligned address boundary of a CAM_U16 data type (see Clause 7.2 for further information).

Arguments:
− hba_addr:

Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

Values returned:
− A CAM_U16 read from the HA.

9.4.2.5 xpt_readbus_d32(CAM_IOHANDLE hba_addr)

Data type returned CAM_U32;

The xpt_readbus_d32() service shall read a CAM_U32 from a HA device register located in the bus I/O
address space as specified by argument hba_addr. The hba_addr argument shall point to a naturally
aligned address boundary of a CAM_U32 data type (see Clause 7.2 for further information).

Arguments:

X3T10/990D revision 3

dpANS Common Access Method - 3
69

− hba_addr:
Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

Values returned
− A CAM_U32 read from the HA.

9.4.2.6 xpt_readbus_d64()

Editors mark - Do we want to define a xpt_readbus_d64().

9.4.2.7 xpt_writebus_d8(CAM_IOHANDLE hba_addr, CAM_U8 data)

Data type returned CAM_VOID;

The xpt_writebus_d8() service shall write a CAM_U8 (byte) as specified by the data argument to a HA
device register located in the bus I/O address space as specified by argument hba_addr.

Arguments:
− hba_addr:

Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

− data:
Shall contain the data to be written.

Values returned:
− None

9.4.2.8 xpt_writebus_d16(CAM_IOHANDLE hba_addr, CAM_U16 data)

Data type returned CAM_VOID;

The xpt_writebus_d16() service shall write a CAM_U16 (short) as specified by the data argument to a HA
device register located in the bus I/O address space as specified by argument hba_addr. The hba_addr
argument shall point to a naturally aligned address boundary of a CAM_U16 data type (see Clause 7.2
for further information).

Arguments:
− hba_addr:

Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

− data:
Shall contain the data to be written.

Values returned:
− None

X3T10/990D revision 3

dpANS Common Access Method - 3
70

9.4.2.9 xpt_writebus_d32(CAM_IOHANDLE hba_addr, CAM_U32 data)

Data type returned CAM_VOID;

The xpt_writebus_d32() service shall write a CAM_U32 as specified by the data argument to a HA device
register located in the bus I/O address space as specified by argument hba_addr. The hba_addr
argument shall point to a naturally aligned address boundary of a CAM_U32 data type (see Clause 7.2
for further information).

Arguments:
− hba_addr:

Shall specify a CAM_IOHANDLE which is operating system dependant (e.g., an I/O handle that you
can use to reference a HA register or HA memory located in bus address space).

− data:
Shall contain the data to be written.

Values returned:
− None

9.4.2.10 xpt_writebus_d64(CAM_IOHANDLE hba_addr, CAM_U64 data)

Editors mark - Do we want to define a xpt_writebus_d64().

10. Principles of operation

10.1 Accessing the XPT

The OS peripheral drivers access the XPT through software calls through a number of entry points. The
method for determining whether the XPT exists differs between operating systems.

The XPT is responsible for routing a CCB to the correct SIM indicated by the Port ID field.

The XPT is involved in the reverse process of advising the peripheral driver of the completion of a
queued request through the xpt_callback() service (see Clause 9.3.3.10 for further information). The
xpt_callback() service permits SIM(s) a single point service for the return of queued CCB(s) from the SIM
to the peripheral driver (the exact method employed in callback is operating system dependent).
Completion notifications for immediate requests are accomplished by the function calls return
mechanisms.

The XPT is responsible for notifying peripheral drivers of asynchronous events via the asynchronous
callback mechanism.

10.2 Initialization

X3T10/990D revision 3

dpANS Common Access Method - 3
71

The XPT and the SIM shall be responsible for determining interconnect configuration at initialization for
each SIM.

(Editors Mark - update device config process)

10.3 CCB completion

CCB completion is either immediate or queued.

10.3.1 Completion of immediate CCB

All CCBs are complete when the xpt_action3() call returns except:

For SCSI Inter-connects:
− Execute SCSI I/O
− Execute Target I/O
− Accept Target I/O
− Continue Target I/O
− Immediate Notify
− Execute Engine Request

10.3.2 Completion of queued CCBs

The XPT/SIM shall set all appropriate queued CCB fields marked as IN or IN/OUT and shall provide
autoevent information (e.g., autosense data for SCSI inter-connects) as specified in this standard before
CCB completion notification is done. See Clause 10.6 (autoevent) and the appropriate CCB tables for
further information.

A peripheral driver is notified of the completion of a queued CCB by using one of the following
mechanisms, as directed by the CAM-3 Flags field in the CCB:
− CCB Callback on completion.

The SIM calls the xpt_callback() service routine with the address of the CCB as the single argument,
when execution of the queued CCB completes.

The xpt_callback() service routine may queue the CCB for later callback or callback the peripheral
immediately. The queued CCB includes a pointer to the peripheral driver's callback routine (in the
Callback on Completion field).

The peripheral driver's callback routine is used much like a hardware interrupt handler. The callback
routine has the same privileges and restrictions as an interrupt handler.

The address of the specific CCB that completed is passed to the peripheral driver's callback routine.

− Disable Callback of Completion:

X3T10/990D revision 3

dpANS Common Access Method - 3
72

If the CCB CAM-3 Flags has the Disable Callback of Completion set. The XPT/SIM shall notify the
peripheral driver of a completed CCB by changing the CAM-3 Status field of the CCB from Request
in Progress to another valid CAM-3 Status. The peripheral driver shall be responsible for monitoring
the CCB CAM-3 Status field for completion.

10.4 Request queues

Queues are used in systems where there is a need to manage multiple outstanding requests. There are
various types of queues and each has different support needs.

A CCB request can be queued in any of the following places:

− in the SIM
− in the target/Logical Unit
− in the peripheral driver

The SIM shall keep a logically distinct and separate queue of all the CCB requests from the various
peripheral drivers that access a logical device.

A peripheral driver may also keep a queue (e.g., to perform a simple elevator sort).

10.4.1 The logical device and the peripheral driver

Based on needs outside the scope of CAM-3, a peripheral driver may maintain a list of unfinished
queued CCBs. The SIM, acting on behalf of the peripheral driver, sends the appropriate commands or
messages to manage the queues in the logical device. When the logical device completes an operation,
the peripheral driver is advised by the SIM and the XPT via a callback or by checking CAM-3 Status for
completion (see Clause 10.3.2 for additional information).

10.4.2 SIM queuing

The SIM shall maintain a request queue for each logical device present. The request queue is logically
shared by all peripheral drivers allowed to operate with the logical device.

(Editors Mark - Move to SCSI specific section)
The request queue may support tagged commands. Queue priority shall be supported.

10.4.3 SIM queue priority

X3T10/990D revision 3

dpANS Common Access Method - 3
73

When a CCB has a SIM queue priority of one. The SIM places the CCB ahead of all CCBs that have a
SIM queue priority of zero for the Logical Unit and at the end (tail) of all other CCBs having a SIM queue
priority of one. One use of this CAM-3 Flag is during error handling. If the queue is frozen and a CCB
with SIM queue priority of one is received, the CCB shall be placed at the head of the queue of CCBs
that has SIM priority of zero and the queue remains frozen. When the SIM queue is released, any CCBs
with SIM queue priority of one are executed individually first (in FIFO sequence), followed by CCBs with
a SIM priority of zero (in FIFO sequence). See the protocol specific Clauses on how to release the SIM
queue.

To force systematic execution, the peripheral driver can set SIM queue freeze bit to one. When the
queue is released and a CCB with SIM queue priority of one is executed, the queue is re-frozen by the
SIM at completion.

10.4.3.1 Error conditions and queues within the subsystem

The SIM shall place its internal queue for a Logical Unit into the frozen state for any status other than
Request Completed without Error or Request in Progress for an I/O REQUEST CCB, unless the SIM
queue freeze disable bit has been set in the CCB. If the SIM queue freeze disable bit is set, the queue
shall not be frozen and CCB execution continues from the SIM queue.

The SIM shall maintain a count of the number of CCBs returned with the indication of SIM queue frozen.
 The SIM shall decrement the SIM queue frozen count for each CCB received with a Release SIM
Queue function code with the SIM Queue Freeze bit set to a one. The SIM/HA shall not release its
internal queue until the SIM queue frozen count is zero. The SIM shall not allow the SIM queue frozen
count to have a negative value. The SIM shall not consider it an error when a CCB is received with a
Release SIM Queue function code that would decrement the SIM queue frozen count past zero
(negative).

In the event that a SIM encounters an error condition that can not be associated with a CCB, the SIM
shall not freeze the queue. The SIM should attempt to continue operation. Failing that the SIM shall
take corrective action leaving the interconnect in a usable state.

When a SIM's logical device queue is in the frozen state (a positive value in the SIM queue frozen
count), the SIM shall not dispatch any CCBs to that logical device except to retrieve autoevent (e.g.,
SCSI autosense) information. Peripheral drivers can still send CCBs to the SIM for the logical device, or
any other logical device. Any new CCBs received by the SIM shall be placed in the queue according to
the rules specified in Clause 10.4.3

Note 7
Since the SIM is the controls the hosts access to the interconnect. The SIM's internal queue goes into a frozen state so that
the pending event information in the logical device is not discarded (e.g., SCSI sense information is not lost). The SIM holds
it's internal logical device queue in the frozen state until RELEASE SIM QUEUE CCB(s) are received that decrement the SIM
queue frozen count to zero.

Note 8
The SIM queue frozen count can be greater then one for a number of conditions. Examples of two of these conditions are
SCSI BUS RESET, and a target operating in tagged queue mode.

Using the CCB, the SIM returns in the CAM-3 Status field an indication of the frozen queue condition and

X3T10/990D revision 3

dpANS Common Access Method - 3
74

other information. The peripheral driver acts upon the information returned via the CCB. The setting of
the Autoevent bit in the CAM-3 Flags field does not affect how the SIM handles freezing the SIM's
internal queue (i.e., the SCSI REQUEST SENSE command issued by the SIM to recover the sense data
does not release the SIM queue). See Clause 10.6 for further information on autoevent.

10.5 Asynchronous event callback

There are certain out of band events that occur not in the context of any CCB function for devices.
These events are called Asynchronous Events. These events vary due to the different types of device
classes (e.g., SCSI, NETWORK, and ATA) and are detailed in the protocol specific clauses of this
document.

When event is detected by a SIM/HA or XPT (e.g., SCSI bus reset), the XPT has to be able to make a
callback to the peripheral driver(s), although there may be no CCBs active for the peripheral driver(s).

Callback routines have the same privileges and restrictions as hardware interrupt service routines. The
peripheral driver shall return from the callback.

The peripheral driver should register for asynchronous event callbacks for each logical device with which
it is working and once with the XPT. A SIM may be required to register with the XPT based upon the
protocols it supports (refer to the protocol specific Clauses for further information).

In order for a peripheral driver to receive asynchronous event callbacks for a protocol specific logical
device, it shall issue a SET ASYNCHRONOUS CALLBACK CCB addressed to the protocol specific
logical device. The Asynchronous Event Enables fields shall be set to a 1 for those events the peripheral
driver wishes to be notified of through an asynchronous callback. For the XPT asynchronous event
callbacks, the peripheral driver shall issue a SET ASYNCHRONOUS CALLBACK CCB addressed to the
XPT (Path ID 0xFF). The Asynchronous Event Enables fields shall be set to a one for those events the
peripheral driver wishes to be notified of through an asynchronous callback. The SET
ASYNCHRONOUS CALLBACK CCB shall apply only to a single logical device or the XPT per peripheral
driver. The use of wildcards shall not be supported for the SET ASYNCHRONOUS CALLBACK CCB.

The peripheral driver can change its asynchronous event callbacks for a particular protocol specific
logical device or the XPT by issuing the SET ASYNCHRONOUS CALLBACK CCB to a logical device or
the XPT. The Asynchronous Event Enables field shall be set to the replacement value, an updated
Peripheral Driver Buffer Pointer field, an updated Size of Allocated Peripheral Buffer field, and the
Asynchronous Callback Pointer field containing the original registered value.

The peripheral driver can de-register for asynchronous event callbacks for a logical device or the XPT by
issuing the SET ASYNCHRONOUS CALLBACK CCB to the logical device or the XPT. The
Asynchronous Event Enables field shall be set to zero and the Asynchronous Callback Pointer field
containing the original registered value. When a peripheral driver wishes to change its asynchronous
event callback routine, it shall do so by de-registering and then shall follow the registration procedure.

The XPT shall be responsible for ensuring that requests to the xpt_async3() routine is processed in serial
fashion.

X3T10/990D revision 3

dpANS Common Access Method - 3
75

Refer to the protocol specific Clauses for further information.

10.6 Autoevent

Autoevent causes event data to be retrieved automatically if an Autoevent condition is detected by a
SIM/HA for a logical device (e.g., if a CHECK CONDITION or COMMAND TERMINATED status is
reported in the SCSI Status field of the CCB).

The SIM shall perform operations required by the applicable protocol specific Clause to obtain Autoevent
data for the event (e.g., form a SCSI REQUEST SENSE command and send it to the same Logical
Unit). The location and amount of event data are specified in the Event Info Buffer Pointer and Event
Info Buffer Length fields respectively of the I/O Request CCB. If the length field is zero or the Event Info
Buffer Pointer field is null, the SIM/HA shall not perform operations required by the applicable protocol
specific Clause to obtain Autoevent data for the event.

After completing the Autoevent sequence without failure the CAM-3 Status shall contain the status of the
original command and a protocol specific status that caused the event.

Refer to the specific protocol specific Clauses for further information.

10.7 SIM Loading at Boot and Run Time

Some operating system environments provide the ability to load or unload software drivers; thus
peripheral drivers or SIM modules can be loaded dynamically. In such systems, the XPT module
(typically supplied by the OS vendor) is either part of the system or must be loaded first.

The XPT, as part of a loadable OS, exports its "labels" or "entry points", which are to used as references
by the other loadable modules. The XPT manages the port number assignment of loading of SIMs at
both boot and run time.

When a peripheral driver is loaded, it can go through its initialization process, call the XPT initialization
point and then query the XPT for the HAs (Port_IDs) that are present in the system. The peripheral
driver may then discover the logical devices that have been identified as being on those HAs.

When a SIM is loaded the SIM and XPT shall work together to have the SIM supported HAs registered
as addressable Port_IDs. The SIM shall call the XPT once for each supported protocol per inter-connect
in order to obtain the Port ID for that protocol on the inter-connect. An example of this is a FCP inter-
connect that supports both the SCSI protocols and network protocols, the SIM would call
xpt_bus_register3() twice, once for the SCSI protocol and once for the network protocols.

CAM_U32 xpt_bus_register3(SIM_ENTRY3 *)

The argument is the pointer to the data structure defining the entry points for the SIM. The value
returned is the assigned Port ID; a value of -1 indicates that registration was not successful.

A SIM shall call the xpt_bus_register3() service for each interconnect and protocol on an HA passing a
pointer to a CAM-3_SIM_ENTRY structure.

X3T10/990D revision 3

dpANS Common Access Method - 3
76

When the xpt_bus_register3 function is called, the XPT shall update EDT and then call the
sim_init(CAM-3_SIM_ENTRY *) function pointed to by the CAM-3_SIM_ENTRY structure. The
initialization for the loaded SIM is no different than for a SIM statically included in the kernel at boot time.
 After the SIM has gone through the initialization process, the XPT shall perform a Topology Discovery
Process for the interconnect as specified by the applicable protocol Clause in order to update its internal
tables containing device identification information.

The SIM shall call the XPT once to de-register the inter-connect protocol for a given Port ID:

CAM_U32 xpt_bus_deregister3(Port_ID)

The argument is the Port ID for the bus being de-registered. A return value of zero indicates the bus is
no longer registered, any other value indicates the call was unsuccessful.

When the xpt_bus_deregister3 function is called, the XPT shall update its internal tables to reflect that
the Port_ID (HA) is not present.

Peripheral drivers can request to be informed when a Port ID is registered or de-registered via the
asynchronous callback feature (see Clauses 10.5 and the applicable protocol specific Clauses).

10.7.1 The CAM-3 SIM_ENTRY3 Structure

The XPT vendor shall define the CAM-3 SIM_ENTRY3 structure. The CAM-3 SIM_ENTRY3 structure
shall be used by the SIMs to define the entry points for the SIMs to the XPT and to obtain a Port_ID from
the XPT.

typedef struct sim_entry3
{

CAM_U32 (*sim_init)(); /* Pointer to the SIM init routine */
CAM_U32 (*sim_action)(); /* Pointer to the SIM CCB go routine */
CAM_VOID_OFFSET simha_handle; /* Pointer to a SIM/HA handle (VU) */
CAM_U32 max_addr_spec1[2]; /* Maximum value for physical address (target id) */
CAM_U32 max_addr_spec2[2]; /* Maximum value for physical address (LUN id) */
CAM_U32 sim_flags; /* SIM features supported flags */
CAM_U32 sim_ws_size; /* The size of this SIM’s working set needs */
CAM_U32 port_id; /* Port Identifier */
CAM_U32 protocol_type; /* Protocol Type/Number (SCSI, NETWORK) */
CAM_U32 xpt_reg_num; /* The XPT’s registration number. */
CAM_VOID_OFFSET vu_entry; /* Vendor unique pointer defined by OS */
CAM_S8 sim_name[32]; /* Array of 32 bytes for a NULL terminated string */
CAM_S8 vendor_keystring[32]; /* Array of 32 bytes for a NULL terminated string */
CAM_U32 vendor_key1; /* SIM vendor or OSD key */
CAM_U32 vendor_key2; /* SIM vendor or OSD key */
CAM_U32 vendor_key3; /* SIM vendor or OSD key */
CAM_U32 vendor_key4; /* SIM vendor or OSD key */
CAM_U32 vendor_key5; /* SIM vendor or OSD key */

X3T10/990D revision 3

dpANS Common Access Method - 3
77

CAM_U32 vendor_key6; /* SIM vendor or OSD key */
} SIM_ENTRY3;

10.7.2 Member Descriptions for the CAM-3 SIM_ENTRY3 Structure

− (*sim_init)():
This member shall be set in by the SIM with the address of this SIM's initialization routine. The
SIM's initialization routine shall take one argument that is the pointer of the passed SIM_ENTRY3
structure.

− (*sim_action)():
This member shall be set by the SIM with the address of this SIM's CCB action routine. The
SIM’s CCB action routine shall accept CCBs from the XPT for execution.

The arguments to the sim_action routine shall be the pointer of a passed CCB pointer and the
value of the SIM_ENTRY3 structure member simha_handle. The pointer to the CCB shall be the
first argument and the value of the simha_handle shall be the second argument (e.g.,
(*sim_action)(*CCB, simha_handle)).

− simha_handle:
This member may be set by the SIM before the call to xpt_bus_register3(), after the call to the SIM’s
initialization routine, or not at all. The setting of this member is vendor unique and may be used for
any purpose. The XPT shall not modify this member. The XPT shall pass this argument to any call
to the (*sim_action) routine for this specific registered Port_ID.

− max_addr_spec1;
An array of four CAM_U32s that shall contain the maximum address specifier that the SIM/HA
supports. The format of the array is as follows:
• max_addr_spec1[0] shall contain the least significant portion of a protocol specific address (e.g.

the least significant portion of a SCSI-3 target address or lower 32 bits).
• max_addr_spec1[1] shall contain the most significant portion of a protocol specific address (e.g.

the most significant portion of a SCSI-3 target address or upper 32 bits).

If the protocol uses up to sixty-four (64) bits to address a device on a specific Port_ID then
max_addr_spec1[0] and max_addr_spec1[1] shall represent the maximum physical address for the
specified Port_ID. See protocol specific addressing for further information.

− max_addr_spec2;
If a protocol uses two (2) specific and distinct components to address a device then,
max_addr_spec2 member array shall contain the second address component (e.g., SCSI Logical
Unit address). This member is an array of CAM_U32s that shall contain the second half the of a
protocol specific address for a specific device. The format of the array is as follows:
• max_addr_spec2[0] shall contain the least significant portion of a protocol specific address (e.g.

the least significant portion of a SCSI-3 Logical Unit address or lower 32 bits).
• max_addr_spec2[1] shall contain the most significant portion of a protocol specific address (e.g.

the most significant portion of a SCSI-3 Logical Unit address or upper 32 bits).

X3T10/990D revision 3

dpANS Common Access Method - 3
78

If the protocol uses up to sixty-four (64) bits for the second address component to address a device
on a specific Port_ID. The max_addr_spec2[0] and max_addr_spec2[1] shall represent the devices
second maximum physical address component for the specified Port_ID. See protocol specific
addressing for further information.

− sim_flags;
This member shall be set by the SIM before the call to xpt_bus_register3(). The member is a bit
setting field of the features that this SIM supports. A bit set to a one shall indicate that the feature is
supported. The XPT vendor shall define the following flags for the sim_flags member:
• SIM supports CAM-1 CCBs. The flag denotes that the SIM can accept CAM-1 type CCBs for the

registered Port_ID. This flag is mutually exclusive with the SIM_CAM3_CCBS flag.
#define SIM_CAM1_CCBS 0x00000001

• SIM supports CAM-3 CCBs. The flag denotes that the SIM can accept CAM-3 type CCBs for the
registered Port_ID. This flag is mutually exclusive with the SIM_CAM1_CCBS flag.
#define SIM_CAM3_CCBS 0x00000002

• SIM supports Automatic Device Address Presence. This flag denotes that the SIM supports a
methodology that allows the XPT to obtain the devices addresses for the Port ID without having
to issue a command to every possible device address that the SIM supports for this interconnect.
 Refer to the protocol specific clauses for further details. A SIM shall set this flag if it supports
this type of address resolution methodology.
#define SIM_AUTO_DEV_PRESENCE 0x40000000

• SIM supports Dynamic Device Addresses. This flag denotes that the SIM supports a
methodology that allows a device to change its physical address specifiers through interconnect
events (e.g., SCAM, FC). A SIM shall set this flag if it supports this type of address resolution
methodology.
#define SIM_DYNAMIC_DEV_ADDRS 0x80000000

− sim_ws_size;
This member shall be set by the SIM before the call to xpt_bus_register3(). The member shall
represent in bytes the SIM’s required SIM working set size for CAM-3 CCBs.

The XPT shall ensure that the all CCBs allocated (xpt_ccb_alloc3()) shall have the largest number of
bytes for a SIM working set. The XPT shall accomplish this requirement before the call the to the
SIMs sim_init() routine.

− port_id:
This member shall be set by the SIM with the SIMs preferred Port_ID number or the XPT's Port_ID
number (0xFF). If the SIM sets the member to its preferred Port_ID number there is no guarantee
that the XPT will allocated the SIM's preferred Port_ID for the calling SIM. The Port_ID of the XPT's
(0xFF) indicates to the XPT that the SIM has no preferred Port_ID (e.g., sysgen parameter).

The allocation of Port_ID by the XPT shall be based on the rules specified in Clause 10.7. The XPT
shall set this member to the assigned/allocated Port_ID for this SIM or to the Port_ID of the XPT's
(0xFF) to indicate a failure. The member shall be set by the XPT, before the call to the SIM's
initialization routine.

X3T10/990D revision 3

dpANS Common Access Method - 3
79

− cam_protocol:
This member shall be set by the SIM with the defined CAM-3 protocol number that this inter-connect
will be supporting for the assigned Port_ID. This member shall be used by the XPT to assign or
reassign the same Port_ID for this SIM.

− xpt_reg_num;
This member shall be set by the XPT with its peripheral driver registration number before a
successful return. The member’s value shall be stored by SIMs to be used for verification for
Discovery and Bind CCB functions refer to Clauses XXXX and XXXX for further information.

− vu_entry;
The member is an OS specified pointer. Based upon the OS definition for this member, the SIM
shall set this value before the call to xpt_async3.

− sim_name:
This member may be set by the SIM with a NULL terminated character string that shall represent the
SIMs name.

− vendor_keystring[32];
This member may be set by the SIM with a NULL terminated character string that may represent a
unique identifier for the HA (e.g., World Wide Identifier). This member if not NULL shall be used by
the XPT to assign or reassign the same Port_ID for this SIM.

− vendor_key1 - vendor_key6:
These members may be set by the SIM so that the XPT may uniquely identify the SIM, inter-connect,
and protocol when assigning/re-assigning Port_IDs. The values of the vendor keys are not defined
by this standard but may be defined by the OS. An example of the usage is as follows:
− vendor_key1 Host bus type (e.g., EISA, PCI, or Direct Attach);
− vendor_key2 Slot Number of Host bus (e.g., Slot number of PCI Bus);
− vendor_key3 Bridge Number (e.g., Number of PCI bridges before this PCI bus);
− vendor_key4 Hardware address component of HA, least significant portion;
− vendor_key5 Hardware address component of HA, most significant portion;
− vendor_key6 HA Board Identifier (e.g., serial number)

11. The CAM-3 SCSI Protocol

This clause defines the model and control to operate a SCSI-2 or SCSI-3 device.

The value assigned for the SCSI Protocol number shall be 0x01 and shall be defined as the following:
#define SCSI_PROTOCOL 0x00000001 /* The SCSI protocol number */

A SCSI peripheral driver or SIM shall use or set this value where required as specified by this
International standard (e.g. a member of a structure having the name protocol_type).

11.1 XPT SCSI Device Topology Discovery Process

X3T10/990D revision 3

dpANS Common Access Method - 3
80

The XPT’s Topology Discovery Process is responsible for the probing of the SCSI target identification
address space to locate SCSI Logical Units on CAM-3 SCSI SIMs/HAs and to perform address
authentication on those Logical Units.

Address authentication is defined as:
− Validating that the associated Connection_ID(s) (Port_ID, target identifier and, Logical Unit identifier)

to the unique identifier and assigned Logical_ID for a SCSI Logical Unit continues to describe the
same entity (SCSI Logical Unit) after an event occurs which may have disrupted the association of
the Connection_ID(s) to the Logical Unit.

− The Logical Unit shall be validated using unique device identifiers (preferably worldwide unique)
obtained from the device. The algorithms for generating the unique identifiers are XPT vendor-
specific. However, it is highly recommended that SCSI Logical Units support the Inquiry Command -
Vital Products Data Page 0x83 (Device ID) to supply this information to the host.

There are two types of Topology Discovery:
− Scan Port ID: All targets identifiers on a Port_ID are scanned and Logical Units associated with a

target identifier
− Scan One Target identifier: A single target identifier on a Port_ID is scanned.

In all cases, when scanning a target identifier (Scan One Target identifier), all Logical Units on that target
identifier shall be authenticated.

A topology event is defined as any event on the SCSI interconnect that may change a SCSI device’s
address. Topology events are SCSI interconnect specific.

Examples of such events are LIPs on a FC interconnect and Bus Resets on parallel SCSI that supports
SCAM. These are physical events during which devices may appear/disappear in the Port_ID’s topology
and/or existing devices change addressing. Topology events may invoke either a Scan Port ID or Scan
One Target identifier Discovery Process. Refer to Clause 11.2

Topology Discovery is invoked at the following points.
− After a SIM/HA has performed a successful return from xpt_bus_register3() function. The XPT shall

discover the device topology for the registered Port_ID. The XPT shall resolve the entire address
space for the Port_ID (Scan Port ID).

− After a SIM detects a topology event.

− Via CAM-3 SCSI CCB functions from a Peripheral Driver to scan a Port_ID. These may be Scan
Port ID or Scan One Target identifier requests.

− By vendor unique manual invocation via requests from user space utilities. These may be Scan Port

ID or Scan One Target identifier requests.

11.1.1 SIM Discovery Process Information Methodology

A SIM shall provide the XPT with the methodology it supports when it registers with the XPT. A CAM-3

X3T10/990D revision 3

dpANS Common Access Method - 3
81

SIM shall provide the required functionality to support the Topology Discover Process. Refer to 10.7 for
further on the information required for xpt_bus_register3(). There are indicators (flags) and information,
which shall be provided by the SIM to the XPT. The required indicators/information placed in the
SIM_ENTRY3 data structure for the XPT Topology Discovery process shall be as follows:
− sim_flags:

• SIM supports CAM-3 CCBs. The flag denotes that the SIM can accept CAM-3 type CCBs for the
registered Port_ID

• An indication of whether the SIM can detect that the topology may have changed. A SIM that
can detect that topology may have changed shall when registering with the XPT
(xpt_bus_register3()) set the SIM_DYNAMIC_DEV_ADDRS flag. Two examples of this are a
SCAM compliant SCSI parallel bus or a SCSI FCP Fibre Channel interconnects.

• An indication that a SIM supports a feature that is capable of probing for all target identifiers on

the interconnect and can report those found to the XPT (SIM_AUTO_DEV_PRESENCE in
sim_flags member). A SIM indicating that it cannot support this feature indicates to the XPT,
that the XPT shall probe each target identifier that may be present on the Port ID.

 The XPT shall probe the Logical Unit address space for every target identifier that is present on the

Port ID.

− max_addr_spec1:

This member shall represent the maximum value for a SCSI target identifier supported the SIM/HA.
Targets are addressed by the XPT by specifying a value in the range of zero to max_addr_spec1.
Target identifiers may, but are not required to map to the physical address of the target on the
interconnect. Target identifiers may, but are not required to be persistent with the physical target
device on the interconnect.

This member is primarily used to manage the range of targets that are probed by the XPT when
probing a SIM that does not support SIM_AUTO_DEV_PRESENCE.

• max_addr_spec1[0] shall contain the least significant portion of the maximum target address
identifier value.

• max_addr_spec1[1] shall contain the most significant portion of the maximum target address

identifier value.

− max_addr_spec2:
This member shall represent the maximum value for a SCSI Logical Unit identifier supported by the
SIM/HA. Logical Units are addressed by the XPT by specifying a value in the range of zero to
max_addr_spec2. Logical Unit identifiers may, but are not required to map to the physical address
of the Logical Unit on the interconnect. Logical Unit identifiers may, but are not required to, be
persistent with the physical target device on the interconnect.

• max_addr_spec1[0] shall contain the least significant portion of the maximum Logical Unit
address identifier value.

• max_addr_spec1[1] shall contain the most significant portion of the maximum Logical Unit

address identifier value.

X3T10/990D revision 3

dpANS Common Access Method - 3
82

Note 9
A SIM may impose a topology limitation that must be dealt with by the integrator. If the range of Logical Unit identifiers is not
large enough to cover the addressable Logical Unit space indicated by a target device. For example, SIM supports a fixed 8
Logical Units per target, while the target can support 128 Logical Units, which is independent of the physical Logical Unit
values used to address each Logical Unit.

11.1.2 Discovery Process XPT Model

The XPT starts the Topology Discovery Process by issuing Discovery Start CCB. Before the start of any
Topology Discovery Process for a registered Port_ID, the XPT shall notify all registered Set
Asynchronous Callback CCBs that apply of a AC_DISCOV_START asynchronous event. Refer to
Clause 11.7.9 for further information.

If the XPT is notified that a new Discovery Process is needed for a Port_ID through an xpt_async3 call
that is currently under going the Topology Discovery process. The current discovery process shall be
terminated before a new Topology Discovery process is started. Refer to Clause 11.2 for further
information on the Discovery Process. The XPT shall terminate the Topology Discovery Process in the
following manner:
− Wait for the completion of any CCB it has sent to the Port_ID it is terminating the Topology

Discovery process on the Port_ID.
− Release all Binds that it has obtained.
− Issue a DISCOVERY END CCB function to close the Topology Discovery process.

When the Topology Discovery process has terminated the XPT shall start a new instance of the
Topology Discovery process.

If a Topology Discovery process of Scan Port ID is in existence for a Port_ID and the XPT receives a
CCB function of Scan Bus (XPT_SCAN_BUS) or Scan Target (XPT_SCAN_TARGET) for that Port_ID,
the XPT shall fail the CCB request. The CAM Status shall be Discovery in progress
(CAM_DISCOVERY_INPROG).

If a Topology Discovery process of Scan One Target identifier is in existence for a Port_ID and the XPT
receives a CCB function of Scan Bus (XPT_SCAN_BUS) or Scan Target (XPT_SCAN_TARGET) for that
Port_ID, the XPT shall grant the CCB request. The XPT shall terminate the Topology Discovery Process
and shall start a new instance of the Topology Discovery process.

If a Topology Discovery process of Scan One Target identifier is in existence for a Port_ID and the XPT
receives a CCB function of Scan Target (XPT_SCAN_TARGET) for that Port_ID for the same target
identifier, the XPT shall fail the CCB request. The CAM Status shall be Discovery in progress
(CAM_DISCOVERY_INPROG).

If a Topology Discovery process of Scan One Target identifier is in existence for a Port_ID and the XPT
receives a CCB function of Scan Target (XPT_SCAN_TARGET) for that Port_ID for a different target
identifier, the XPT shall grant the CCB request. The XPT shall queue or defer the new request until the
current Topology Discovery process is completed.

X3T10/990D revision 3

dpANS Common Access Method - 3
83

11.1.2.1 Discovery Process Scan Port ID

The XPT shall send a Discovery Start CCB to the SIM/HA and await completion. The CCB function code
shall indicate this is a Scan Port ID discovery type.

If the SIM for this assigned Port ID indicated that it supports Automatic Device Address Presence
(SIM_AUTO_DEV_PRESENCE). The SIM/HA shall obtain a list of target identifiers present on the
identified Port ID before setting CCB completion status and before the CCB function return.

Upon the successful completion of the Discovery Start CCB for the SIM/HA that supports Automatic
Device Address Presence, the XPT shall:
− Send a DISCOVERY ADDR CCB to the SIM/HA.
− Upon successful completion of the DISCOVERY ADDR CCB the XPT shall:

• Obtain the target identifier from the returned DISCOVERY ADDR CCB. Refer to Clause 11.7.2
for further information.

• Issue a successful Bind CCB function to Logical Unit identifier zero (0) for the obtained target
identifier.

• Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
• Issue a SCSI REPORT LUNs command.
• Issue a successful Bind Release CCB function to Logical Unit identifier zero (0) for the obtained

target identifier.
• If the device supports the SCSI REPORT LUNs command and the command is successful. For

each Logical Unit reported in the response data from the SCSI REPORT LUNs command.
⇒ Issue a successful Bind CCB function to the Logical Unit identifier for the obtained target

identifier.
⇒ Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
⇒ Issue a successful Bind Release CCB function to the Logical Unit identifier for the obtained

target identifier.
• If the device does not support the SCSI REPORT LUNs command. For each Logical Unit

identifier starting at Logical Unit identifier zero (0), proceeding up to, and including the
max_addr_spec2 value.
⇒ Issue a successful Bind CCB function to the Logical Unit identifier for the obtained target

identifier.
⇒ Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
⇒ Issue a successful Bind Release CCB function to the Logical Unit identifier for the obtained

target identifier.

− The above steps shall be repeated until a sent DISCOVERY ADDR CCB to the SIM/HA returns a
CAM Status of CAM_REQ_CMP_ERR (Request Completed with Error) indicating that there are no
more target identifiers to be obtained.

Upon the successful completion of the Discovery Start CCB for the SIM/HA that does not support
Automatic Device Address Presence. The XPT shall for each target identifier starting at target identifier
zero (0), proceeding up to, and including the max_addr_spec1 value:
− Issue a Bind CCB function to Logical Unit identifier zero (0) for this target identifier.
− If the Bind CCB function is successful.

X3T10/990D revision 3

dpANS Common Access Method - 3
84

• Try to obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
• If Inquiry data is successfully obtained:

⇒ Issue a SCSI REPORT LUNs command.
⇒ Issue a successful Bind Release CCB function to the Logical Unit identifier for the target

identifier.
⇒ If the device supports the SCSI REPORT LUNs command and the command is successful.

For each Logical Unit reported in the response data from the SCSI REPORT LUNs
command.
◊ Issue a successful Bind CCB function to the Logical Unit identifier for the target

identifier.
◊ Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
◊ Issue a successful Bind Release CCB function to Logical Unit identifier for the target

identifier.
⇒ If the device does not support the SCSI REPORT LUNs command. For each Logical Unit

identifier starting at Logical Unit identifier zero (0), proceeding up to, and including the
max_addr_spec2 value.
◊ Issue a successful Bind CCB function to the Logical Unit identifier for the target

identifier.
◊ Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
◊ Issue a successful Bind Release CCB function to the Logical Unit identifier for the target

identifier.
• If Inquiry data is not successfully obtained due to a CAM Status of Target Selection Timeout

(CAM_SEL_TIMEOUT).
⇒ Issue a successful Bind Release CCB function to the Logical Unit identifier for the target

identifier.
⇒ Proceed to next incremental target identifier value and repeat the steps.

− If the Bind CCB function was not successful due to a CAM Status of Target Selection Timeout
(CAM_SEL_TIMEOUT).
• Proceed to next incremental target identifier value and repeat the steps.

When there are no more target identifiers to be probed, the XPT shall issue a DISCOVERY END CCB
function to close the Topology Discovery process. After completion of the DISCOVERY END CCB
function, the XPT shall notify all registered Set Asynchronous Callback CCBs that apply of a
AC_DISCOV_END asynchronous event. Refer to Clause 11.7.9 for further information.

11.1.2.2 Discovery Process Scan One Target Identifier

The XPT shall send a Discovery Start CCB to the SIM/HA and await completion. The CCB function code
shall indicate this is a Scan One Target identifier discovery type.

Upon the successful completion of the Discovery Start CCB for the SIM/HA, the XPT shall:
− Obtain the target identifier from the Scan Target CCB that started the Topology Discovery process.
− Issue a Bind CCB function to Logical Unit identifier zero (0) for this target identifier.
− If the Bind CCB function is successful.

• Try to obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
• If Inquiry data is successfully obtained:

⇒ Issue a SCSI REPORT LUNs command.

X3T10/990D revision 3

dpANS Common Access Method - 3
85

⇒ Issue a successful Bind Release CCB function to the Logical Unit identifier for the target
identifier.

⇒ If the device supports the SCSI REPORT LUNs command and the command is successful.
For each Logical Unit reported in the response data from the SCSI REPORT LUNs
command.
◊ Issue a successful Bind CCB function to the Logical Unit identifier for the target

identifier.
◊ Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
◊ Issue a successful Bind Release CCB function to Logical Unit identifier for the target

identifier.
⇒ If the device does not support the SCSI REPORT LUNs command. For each Logical Unit

identifier starting at Logical Unit identifier zero (0), proceeding up to, and including the
max_addr_spec2 value.
◊ Issue a successful Bind CCB function to the Logical Unit identifier for the target

identifier.
◊ Obtain Inquiry data for the Logical Unit and update the EDT as specified in Clause 8.
◊ Issue a successful Bind Release CCB function to the Logical Unit identifier for the target

identifier.
• If Inquiry data is not successfully obtained due to a CAM Status of Target Selection Timeout

(CAM_SEL_TIMEOUT).
⇒ Issue a successful Bind Release CCB function to the Logical Unit identifier for the target

identifier.
⇒ End the Topology Discovery Process

− If the Bind CCB function was not successful due to a CAM Status of Target Selection Timeout
(CAM_SEL_TIMEOUT).
• End the Topology Discovery Process

When the probe is finished, the XPT shall issue a DISCOVERY END CCB function to close the Topology
Discovery process. After completion of the DISCOVERY END CCB function, the XPT shall notify all
registered Set Asynchronous Callback CCBs that apply of a AC_DISCOV_END asynchronous event.
Refer to Clause 11.7.9 for further information.

11.1.3 XPT Releasing of Binds during Topology Discovery

Certain conditions and events shall cause the XPT to release Binds (if any). This Clause describes what
conditions and events that shall cause the XPT to release Binds. The method for releasing of Binds is
SCSI Asynchronous Events callbacks. The XPT shall perform the registered Port ID A Asynchronous
Events callbacks before the Logical ID A Asynchronous Events callbacks. Refer to Clause 11.2 for
further information.

When a Scan Port ID Topology Discovery process is started by the XPT, it shall in vendor unique
manner:
− Find every Connection_ID for this Port_ID in the EDT and indicate that it has not been seen for this

Topology Discovery process.
− For each target identifier that is present (e.g., responds) and all the Logical Unit identifiers for that

target identifier:
• Perform an Address authentication for the Logical Unit. Based upon the unique identifier for the

X3T10/990D revision 3

dpANS Common Access Method - 3
86

Logical Unit the XPT shall perform the following in a vendor unique manner:
⇒ Determine if the Logical Unit has been assigned a Logical ID (seen before).
⇒ If the Logical Unit has a Logical ID assigned, the XPT shall ensure the following:

◊ For the Logical ID, determine if the Connection_ID (Port ID, target identifier, and Logical
Unit identifier) is associated to the Logical ID.

◊ If the Connection_ID is associated to the Logical ID, mark the Connection_ID as valid.
◊ If the Connection_ID is not associated to the Logical ID.

∗ Determine if the Connection_ID is associated to another Logical ID. If the
Connection_ID is associated to another Logical ID. The XPT shall release the Bind
as specified in Clause 11.2 for the Logical ID that this Connection_ID was associated
with. The XPT shall then associate the Connection_ID to Logical ID and mark as
valid.

⇒ If the Logical Unit does not have a Logical ID assigned, the XPT shall ensure the following:
◊ Assigned a unique Logical ID to the represented Logical Unit and associate the unique

identifier to the Logical ID.
◊ Associate the Connection_ID to the Logical ID and mark as valid.
◊ Perform Asynchronous Events callbacks as specified in Clause 11.2 (New logical

devices(s) found during scan).
− Once each target identifier that is present (e.g., responds) and all the Logical Unit identifiers for that

target identifier has had Address authentication performed, the XPT shall:
• Find every Connection_ID for this Port_ID in the EDT that still has the indication that it has not

been seen for this Topology Discovery process.
• Disassociate the Connection_ID from the Logical ID.
• Release the Bind as specified in Clause 11.2 for the Logical ID that this Connection_ID was

associated to.

When a Scan One Target identifier Topology Discovery process is started by the XPT it shall in vendor
unique manner:
− Find every Connection_ID for this Port_ID, target identifier in the EDT, and indicate that it has not

been seen for this Topology Discovery process.
− For all the Logical Unit identifiers for that target identifier that is present (e.g., responds):

• Perform an Address authentication for the Logical Unit. Based upon the unique identifier for the
Logical Unit the XPT shall perform the following in a vendor unique manner:
⇒ Determine if the Logical Unit has been assigned a Logical ID (seen before).
⇒ If the Logical Unit has a Logical ID assigned, the XPT shall ensure the following:

◊ For the Logical ID, determine if the Connection_ID (Port ID, target identifier, and Logical
Unit identifier) is associated to the Logical ID.

◊ If the Connection_ID is associated to the Logical ID, mark the Connection_ID as valid.
◊ If the Connection_ID is not associated to the Logical ID.

∗ Determine if the Connection_ID is associated to another Logical ID. If the
Connection_ID is associated to another Logical ID. The XPT shall release the Bind
as specified in Clause 11.2 for the Logical ID that this Connection_ID was associated
to. The XPT shall then associate the Connection_ID to Logical ID and mark as valid.

⇒ If the Logical Unit does not have a Logical ID assigned, the XPT shall ensure the following:
◊ Assigned a unique Logical ID to the represented Logical Unit and associate the unique

identifier to the Logical ID.
◊ Associate the Connection_ID to the Logical ID and mark as valid.

X3T10/990D revision 3

dpANS Common Access Method - 3
87

◊ Perform Asynchronous Events callbacks as specified in Clause 11.2 (New logical
devices(s) found during scan).

− Once each Logical Unit that is present (e.g., responds) has had Address authentication performed,
the XPT shall:
• Find every Connection_ID for this Port_ID in the EDT that still has the indication that it has not

been seen for this Topology Discovery process.
• Disassociate the Connection_ID from the Logical ID.
• Release the Bind as specified in Clause 11.2 for the Logical ID that this Connection_ID was

associated to.

11.1.4 SIM Model for Topology Discovery Process

The SIM shall maintain a generation number per Logical Unit. The generation number is updated each
time a Logical Unit Binding is abnormally terminated. Abnormal terminations (Bind lost) may be
generated by events that the SIM detects. The generation number shall be paired with the Bind Handle
to ensure the validity of CCB functions issued to a Logical Unit Binding. Refer to Clauses 11.1.2,
11.1.2.1, 11.1.2.2, 11.1.3, 11.2 and 11.7.3.1.

If a SIM detects a topology event indicating a Scan Port ID is needed. The SIM shall mark the entire
SCSI Port_ID with a vendor unique indication that a Topology Discovery process is needed for the
Port_ID (e.g., DISCOV_NEED_PORT). The SIM shall call xpt_async3 with the required information as
specified in Clause 11.2.

If a SIM detects a topology event indicating a Scan One Target identifier is needed, the SIM shall mark
the target identifier with a vendor unique indication that a Topology Discovery process is needed for the
target identifier. The SIM shall call xpt_async3 with the required information as specified in Clause 11.2.

A SIM shall in a vendor unique manner indicated that a Topology Discovery process is in existence for a
Port_ID or target identifier when a Discovery Start CCB is received with a function of either a Scan Port
ID or a Scan One Target identifier (i.e., DISCOVERY_ACTIVE_PORT_ID or
DISCOVERY_ACTIVE_TARGET_ID). Either once the SIM has marked the Port_ID or the target
identifier with the vendor unique indicator of a Topology Discovery process is in existence or needed for
a Port_ID or target identifier.

The SIM shall not initiate any new SCSI tasks or SCSI task management functions for any CCBs queued
within the SIM for either that Port_ID or target identifier. This shall be based upon whether the Topology
Discovery process is either a Scan Port_ID or a Scan One Target identifier respectively. The SIM may
complete SCSI tasks or SCSI task management functions that were in “existence” before the Topology
Discovery process. The term “existence” shall not mean that the SCSI task or SCSI task Management
function is within the task set for a SCSI device server. The term “existence” shall mean that the SIM
has delivered the SCSI task or SCSI task management function to an HA for delivery to a SCSI device
server.

When a Topology Discovery process is in existence the SIM shall do the following for CCBs received:
− Accept, at all times, CCBs properly formatted CCBs from the XPT. The SIM shall determine if the

Bind CCB functions originated from the XPT by comparing the CCB’s cam_pdrv_reg member to the
value storage when the SIM successfully registered with the XPT. CCBs having other function codes

X3T10/990D revision 3

dpANS Common Access Method - 3
88

shall be determined if they have originated from the XPT by comparing the cam_sim_generation and
cam_sim_bhandle member values to the values returned in the BIND CCB that originated from the
XPT. Refer to Clause 10.7 for further information.

− If the Topology Discovery process is a Scan Port_ID, the SIM shall reject CCBs not from the XPT
addressed to that Port_ID with a CAM Status of CAM_DISCOVERY_INPROG.

− If the Topology Discovery process is a Scan One Target identifier, the SIM shall reject CCBs not
originating from the XPT addressed to that Port_ID and target identifier with a CAM Status of
CAM_DISCOVERY_INPROG.

Upon the reception of a Scan Port_ID DISCOVERY_START CCB function from the XPT, the SIM shall
do the following:

− If there is already a Topology Discovery progress in existence for that Port_ID, the CCB shall be
rejected with a CAM_DISCOVERY_INPROG status.

− Clear its Port_ID vendor unique discovery needed indicator, set its vendor unique discovery active
indicator, and begin the Topology Discovery process.

− If the SIM does not support AUTO_DISCOVERY. The SIM shall immediately complete the Scan
Port_ID DISCOVERY_START CCB.

− If the SIM does support AUTO_DISCOVERY. The SIM shall prepare a list of target identifiers that
shall be returned to the XPT via the DISCOVERY ADDR CCB function requests. Once the list is,
prepared, the SIM shall complete the DISCOVERY_START CCB.

Note 10
The target identifiers returned to the XPT may be logical values that the SIM later translates into the physical device
addresses used on the interconnect. There is no requirement that a logical target identifier to physical address mapping
remain persistent (across boots or otherwise). However, as CAM-3 is basing it's notion of device addressing or pathing on
the target identifiers values exported by the SIM, it is recommended that the SIM make the target identifiers to physical
address mapping persistent between topology changes. Otherwise, the peripheral drivers will experience more address
changes, which may cause erratic device behavior (e.g., it may not be possible to reissue commands after a path change to
sequential access devices without side effects).

Note 11
Discovery of the target identifiers on the interconnect is not implicitly tied to the reception of the DISCOVERY_START CCB.
The SIM may actually perform this discovery upon the receipt of the external event that caused it to notify the XPT.

If the SIM is on an interconnect which guarantees notification of target device insertion/removal/address change and if there
was no intervening topology change and if the SIM maintains an internal list of target addresses, the SIM may simply re-
export it's list of target addresses to the XPT.

However, if the SIM cannot guarantee that it's list of target addresses exactly matches that of the physical interconnect, the
SIM will have to re-probe/regenerate the list of addresses.

Upon the reception of a Scan One Target identifier DISCOVERY_START CCB function from the XPT,
the SIM shall do the following:

X3T10/990D revision 3

dpANS Common Access Method - 3
89

− If there is already a Topology Discovery progress in existence for that Port_ID, the CCB shall be
rejected with a CAM_DISCOVERY_INPROG status.

− Clear its Port_ID vendor unique discovery needed indicator, set its vendor unique discovery active
indicator, and begin the Topology Discovery process.

− If the SIM does not support AUTO_DISCOVERY. The SIM shall immediately complete the Scan
Port_ID DISCOVERY_START CCB.

− If the SIM does support AUTO_DISCOVERY. The SIM shall prepare a list of target identifiers that
shall be returned to the XPT via the DISCOVERY ADDR CCB function requests. Once the list is,
prepared, the SIM shall complete the DISCOVERY_START CCB.

Upon reception of BIND CCB functions originating from the XPT, the SIM shall do the following:

− If there is already an outstanding Binding with the XPT for the identified Logical Unit. The CCB shall
be rejected with a CAM status of CAM_REQ_INVAL (Request Invalid).

− If there is no outstanding Binding with the XPT for the identified Logical Unit. The SIM shall allow
the XPT to BIND to the Logical Unit.

− If there is a Binding present on the Logical Unit that was in existence before the Topology Discovery
process began. The SIM shall preserve that Binding and perform a Binding for the XPT. This shall
be the only case where there are two (2) separate and distinct Binding to a Logical Unit is allowed.
The SIM keep these two (2) Bindings as separate and distinct entities.

The SIM shall preserve the state (e.g. SIM queue frozen) of the Logical Unit’s CCB queue for the
original Binding (e.g., the Binding from the peripheral driver). The preserving of the state of the
original Binder allows operations to continue (if Bind not automatically released) when the Topology
Discovery process ends.

The SIM shall handle CCBs of non-Bind type functions as follows:

− If the CCB is from the XPT send SCSI task and task management functions to Logical Units as
directed.

− If the CCB did not originate from the XPT, the SIM shall reject the CCB with a CAM Status of
CAM_DISCOVERY_INPROG.

Upon reception of a XPT BIND RELEASE CCB function, the SIM shall do the following:

− If the CCB is not from the XPT, the SIM shall reject the CCB with a CAM Status of
CAM_DISCOVERY_INPROG.

− If the CCB is from the XPT, the SIM shall release the XPT’s binding. The SIM shall not release any

other Bind if another one is active for the Logical Unit.

X3T10/990D revision 3

dpANS Common Access Method - 3
90

Upon the reception of the DISCOVERY_END CCB:

− The SIM shall clear any vendor unique Topology Discovery in-progress indicators and complete the
CCB.

11.1.5 Peripheral Driver Model for Topology Discovery Process

The peripheral drivers shall be asynchronously notified of Topology Discovery processes related to
devices that it has active bindings on. The peripheral drivers shall register for Discovery and Binding
Asynchronous Events. Ultimately, it is the responsibility of the PD to register for the appropriate
Asynchronous Events at the proper granularity.

The peripheral drivers shall also be notified of discovery processes by the return status of CCBs
(CAM_DISCOVERY_INPROG), that it may have issued just before the Asynchronous Event notification

Upon being notified of a related Topology Discovery process, the PD shall cease issuing CCBs to any
Connection_ID associated with the Topology Discovery process. The PD shall not resume operations to
any Connection_ID until it has received the Asynchronous Event indicating that the Topology Discovery
process is complete.

Note 12
The peripheral drivers are responsible for re-establishing any command order it requires before resuming CCBs to the SIM.
This includes the reissuing of the commands rejected with the DISCOVERY_IN_PROGRESS status.

During the discovery process, the peripheral driver may be notified of a automatic Bind release through
an Asynchronous Event (e.g., device changed its address).

At all times, the peripheral driver is free to manipulate/access the device via other Connection_IDs not
related to the Topology Discovery Process. The peripheral driver shall be responsible for maintaining
device state, data coherency, command ordering, and any other behavior required for proper operation
of the device.

11.2 SCSI Asynchronous Events Callbacks

In an event such as a SCSI bus reset, XPT detected Auto Bind Release or an asynchronous event
notification (AEN) the XPT/SIM has to be able to make a callback to the peripheral driver(s) and SIMs.

Callback routines have the same privileges and restrictions as hardware interrupt service routines. The
peripheral driver or SIM shall return from the callback.

The Asynchronous Events for SCSI Logical_IDs registration are the following:
− Sent Bus Device Reset to target.
− SCSI AEN.
− Unsolicited reselection.
− SCSI Bus Reset.
− Discovery Process Started
− Discovery Process Ended
− Auto Bind Release.

X3T10/990D revision 3

dpANS Common Access Method - 3
91

The Asynchronous Events for SCSI Port_IDs registration are the following:
− Discovery Process Needed for Port_ID
− Discovery Process Needed for Single Target
− Auto Bind Release

The Asynchronous Events for the XPT registration are the following:
− New logical device(s) found during a scan.
− Port ID de-registered.
− Port ID registered.

The supplier of the XPT shall define the Asynchronous Events opcodes/flags and shall be defined
follows:
− #define AC_PORT_ID_REGISTRATION 0x80000000 /* Indicates Port_ID Registration */
− #define AC_AUTO_BIND_RELEASE 0x1000 /* Automatic release of Bind */
− #define AC_DISCOV_NEED_TARGET 0x800 /* Discovery needed for target */
− #define AC_DISCOV_NEED_PORT 0x400 /*Discovery needed for Port_ID */
− #define AC_DISCOV_START 0x200 /* Discovery Process has started */
− #define AC_DISCOV_END 0x100 /* Discovery Process has ended */
− #define AC_FOUND_DEVICES 0x80 /* New device found */
− #define AC_SIM_DEREGISTER 0x40 /* A loaded SIM has deregistered */
− #define AC_SIM_REGISTER 0x20 /* A loaded SIM has registered */
− #define AC_SENT_BDR 0x10 /* A BDR message was sent to target */
− #define AC_SCSI_AEN 0x08 /* A SCSI AEN has been received */
− #define AC_UNSOL_RESEL 0x02 /* A unsolicited reselection occurred */
− #define AC_BUS_RESET 0x01 /* A SCSI bus RESET occurred */

The Asynchronous Events opcodes are also the bit flag definitions for the Set Asynchronous Callback
CCB.

At peripheral driver initialization, the driver should register with the XPT for XPT asynchronous events.
When wishes to operate with a device the peripheral driver should register with the XPT for Logical_IDs
registered events. It is not recommended that peripheral drivers register for asynchronous Port_ID
events. Those events are mainly interesting to SIMs.

There are some instances where a SIM may not have the knowledge to determine when a address of a
device has changed or the device has changed type. SIM/HAs that support Auto Device Address
Resolution (e.g., FCP, SPI SCAM), the SIM shall register with the XPT for a Port_ID registration with the
Auto Bind Release flag set. This shall apply for each Port_ID assigned a SCSI SIM/HA that supports
Auto Device Address Resolution.

In order for a peripheral driver or SIM to receive asynchronous event callbacks. The peripheral driver
shall issue a CAM-3 SET ASYNCHRONOUS CALLBACK CCB addressed to the protocol specific
Logical_ID or Port_ID with the Asynchronous Event Enables fields set to a 1 for those events the
peripheral driver or SIM wishes to be notified of through an asynchronous callback.

For the Port_ID asynchronous event callbacks. The peripheral driver or SIM shall issue a SET

X3T10/990D revision 3

dpANS Common Access Method - 3
92

ASYNCHRONOUS CALLBACK CCB addressed to the Port_ID (Path ID 0xFF) with the Asynchronous
Event Enables fields set to a one for those events the peripheral driver wishes to be notified of through
an asynchronous callback.

For the XPT asynchronous event callbacks. The peripheral driver or SIM shall issue a SET
ASYNCHRONOUS CALLBACK CCB addressed to the XPT (Path ID 0xFF) with the Asynchronous Event
Enables fields set to a one for those events the peripheral driver wishes to be notified of through an
asynchronous callback.

The SET ASYNCHRONOUS CALLBACK CCB shall apply only to a single Logical_ID, Port_ID or the
XPT per peripheral driver or SIM. The use of wildcards shall not be supported for the SET
ASYNCHRONOUS CALLBACK CCB.

The peripheral driver or SIM can change its asynchronous event callbacks for a particular logical device,
Port_ID or the XPT. This is accomplished by issuing the SET ASYNCHRONOUS CALLBACK CCB to a
logical device or the XPT, with the Asynchronous Event Enables field set to the replacement value, an
updated Peripheral Driver Buffer Pointer field, an updated Size of Allocated Peripheral Buffer field, and
the Asynchronous Callback Pointer field containing the original registered value.

The peripheral driver or SIM can de-register for asynchronous events callbacks for a logical device,
Port_ID, or the XPT by issuing the SET ASYNCHRONOUS CALLBACK CCB to the logical device,
Port_ID or the XPT with the Asynchronous Event Enables field set to zero and the Asynchronous
Callback Pointer field containing the original registered value. When a peripheral driver or SIM wishes to
change its asynchronous event callback routine, it shall do so by de-registering and then shall follow the
registration procedure.

11.2.1 xpt_async3 (callable only by SIMs)

A CAM-3 SIM upon detection of a supported event shall do the following once for each detected event:

− Classify the event:
Ascertain the opcode as specified.

− Format the associated data within an internal (to the SIM) buffer, (e.g., the SCSI sense data received
from an AEN).

− Perform the XPT reverse routing required by the event. The CAM-3 SIM shall call the xpt_async3

callback entry point in the XPT:

CAM_U32 xpt_async3(CAM_U32 protocol_type, CAM_U32 opcode, CAM_U32 port_id,
&addr_spec1[0] ,&addr_spec2[0], CAM_VOID *buffer_ptr, CAM_U32 data_cnt)

The arguments to xpt_async3() are as follows:
− protocol_type;

This shall be set to the SCSI_PROTOCOL number for all

− opcode

X3T10/990D revision 3

dpANS Common Access Method - 3
93

This shall be a valid opcode as defined by this International standard.

− addr_spec1[2];
The address of an array of two CAM_U32s to contain the SCSI target specifier. The addr_spec1[0]
member shall contain the lower 32 bits (least significant portion) of the SCSI target specifier. . The
addr_spec1[1] member shall contain the upper 32 bits (most significant portion) of the SCSI target
specifier.

− addr_spec2[2];
The address of an array of two CAM_U32s to contain the SCSI Logical Unit specifier. The
addr_spec1[0] member shall contain the lower 32 bits (least significant portion) of the SCSI Logical
Unit specifier. . The addr_spec1[1] member shall contain the upper 32 bits (most significant portion)
of the SCSI Logical Unit specifier.

− buffer_ptr;
A pointer to a buffer that contains information relevant to the event. A null buffer pointer is valid for
the events that do not require a valid buffer.

− data_cnt;
The number of bytes buffer pointed to by the buffer_ptr.

The XPT shall not modify any argument passed by the caller of xpt_async3(). The XPT shall store a
copy of the arguments if needed.

The CAM-3 XPT shall provide the CAM-1 xpt_async() routine for those SIMs that have not migrated to
CAM-3 compliance. The XPT shall convert the arguments passed by the caller of the xpt_async()
routine for use in the asynchronous callbacks to the peripheral drivers and SIMs. The XPT shall not
modify any argument passed by the caller of xpt_async(). The XPT shall store a copy of the arguments
if needed.

The XPT shall be responsible for ensuring that requests to the xpt_async3() or xpt_async() routines are
processed in serial fashion.

When a CAM-3 SCSI SIM calls the xpt_async3 routine, the protocol_type argument shall be set to
SCSI_PROTOCOL and shall supply the required arguments as specified by Table 2. The use of the
term Valid in Table 2 shall mean that the argument shall be passed with valid information as it relates to
the event. The use of N/A in Table 2 shall mean that no valid information is required to be set in the
argument.

opcode port_id addr_spec1 addr_spec2 buffer_ptr data_cnt
AC_BUS_RESET Valid N/A N/A N/A N/A
AC_UNSOL_RESEL Valid Valid Valid N/A N/A
AC_SCSI_AEN Valid Valid Valid Valid Minimum of 22
AC_SENT_BDR Valid Valid N/A N/A N/A
AC_DISCOV_NEED_PORT Valid N/A N/A N/A N/A
AC_DISCOV_NEED_TARGET Valid Valid N/A N/A N/A

X3T10/990D revision 3

dpANS Common Access Method - 3
94

AC_AUTO_BIND_RELEASE Valid Valid N/A N/A N/A

Table 2 Valid argument requirements for calls to xpt_async3()

Using the protocol_type, port_id, addr_spec1, addr_spec2 and event opcode information available
directly from the SIM, the XPT scans its internal tables looking for "matches" with the registered
asynchronous callback peripheral drivers and SIMs. When a match is found, either exactly or with the
information supplied as it relates to a Logical_ID. The XPT shall copy the data for the opcode, if
available, into the area reserved by the peripheral driver and then call the peripheral driver's
asynchronous callback routine.

11.2.2 XPT asynchronous callbacks to peripheral drivers and SIMs

The XPT when notified of an asynchronous event through the xpt_async3 routine it shall call the
registered peripheral drivers and SIMs based upon the rules specified in this Clause. The XPT shall use
the registered CAM-3 SET ASYNCHRONOUS CALLBACK CCB (*cam_async_func)() member to
callback the peripheral driver or SIM.

Peripheral drivers that have not migrated to CAM-3 compliance shall be able to register for
asynchronous callbacks using the CAM-1 method. The XPT shall provide the same level of functionality
for registered CAM-1 asynchronous callbacks as specified by the CAM-1 specification.

The arguments to the peripheral driver's and SIMs asynchronous callback routine are defined below:

CAM_VOID (*cam_async_func)(CAM_U32 protocol_type, CAM_U32 opcode, CAM_U32 logical_id,
CAM_U32 port_id, &addr_spec1[0], &addr_spec2[0], CAM_VOID_OFFSET buffer_ptr, CAM_U32
data_cnt)

The arguments to (*cam_async_func)() are as follows:
− protocol_type;

This shall be set to the SCSI_PROTOCOL number for all

− opcode
This shall be a valid opcode as defined by this International standard.

− logical_id;
This shall be the XPT assigned logical identifier if the registered CAM-3 SET ASYNCHRONOUS
CALLBACK CCB is for a Logical_ID.

− addr_spec1[2];
The address of an array of two CAM_U32s to contain the SCSI target specifier. The addr_spec1[0]
member shall contain the lower 32 bits (least significant portion) of the SCSI target specifier. . The
addr_spec1[1] member shall contain the upper 32 bits (most significant portion) of the SCSI target
specifier.

− addr_spec2[2];
The address of an array of two CAM_U32s to contain the SCSI Logical Unit specifier. The

X3T10/990D revision 3

dpANS Common Access Method - 3
95

addr_spec1[0] member shall contain the lower 32 bits (least significant portion) of the SCSI Logical
Unit specifier. . The addr_spec1[1] member shall contain the upper 32 bits (most significant portion)
of the SCSI Logical Unit specifier.

− buffer_ptr;
The buffer_ptr value shall be the value of the registered SET ASYNCHRONOUS CALLBACK CCB
pdrv_buf member.

− data_cnt;
The data_cnt value shall be what the XPT has to transfer from the SIM's buffer for the xpt_async()
call up to the limit of the buffer as described by the registered SET ASYNCHRONOUS CALLBACK
CCB pdrv_buf_len.

When the XPT calls the registered peripheral driver’s or SIM’s (*cam_async_func)() routine, the
protocol_type argument shall be set to SCSI_PROTOCOL and shall supply the required arguments as
specified by Table 3. The XPT shall also set the AC_PORT_ID_REGISTRATION flags into the opcode
argument if the registered SET ASYNCHRONOUS CALLBACK CCB is registered for a Port_ID. An
example of this the a AC_AUTO_BIND_RELEASE event is being delivered to a SIM registered for that
Port_ID. The opcode passed to its (*cam_async_func)() would be (AC_AUTO_BIND_RELEASE or’ed
with AC_PORT_ID_REGISTRATION).

The use of the term Valid in Table 1 shall mean that the argument shall be passed with valid information
as it relates to the event. The use of N/A in Table 3 shall mean that no valid information is required to be
set in the argument.

The buffer_ptr and data_cnt arguments are dependent upon whether the originator of SET
ASYNCHRONOUS CALLBACK CCB has supplied a buffer and length. Table 3 assumes the originator
of the SET ASYNCHRONOUS CALLBACK CCB with a buffer large enough to contain all data
requirements.

Opcode logical_id port_id addr_spec1 addr_spec2 buffer_ptr data_cnt
AC_BUS_RESET Valid Valid N/A N/A N/A N/A
AC_UNSOL_RESEL Valid Valid Valid Valid N/A N/A
AC_SCSI_AEN Valid Valid Valid Valid Valid Minimum of 22
AC_SENT_BDR Valid Valid Valid N/A N/A N/A
AC_SIM_REGISTER N/A Valid

(0xFF)
N/A N/A Valid Valid (4 bytes)

AC_SIM_DEREGISTER N/A Valid
(0xFF)

N/A N/A Valid Valid (4 bytes)

AC_FOUND_DEVICES Valid Valid N/A N/A N/A N/A
AC_DISCOV_NEED_PORT Valid Valid N/A N/A N/A N/A
AC_DISCOV_NEED_TARGET Valid Valid Valid N/A N/A N/A
AC_AUTO_BIND_RELEASE Valid Valid Valid Valid N/A N/A

Table 3 Valid arguments requirements for calls to (*cam_async_func)()

The data requirements for Asynchronous Events for the XPT Port ID registered and the Port ID

X3T10/990D revision 3

dpANS Common Access Method - 3
96

de-registered data requirements shall be a minimum of four bytes. This CAM_U32 shall contain the Port
ID needed to access the SIM. Since Port ID registered and Port ID de-registered Asynchronous Callback
Requests are directed to the XPT, the Port ID argument is the XPT's Port ID (0xFF).

The new devices found opcode shall be returned whenever the XPT enters a new logical device into
equipment data table/database (EDT) (e.g., a printer powered on after system initialization was
completed or a new device has been detected by the SIM).

If there is valid data placed in the peripheral driver's data buffer by the XPT, the peripheral driver is
required to save or discard that data before returning control to the XPT.

The following is a description of the opcodes/flags used in the xpt_async3() routine (opcodes) and the
Set Asynchronous Callback CCB (flags). Also described are the responsibilities of the peripheral drivers,
SIMs and the XPT:
− AC_PORT_ID_REGISTRATION:

Indicates when set to a one that the Set Asynchronous Callback CCB applies to a Port_ID and when
set to a zero applies to the Logical_ID.
• Peripheral drivers

Shall be responsible for setting this flag to a zero or a one, based upon whether it is registering
for a Logical_ID or a Port_ID Asynchronous Event callback in the Set Asynchronous Callback
CCB. It is not recommended that peripheral driver register for Port_ID callbacks.

• SIMs:
Shall set this flags when registering for a Port_ID Asynchronous Event callback in the Set
Asynchronous Callback CCB. A SIM shall not register for a Logical_ID callback.

• XPT
The XPT shall be responsible for determining the state of this flag in the Set Asynchronous
Callback CCB. Upon the determination of the state of this flag, the XPT shall register the Set
Asynchronous Callback CCB with the specified Logical_ID or Port_ID contained within the
CCB_HEADER3.

− AC_AUTO_BIND_RELEASE
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB a
callback when an Automatic Release of a Bind may have occurred.
• Peripheral drivers:

Shall register for this Asynchronous Event when operating with logical device (Logical_ID) that
has a SIM that supports Auto Device Resolution as reported by the Path Inquiry CCB function.
The registration shall be to a Logical_ID.

Peripheral drivers may be notified of an Automatic Release of a Bind though the peripheral
driver has not performed a Bind to a specific Path.

For example, a SCSI sequential-access device (tape) on a Fibre Channel FCP interconnects
may exist on multiple Paths (multi-initiator) as viewed by a host. The peripheral driver only
operates with the device on one Path at a time. The peripheral driver may have performed a
single Bind to the Path that it will send CCBs to. An event may occur on the inter-connect which

X3T10/990D revision 3

dpANS Common Access Method - 3
97

causes the devices address to change as seen by all initiators. This change would cause a
Discovery Process to occur for all Port_IDs that detected a possible address change for
device(s). The XPT would detect the address change on all the Port_IDs the device is
connected to and perform an Asynchronous Event callback for each change on a Port_ID as it
relates to a Logical_ID. Since the peripheral driver registered for a Asynchronous Event callback
on the related Logical_ID the peripheral driver would receive multiple Asynchronous Event
callbacks.

Peripheral drivers shall be able to determine if the Bind to a specific Connection_ID has been
released by examination of the arguments passed in their registered asynchronous callback
routine. Refer to Table 3 for information on information that is valid for this asynchronous
callback.

Upon the notification of this event through a Asynchronous Event, peripherals driver shall
determine if a Discovery Process for the Logical_ID (e.g., a Discovery Process Start event with
no corresponding Discovery Process End). If a Discovery Process is still in existence for the
Logical_ID, it shall wait until a Discovery Process End event for the Logical_ID.

Once the Discovery Process has ended (if one was in existence). Peripheral drivers shall
determine the new Connection_ID(s) for the specified Logical_ID and perform Bind functions for
any Connection_ID it wishes to send CCBs to.

• SIMs:
A SIM shall call xpt_async3() with this opcode when it detects that a Binding has been lost to a
device (e.g. FC logout). The SIM shall not post this opcode when the XPT has directed the SIM
to release a Binding. The SIM shall for the target identifier contained within addr_spec1 that lost
the Bind, return all CCBs for all Logical Units for that target identifier with a CAM Status of
CAM_NO_BIND. See Table 2 for argument requirements.

When the XPT notifies a SIM of a AC_AUTO_BIND_RELEASE asynchronous event. The SIM
shall return all CCBs for that target identifier contained within addr_spec1 and Logical Unit
identifier contained within addr_spec2 with a CAM Status of CAM_NO_BIND. See Table 3 for
information on valid arguments.

Once the Bind has been released, the SIM shall not allow operations on that Connection_ID until
a new Bind has been established.

• XPT:
When the XPT detects that a device has changed address, gone non-existent or has changed its
device type during a Discovery Process. The XPT shall callback the originators of all registered
Set Asynchronous Callback CCBs that apply to either the Port_ID or Logical_IDs. The XPT may
detect this event during a Discovery Process.

When the XPT is notified that a SIM has automatically released a Bind through the xpt_async3()
routine. The XPT shall callback the originators of all registered Set Asynchronous Callback
CCBs that applies to the associated Logical_IDs. The associated Logical_IDs shall be any
Logical_ID that has the same Port_ID and target identifier contained within addr_spec1 for the
event.

X3T10/990D revision 3

dpANS Common Access Method - 3
98

− AC_DISCOV_NEED_TARGET
The Set Asynchronous Callback CCB does not have a corresponding Asynchronous Event flag this is
a SIM Asynchronous Event opcode only.

• Peripherals drivers:
There is no corresponding Asynchronous Event flag for Set Asynchronous Callback CCB.

• SIMs:
A SIM shall call xpt_async3() with this opcode when it detects that a Discovery Process is
needed on the specified target identifier contained within addr_spec1.

• XPT:
The XPT shall transform the xpt_asyn3() opcode of AC_DISCOV_NEED_TARGET into a
AC_DISCOV_START. The XPT shall callback the originators of all registered Set Asynchronous
Callback CCBs that apply to either the Port_ID or Logical_IDs. The XPT shall ensure that all
callbacks are accomplished for any Logical_ID that has the same addr_spec1 for the Port_ID.
The XPT shall perform callbacks to the peripheral drivers and SIMs shall have the opcode
AC_DISCOV_START.

− AC_DISCOV_NEED_PORT
The Set Asynchronous Callback CCB does not have a corresponding Asynchronous Event flag this is
a SIM Asynchronous Event opcode only.

• Peripherals drivers:
There is no corresponding Asynchronous Event flag for Set Asynchronous Callback CCB.

• SIMs:
A SIM shall call xpt_async3 with this opcode when it detects that a Discovery Process is needed
on the assigned Port_ID.

• XPT:
The XPT shall transform the xpt_asyn3() opcode of AC_DISCOV_NEED_PORT into a
AC_DISCOV_START. The XPT shall callback the originators of all registered Set Asynchronous
Callback CCBs that apply to either the Port_ID or Logical_IDs. Ensure that all callbacks are
accomplished for any Logical_ID that has the same Port_ID. The XPT shall perform callbacks to
the peripheral drivers and SIMs shall have the opcode AC_DISCOV_START.

− AC_DISCOV_START
Indicates that a XPT Discovery Process is pending or has begun on a SIM that supports Auto Device
Resolution (e.g. SCAM, FCP). When set to a one in the Set Asynchronous Callback CCB that the
originator of the CCB wishes a callback when a XPT Discovery Process is pending or has begun on a
Port_ID or Logical_ID.

• Peripheral drivers:
Shall suspend operations for the identified device until the peripheral driver is notified that the
Discovery Process has ended (AC_DISCOV_END).

X3T10/990D revision 3

dpANS Common Access Method - 3
99

• SIMs:
SIMs should not register for this asynchronous event. The Discovery Process for SIMs is
handled by the Discovery CCBs.

• XPT:
The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
apply to either the Port_ID or Logical_IDs. The XPT shall accomplish the callbacks for
registered Set Asynchronous Callback CCBs before it issues a Discovery Start CCB function to
the identified Port_ID.

− AC_DISCOV_END
Indicates that a XPT Discovery Process has ended on a SIM that supports Auto Device Resolution
(e.g. SCAM, FCP). When set to a one in the Set Asynchronous Callback CCB that the originator of
the CCB wishes a callback when a XPT Discovery Process has ended on a Port_ID or Logical_ID.

• Peripheral drivers:
Peripheral drivers shall be able to determine if the their Bind to a specific Connection_ID has
been released by examination of the arguments passed in their registered asynchronous callback
routine. Refer to Table 3 for information on information that is valid for this asynchronous
callback.

Upon the notification of this event through a Asynchronous Event, peripherals driver shall
determine if a Discovery Process for the Logical_ID (e.g., a Discovery Process Start event with
no corresponding Discovery Process End). If a Discovery Process is still in existence for the
Logical_ID, it shall wait until a Discovery Process End event for the Logical_ID.

Once the Discovery Process has ended, Peripheral drivers shall determine whether an
AC_AUTO_BIND_RELEASE event has been posted for the Logical_ID. The peripheral driver
shall re-Bind to the Connection_ID if it wishes to continue to send CCBs to that Connection_ID.

Peripheral drivers shall determine the now current Connection_ID(s) to a the device for the
specified Logical_ID and perform Bind functions for any new Connection_ID it wishes to send
CCBs to.

Peripheral drivers now may continue to send CCBs to the identified device.

• SIMs:
SIMs should not register for this asynchronous event. The Discovery Process for SIMs is
handled by the Discovery CCBs.

• XPT:
The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
apply to either the Port_ID or Logical_IDs. The XPT shall accomplish the callbacks for
registered Set Asynchronous Callback CCBs after it issues a DISCOVERY END CCB function to
the identified Port_ID.

− AC_FOUND_DEVICES

X3T10/990D revision 3

dpANS Common Access Method - 3
100

Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when new devices are found by the XPT.

• Peripheral drivers:
Peripheral drivers shall copy the May obtain information about the identified device and operate
with the device as specified by this document.

• SIMs:
SIMs should not register for this asynchronous event.

• XPT:
The XPT shall when a new Logical_ID is assigned for uniquely identified device, callback the
originators of all registered Set Asynchronous Callback CCBs that have registered with the XPT
(0xFF).

− AC_SIM_DEREGISTER
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when a SIM deregisters for a Port_ID (e.g. SIM is unloading from the operating
system).

• Peripheral drivers:
Shall copy the CAM_U32 from the buffer pointed to by the buffer_ptr if a buffer_ptr with a
minimum length of four bytes was supplied in the Set Asynchronous Callback CCBs. The
CAM_U32 contains the Port_ID that deregistered.

When notified of asynchronous event should not send any CCBs to a Connection_ID that
contains the Port_ID that deregistered.

• SIMs:
SIMs shall not deregister any Port_ID that has any Binds active.

• XPT:
Shall delete any Connection_ID from the EDT that contains the deregistered Port_ID.

The XPT shall after the deletion of the Connection_ID(s), callback the originators of all registered
Set Asynchronous Callback CCBs that have registered with the XPT (0xFF) for this event. For
each asynchronous callback (*cam_async_func)()) the XPT shall:
⇒ Copy the deregistered Port_ID into buffer provided (if any) in the Set Asynchronous Callback

CCB.
⇒ Set the port_id argument in the call to the (*cam_async_func)()) to 0xFF, which is the XPT’s

Port_ID.

− AC_SIM_REGISTER
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when a SIM registers for a Port_ID (e.g. SIM has loaded into the operating
system).

• Peripheral drivers:

X3T10/990D revision 3

dpANS Common Access Method - 3
101

Shall copy the CAM_U32 from the buffer pointed to by the buffer_ptr if a buffer_ptr with a
minimum length of four bytes was supplied in the Set Asynchronous Callback CCBs. The
CAM_U32 contains the Port_ID that registered.

When notified of this asynchronous event peripheral drivers should acquire any new
Connection_IDs for a Logical_ID for which it is operating.

• SIMs:
There are no requirements or suggestions for this event. The SIM has just loaded.

• XPT:
The XPT shall copy the assigned Port_ID into buffer provided (if any) in the Set Asynchronous
Callback CCBs

The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
have registered with the XPT (0xFF) for this event. The asynchronous callback shall occur after
a successful xpt_bus_register3 function and a topology discovery process. See Clause 10.7.1
for further information.

For each asynchronous callback (*cam_async_func)()) the XPT shall:
⇒ Copy the registered Port_ID into buffer provided (if any) in the Set Asynchronous Callback

CCB.
⇒ Set the port_id argument in the call to the (*cam_async_func)()) to 0xFF, which is the XPT’s

Port_ID.

− AC_SENT_BDR
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when a SIM/Ha sends a BUS DEVICE RESET message to a target.

• Peripheral drivers:
Peripheral drivers shall recognize that a SIM has issued a BUS DEVICE RESET message for the
specified Logical_ID. The Port_ID and target identifier contained within addr_spec1 is further
qualification of the event.

Peripheral drivers should provide error recovery mechanisms to properly operate with the device
after this event is posted.

• SIMs:
Should not register for this asynchronous event.

When a SIM sends BUS DEVICE RESET message to a target identifier on a Port_ID, the SIM
shall in the following order:
⇒ For that Port_ID, return all CCBs for all Logical Units that have the same target identifier that

the BUS DEVICE RESET message was sent.
⇒ Call xpt_async3() with the AC_SENT_BDR opcode when it sends a BUS DEVICE RESET

message to a target identifier. See Table 2 for argument requirements.

• XPT:

X3T10/990D revision 3

dpANS Common Access Method - 3
102

The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
apply to the Logical_IDs that have the same Port_ID and target identifier contained within
addr_spec1.

− AC_SCSI_AEN
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when a SIM/HA receives SCSI AEN from a Logical Unit.

Peripheral drivers:
Shall copy the valid AEN data from the buffer pointed to by the buffer_ptr. The number of valid
bytes in the buffer is specified by the data_cnt argument. This is contingent upon if a buffer_ptr with
a length, other then zero bytes were supplied in the Set Asynchronous Callback CCB.
• SIMs:

Should not register for this asynchronous event

• XPT
The XPT shall copy into a XPT allocated buffer the AEN information provide in the SIM’s
buffer_ptr argument up to the data_cnt argument.

The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
have registered with the XPT (0xFF) for this event. The asynchronous callback shall occur after
a successful xpt_bus_register3 function and a topology discovery process. See Clause 10.7.1
for further information.

For each asynchronous callback (*cam_async_func)()) the XPT shall:
⇒ Copy from the XPT’s allocated buffer into the buffer provided (if any) in the Set

Asynchronous Callback CCB. The number of bytes copied into Set Asynchronous Callback
CCB’s pdrv_buf_ptr shall be limited by the pdrv_buf_len member.

− AC_UNSOL_RESEL
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when a SIM/HA receives an unsolicited re-selection from a Logical Unit.

• Peripheral drivers:
Should report an error when this event occurs. The SIM or the device has lost context.

• SIMs
Should not register for this event.

• XPT:
The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
apply.

− AC_BUS_RESET
Indicates when set to a one in the Set Asynchronous Callback CCB that the originator of the CCB
wishes a callback when a SIM/Ha issues a BUS RESET to a Port_ID.

X3T10/990D revision 3

dpANS Common Access Method - 3
103

• Peripheral drivers:
Peripheral drivers shall recognize that a SIM has issued a BUS DEVICE RESET message for the
specified Logical_ID. The port_id argument is further qualification of the event.

Peripheral drivers should provide error recovery mechanisms to properly operate with the device
after this event is posted.

• SIMs:
Should not register for this asynchronous event.

When a SIM sends BUS DEVICE RESET message to a target identifier on a Port_ID, the SIM
shall in the following order:
⇒ For the Port_ID, return all CCBs with the Cam Status of CAM_SCSI_BUS_RESET for all

Logical Units.
⇒ Call xpt_async3() with the AC_BUS_RESET opcode when it detects a BUS RESET. See

Table 2 for argument requirements.

• XPT:
The XPT shall callback the originators of all registered Set Asynchronous Callback CCBs that
apply to the Logical_IDs that have the same Port_ID.

11.3 CAM-3 Control Blocks

The CCBs used by peripheral drivers and applications to request functions of the XPT and a SIM have a
common header, as defined by the CCB_HEADER3 structure.

The sequence of the members in the data structures shall be as defined by this International standard.
The memory address offsets of the members of the structure shall be as defined by the CAM_boundary
rules.

The definition of the members in the data structures shall not vary among operating systems and
hardware platforms. Several fields in the CCB definitions are pointers, and their meaning is dependent
on the OS that is being supported. In general, these pointers are interpreted as either virtual or physical
addresses.

Additional bytes beyond the CCB header are dependent on the function code.

A peripheral driver, the XPT, or a SIM that allocates CCB(s) shall be responsible for freeing those CCBs
it has allocated after the allocating entity is finished with the CCB(s). A peripheral driver, the XPT, or a
SIM shall not free any CCB that it has not allocated. A peripheral driver, the XPT, or a SIM shall not free
a CCB that has been sent to xpt_action() and has not completed (see Clause 10.3 for further information
on CCB completion). A peripheral driver, the XPT, or a SIM shall not free a CCB more then once per
allocation of that CCB and shall be responsible for keeping track of the CCB(s) it is using in a vendor
unique manner.

11.4 SCSI Messaging Functionality
Most SCSI messages are handled transparently by the SIM, but in some cases, the peripheral driver has

X3T10/990D revision 3

dpANS Common Access Method - 3
104

been given the ability to force the SIM to issue a message. Some SCSI protocols do not support all the
SCSI messages. A peripheral driver shall determine which messages a SIM/HA supports by the Path
Inquiry function. Table 4 summarizes the message support.

Message Supported By
ACA Transparently supported by SIM
ABORT Discretely supported by function codes
ABORT TAG Discretely supported by function codes
BUS DEVICE RESET Discretely supported by function codes
CLEAR ACA Discretely supported by function codes
CLEAR QUEUE Not supported
COMMAND COMPLETE Transparently supported by SIM
DISCONNECT Transparently supported by SIM *
IDENTIFY Transparently supported by SIM
IGNORE WIDE RESIDUE Transparently supported by SIM
INITIATE RECOVERY Not supported
INITIATOR DETECTED ERROR Transparently supported by SIM
LINKED COMMAND COMPLETE Transparently supported by SIM
MESSAGE PARITY ERROR Transparently supported by SIM
MESSAGE REJECT Transparently supported by SIM
MODIFY DATA POINTER Transparently supported by SIM
NO OPERATION Transparently supported by SIM
RELEASE RECOVERY Not supported
SAVE DATA POINTERS Transparently supported by SIM
SYNCH DATA TRANSFER REQUEST Transparently supported by SIM *
TERMINATE I/O PROCESS Discretely supported by function codes
WIDE DATA TRANSFER REQUEST Transparently supported by SIM
Queue tag messages

HEAD OF QUEUE TAG Discretely supported by function codes
ORDERED QUEUE TAG Discretely supported by function codes

SIMPLE QUEUE TAG Discretely supported by function codes

* Issuing this message influenced by peripheral driver via CAM Flags
Table 4 Support of SCSI Messages

11.5 CAM-3 SCSI CCB Table Definitions and Value Definitions

The CAM-3 SCSI CCBs are defined in Tables. Each Table for a CCB has four columns with a header at
the top of the table. The vendor of the XPT shall define the data structure as defined for DATA TYPE
Table header and the MEMBER NAME Table header columns. This shall mean that the that the data
type and CCB data structures member names shall be defined as reflected in the CCB Tables. The
vendor of the XPT shall also define the members in the order shown.

Each CCB Table has the CAM-3 CCB_HEADER3 shown. The defined CCBs contain the
CCB_HEADER3 data structure as an embedded data structure. A “C” language example for setting the
logical_id member of the CCB_HEADER3 for a Bind CCB is as follows:

struct ccb_bind3 *bind_ccb;

bind_ccb = (struct ccb_bind3 *) xpt_ccb_alloc3((CAM_U32)XPT_WAITOK);

X3T10/990D revision 3

dpANS Common Access Method - 3
105

bind_ccb->ccb_header3.logical_id = 0x100;

The ORIG/RECP Table header reflects the originator of the CCB, the recipient of the CCB and/or the
XPT for the required setting of the member. The column with an ORIG denotes that the originator of the
CCB sets the member. The column with an RECP denotes that the recipient of the CCB sets the
member. The column with XPT denotes that the XPT sets the CCB member before the return from
xpt_ccb_alloc3(). The XPT may also be a recipient of a CCB (e.g., CCBs addressed to the XPT). An
example of this is that a peripheral driver is usually the originator of the CCB and it is usually sent to a
SIM (recipient). If the Table field is blank then the field is not used. If the field is marked with a *** the
responsibility for setting the member is explicitly described per CCB function.

The DESCRIPTIVE TEXT Table heading is a descriptive text meaning of the member.

The vendor of the XPT shall also define the CAM-3 CCB data structure name as reflected by the Table
label (e.g., Table X ccb_header3, where the label is ccb_header3).

Data value constants are also defined in Tables. Each Table for data value constants has three columns
with a header at the top of the table. The vendor of the XPT shall define the data constant name as
defined for the NAME Table header. The vendor of the XPT shall define the data constant value as
defined by the HEX VALUE Table header.

Following the tables is descriptive text that further clarifies the use and meanings. “C” language
examples are also provided.

11.6 CCB_HEADER3 Structure

The supplier of the XPT shall define the CCB_HEADER3 structure shall be as defined in Table 5

DATA TYPE MEMBER NAME ORIG/RECP DESCRIPTIVE TEXT
data structure ccb_header3
pointer

my_addr; XPT The address of this CCB

CAM_U16 cam_ccb_len; XPT Length of the entire CCB
CAM_U8 cam_func_code; ORIG XPT function code contains CAM-3 CCB Identifier
CAM_U8 cam_status; RECP Returned CAM subsystem status
CAM_U32 logical_id; *** The assigned Logical ID of the device.
CAM_U32 cam_flags; ORIG Flags for operation of the subsystem
CAM_U32 cam3_func_code; ORIG The actual function code for a CAM-3 CCB
CAM_U32 cam_protocol; ORIG The protocol type SCSI, NETWORK, etc.
CAM_U32 port_id; ORIG A registered SIM/HA port number
CAM_U32 addr_spec1[2]; ORIG Array of 2 CAM_U32s to contain the target specifier
CAM_U32 addr_spec2[2]; ORIG Array of 2 CAM_U32s to contain the LUN specifier
CAM_U32 reserved1; Reserved for future expansion
CAM_U32 cam_sim_generation; *** Generation number returned by BIND CCB
CAM_VOID_OFFSET cam_sim_bhandlle *** SIM Bind Handle returned by the BIND CCB
CAM_VOID_OFFSET cam_xpt_ptr; XPT Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; XPT Pointer to the XPT assigned peripheral driver working

space
CAM_VOID_OFFSET cam_sim_ptr; XPT Pointer to the XPT assigned SIM working space

X3T10/990D revision 3

dpANS Common Access Method - 3
106

CAM_U32 cam_pdrv_len; XPT The length in bytes of the peripheral driver working
space

CAM_U32 cam_sim_len; XPT The length in bytes of the SIM working space

Table 5 ccb_header3
“C” language example for ccb_header3.
typedef struct ccb_header3

{
struct ccb_header3 *my_addr; /* The address of this CCB */
CAM_U16 cam_ccb_len; /* Length of the entire CCB */
CAM_U8 cam_func_code; /* XPT function code contains CAM-3 CCB Identifier */
CAM_U8 cam_status; /* Returned CAM subsystem status */
CAM_U32 logical_id; /* The assigned Logical ID of the device. */
CAM_U32 cam_flags; /* Flags for operation of the subsystem */
CAM_U32 cam3_func_code; /* The actual function code for a CAM-3 CCB */
CAM_U32 cam_protocol; /* The protocol type SCSI, NETWORK, etc. */
CAM_U32 port_id; /* A registered SIM/HA port number */
CAM_U32 addr_spec1[2]; /*Array of 2 CAM_U32s to contain the target specifier */
CAM_U32 addr_spec2[2]; /* Array of 2 CAM_U32s to contain the LUN specifier */
CAM_U32 reserved1; /* Reserved for future expansion */
CAM_U32 cam_sim_generation; /* Generation number returned by BIND CCB */
CAM_VOID_OFFSET cam_sim_bhandle; /* SIM Bind Handle returned by the BIND CCB */
CAM_VOID_OFFSET cam_xpt_ptr; /* Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; /* Pointer to the XPT assigned peripheral driver working

space */
CAM_VOID_OFFSET cam_sim_ptr; /* Pointer to the XPT assigned SIM working space */
CAM_U32 cam_pdrv_len; /* The length in bytes of the peripheral driver working

space */
CAM_U32 cam_sim_len; /* The length in bytes of the SIM working space */
} CCB_HEADER3;

11.6.1 Member Descriptions of the CCB_HEADER3 Structure
− my_addr;

Pointer containing the physical or virtual address of this CCB. The address type (virtual or physical)
is depend on the operating system.

− cam_ccb_len;
This field contains the length in bytes of the CCB, including this field and the address of this CCB in
the total.

− cam_func_code;
This member shall contain the CAM-3 function code of XPT_CAM3_CCB. This function code
indicates that the CCB passed is a CAM-3 CCB. Refer to Table 7 for the XPT function codes;

− cam_status
This field is returned by the SIM after the function is completed. A zero status indicates that the
request is still in progress or queued. CAM Statuses are defined in Table 6.

X3T10/990D revision 3

dpANS Common Access Method - 3
107

If autosense information is available, the code returned shall be incremented by 80h (e.g., 04h
indicates an error occurred, and 84h indicates that an error occurred and autosense information is
available for analysis).

The CAM status codes shall be defined and shall be defined as shown in Table 6:

NAME HEX VALUE DESCRIPTIVE TEXT
CAM_REQ_INPROG 00h Request in Progress
CAM_REQ_CMP 01h Request Completed without Error
CAM_REQ_ABORTED 02h Request Aborted by Host
CAM_UA_ABORT 03h Unable to Abort Request
CAM_REQ_CMP_ERR 04h Request Completed with Error
CAM_BUSY 05h CAM Busy
CAM_REQ_INVALID 06h Invalid Request
CAM_PATH_INVALID 07h Invalid Path ID
CAM_DEV_NOT_THERE 08h SCSI Device Not Installed
CAM_UA_TERMIO 09h Unable to Terminate I/O Process
CAM_SEL_TIMEOUT 0Ah Target Selection Timeout
CAM_CMD_TIMEOUT 0Bh Command Timeout

0Ch Reserved
CAM_MSG_REJECT_REC 0Dh Message Reject Received
CAM_SCSI_BUS_RESET 0Eh SCSI Bus Reset Sent/Received
CAM_UNCOR_PARITY 0Fh Uncorrectable Parity Error Detected
CAM_AUTOSENSE_FAIL 10h Autosense Request Sense Command Failed
CAM_NO_HA 11h No HA Detected
CAM_DATA_RUN_ERR 12h Data Overrun
CAM_UNEXP_BUSFREE 13h Unexpected Bus Free
CAM_SEQUENCE_FAIL 14h Target Bus Phase Sequence Failure
CAM_CCB_LEN_ERR 15h CCB Length Inadequate
CAM_PROVIDE_FAIL 16h Cannot Provide Requested Capability
CAM_BDR_SENT 17h Bus Device Reset Sent
CAM_REQ_TERMIO 18h Terminate I/O Process
CAM_HA_ERR 19h Unrecoverable Host Bus Adapter Error

1Ah Reserved
CAM_NO_BIND 1Bh Bind Lost or Needed
CAM_DISCOVERY_INPROG 1Ch Discovery Process Needed or In Progress

1Dh - 32h Reserved
CAM_IDE 33h Initiator Detected Error Received
CAM_RESRC_UNAVAIL 34h Resource Unavailable
CAM_UNACKED_EVENT 35h Unacknowledged Event by Host
CAM_MESSAGE_RECV 36h Message Received
CAM_INVALID_CDB 37h Invalid CDB
CAM_LUN_INVALID 38h Invalid LUN
CAM_TID_INVALID 39h Invalid Target ID
CAM_FUNC_NOTAVAIL 3Ah Function Not Implemented
CAM_NO_NEXUS 3Bh Nexus Not Established
CAM_IID_INVALID 3Ch Invalid Initiator ID
CAM_CDB_RECVD 3Dh SCSI CDB Received
CAM_LUN_ALLREADY_ENAB 3Eh LUN Already Enabled
CAM_SCSI_BUSY 3Fh SCSI Bus Busy
CAM_SIM_QFRZN 40H Value or’ed with CAM Status to indicate that SIM queue is frozen
CAM_AUTOSNS_VALID 80h Value or’ed with CAM Status to indicate that autosense is valid

X3T10/990D revision 3

dpANS Common Access Method - 3
108

Table 6 Cam Statuses

Cam Status descriptions:
− 00h; Request in Progress: the request is still in process.
− 01h; Request Completed without Error: the request has completed and no error condition was

encountered.
− 02h; Request Aborted by Host: the request was aborted by the SIM/HA.
− 03h; Unable to Abort Request: the SIM/HA was unable to abort the request as instructed by the

peripheral driver.
− 04h; Request Completed with Error: the request has completed and an error condition was

encountered.
− 05h; CAM Busy: CAM unable to accept request at this time.
− 06h; Invalid Request: the request has been rejected because it is invalid.
− 07h; Invalid Path ID: indicates that the Path ID is invalid.
− 08h; SCSI Device Not Installed: peripheral device type field is not valid.
− 09h; Unable to Terminate I/O Process: the SIM/HA was unable to terminate the request as

instructed by the peripheral driver.
− 0Ah; Target Selection Timeout: The target failed to respond to selection.
− 0Bh; Command Timeout: the specified command did not complete within the timer value

specified in the CCB. Prior to reporting this status, the SIM/HA shall ensure the command is no
longer active in the target.

− 0Dh; Message Reject Received: The SIM/HA received a SCSI MESSAGE REJECT message.
− 0Eh; SCSI Bus Reset Sent/Received: The SCSI operation was terminated at some point

because the SCSI bus was reset.
− 0Fh; Uncorrectable Parity Error Detected: An uncorrected SCSI bus parity error was detected.
− 10h Autosense Request Sense Command Failed: The SIM/HA attempted to obtain sense data

and failed.
− 11h; No HA Detected: HA no longer responding to SIM (assumed to be a hardware problem).
− 12h; Data Overrun: target transferred more data bytes than peripheral driver indicated in the

CCB.
− 13h; Unexpected Bus Free: an unexpected bus free condition occurred.
− 14h; Target Bus Phase Sequence Failure: the Logical Unit failed to operate in compliance with

ANSI X3.131-1994.
− 15h; CCB Length Inadequate: more private data area is required in the CCB (see Clause 9.2.3

for further information).
− 16h; Cannot Provide Requested Capability: resources are not available to provide the capability

requested in the CAM Flags.
− 17h; Bus Device Reset Sent: this CCB was terminated because a BUS DEVICE RESET

message was sent to the target.
− 18h; Terminate I/O Process: this CCB was terminated because a Terminate I/O Process function

was specified for this CCB and the CCB was not an I/O process within the Logical Unit.
− 19h; Unrecoverable Host Bus Adapter Error: this CCB was terminated because of a hardware

error detected by the HA. The error does not indicate a SCSI bus problem but an error within the
HA or host.

− 1Bh; Bind Lost or Needed: this CCB was terminated due to a Binding that has been lost or that
the originator of the CCB has not performed a Bind function.

− 1Ch; Discovery Needed or In Progress: CCB was terminated due to a XPT Discovery function is
needed or in progress.

X3T10/990D revision 3

dpANS Common Access Method - 3
109

− 33h; Initiator Detected Error: indicates the SIM/HA has received an INITIATOR DETECTED
ERROR message.

− 34h; Resource Unavailable: indicates that the SIM/HA has run out of resources for processing
connections (Host Target Mode only).

− 35h; Unacknowledged Event: indicates that the Host Target Mode peripheral driver has not
acknowledged an event.

− 36h; Message Received: indicates that a message has been received by the SIM/HA that
requires attention.

− 37h; Invalid CDB: indicates that the SIM/HA has detected an error condition on reception of a
CDB.

− 38h; Invalid Logical Unit: indicates that the Logical Unit specified is outside the supported range
of the SIM/HA.

− 39h; Invalid Target ID indicates that the Target ID does not match that used by the HA specified
by the Path ID field.

− 3Ah; Function Not Implemented: indicates that target mode is not supported.
− 3Bh; Nexus Not Established: there is currently no connection established between the specified

Target ID and target Logical Unit with any initiator.
− 3Ch; Invalid Initiator ID: the initiator ID specified is outside the valid range that is supported.

 Note 13
This status can also be returned if the target tries to reselect an initiator other than the one to which it was
previously connected.

− 3Dh SCSI CDB Received: indicates that the target has been selected and that the SCSI CDB is
present in the CCB.

− 3Eh Logical Unit Already Enabled: the Logical Unit identified in Enable LUN CCB is already
enabled.

− 3Fh SCSI Bus Busy: the SIM failed to win arbitration for the SCSI bus during several different
bus free phases.

“C” language example of CAM Statuses data value constants definitions:
#define CAM_REQ_INPROG 0x00 /* CCB request is in progress */
#define CAM_REQ_CMP 0x01 /* CCB request completed w/out error */
#define CAM_REQ_ABORTED 0x02 /* CCB request aborted by the host */
#define CAM_UA_ABORT 0x03 /* Unable to Abort CCB request */
#define CAM_REQ_CMP_ERR 0x04 /* CCB request completed with an err */
#define CAM_BUSY 0x05 /* CAM subsystem is busy */
#define CAM_REQ_INVALID 0x06 /* CCB request is invalid */
#define CAM_PATH_INVALID 0x07 /* Path ID supplied is invalid */
#define CAM_DEV_NOT_THERE 0x08 /* SCSI device not installed/there */
#define CAM_UA_TERMIO 0x09 /* Unable to Terminate I/O CCB request. */
#define CAM_SEL_TIMEOUT 0x0A /* Target selection timeout */
#define CAM_CMD_TIMEOUT 0x0B /* Command timeout */
#define CAM_MSG_REJECT_REC 0x0D /* Message reject received */
#define CAM_SCSI_BUS_RESET 0x0E /* SCSI bus reset sent/received */
#define CAM_UNCOR_PARITY 0x0F /* Uncorrectable parity err occurred */
#define CAM_AUTOSENSE_FAIL 0x10 /* Autosense: Request sense command failed */
#define CAM_NO_HA 0x11 /* No HA detected Error */
#define CAM_DATA_RUN_ERR 0x12 /* Data overrun/underrun error */

X3T10/990D revision 3

dpANS Common Access Method - 3
110

#define CAM_UNEXP_BUSFREE 0x13 /* Unexpected BUS free */
#define CAM_SEQUENCE_FAIL 0x14 /* Target bus phase sequence failure */
#define CAM_CCB_LEN_ERR 0x15 /* CCB length supplied is inadequate */
#define CAM_PROVIDE_FAIL 0x16 /* Unable to provide requested capability */
#define CAM_BDR_SENT 0x17 /* A SCSI BDR msg was sent to target */
#define CAM_REQ_TERMIO 0x18 /* CCB request terminated by the host */
#define CAM_HA_ERR 0x19 /* Unrecoverable host bus adapter err */
#define CAM_NO_BIND 0x1B /* Binding has been lost or not obtained */
#define CAM_DISCOVERY_INPROG 0x1C /* Discovery Process needed or in progress */
#define CAM_IDE 0x33 /* Initiator Detected Error Received */
#define CAM_RESRC_UNAVAIL 0x34 /* Resource unavailable */
#define CAM_UNACKED_EVENT 0x35 /* Unacknowledged event by host */
#define CAM_MESSAGE_RECV 0x36 /* Msg received in Host Target Mode */
#define CAM_INVALID_CDB 0x37 /* Invalid CDB received in HT Mode */
#define CAM_LUN_INVALID 0x38 /* Logical Unit supplied is invalid */
#define CAM_TID_INVALID 0x39 /* Target ID supplied is invalid */
#define CAM_FUNC_NOTAVAIL 0x3A /* The requested function is not available */
#define CAM_NO_NEXUS 0x3B /* Nexus is not established */
#define CAM_IID_INVALID 0x3C /* The initiator ID is invalid */
#define CAM_CDB_RECVD 0x3D /* The SCSI CDB has been received */
#define CAM_LUN_ALLREADY_ENAB 0x3E /* Logical Unit already enabled */
#define CAM_SCSI_BUSY 0x3F /* SCSI bus busy */

#define CAM_SIM_QFRZN 0x40 /* The SIM queue is frozen w/this err */
#define CAM_AUTOSNS_VALID 0x80 /* Autosense data valid for target */

− logical_id;
This member is the XPT assigned logical identifier of the device for the protocol specified. Most
functions do not require this member to be set by the originator. For those functions, it is
recommended that the member be set to a valid value for tracking purposes and debug.

− cam_flags;

The CAM flags member qualifies the function to be executed, and vary by function code. See the
specified function code CCB for the defined CAM flags.

− cam3_func_code;
This member contains the CAM-3 function code for the CAM-3 CCB.

The function codes used to identify the SCSI service being requested is listed in Table 7. The
function codes shall be defined and shall be defined as shown in Table 7

NAME HEX
VALUE

DESCRIPTIVE TEXT

00-0F Common functions
XPT_NOOP 00h NOP
XPT_SCSI_IO 01h Execute SCSI I/O
XPT_GDEV_TYPE 02h Get Device Type

X3T10/990D revision 3

dpANS Common Access Method - 3
111

XPT_PATH_INQ 03h Path Inquiry
XPT_REL_SIMQ 04h Release SIM Queue
XPT_SASYNC_CB 05h Set Asynchronous Callback
XPT_SDEV_TYPE 06h Set Device Type
XPT_SCAN_BUS 07h Scan SCSI Bus

08h - 0Fh Reserved
10h - 1Fh SCSI control functions

XPT_ABORT 10h Abort SCSI Command
XPT_RESET_BUS 11h Reset SCSI Bus
XPT_RESET_DEV 12h Reset SCSI Device
XPT_TERM_IO 13h Terminate I/O Process
XPT_SCAN_LUN 14h Scan Logical Unit
XPT_CAM3_CCB 15h CAM-3 CCB Indicator
XPT_BIND 16h Bind to a Connection_ID
XPT_BIND_QUERY 17h Bind Query
XPT_BIND_REL 18h Bind Release
XPT_DISCOV_START_PORT_ID 19h Discovery Start Port_ID
XPT_DISCOV_START_TARGET_ID 1Ah Discovery Start Target Identifier
XPT_DISCOV_ADDR 1Bh Discovery Get Address
XPT_DISCOV_END 1Ch Discovery End

1Dh-1Fh reserved
XPT_ENG_INQ 20h Engine Inquiry
XPT_ENG_EXEC 21h Execute Engine

22h - 2Fh reserved
30h - 3Fh Target Mode

XPT_EN_LUN 30h Enable LUN
XPT_TARGET_IO 31h Execute Target I/O
XPT_ACCEPT_TARG 32h Accept Target I/O
XPT_CONT_TARG 33h Continue Target I/O
XPT_IMMED_NOTIFY 34h Immediate Notify
XPT_NOTIFY_ACK 35h Notify Acknowledge

36h - 3Fh reserved
Reserved
Function
Codes
40h - 7Fh reserved
Vendor
Unique
Function
Codes

Defined by Vendor

80h - FFh Vendor Unique
100h -

FFFFFFF
Fh

Reserved

Table 7 CAM-3 SCSI Function Codes for CCBs

“C” language example of CAM-3 function codes data value constant definitions:
#define XPT_NOOP 0x00 /* Execute Nothing */
#define XPT_SCSI_IO 0x01 /* Execute the requested SCSI I/O */
#define XPT_GDEV_TYPE 0x02 /* Get the device type information */
#define XPT_PATH_INQ 0x03 /* Path Inquiry */
#define XPT_REL_SIMQ 0x04 /* Release SIM queue that is frozen */
#define XPT_SASYNC_CB 0x05 /* Set Async callback parameters */

X3T10/990D revision 3

dpANS Common Access Method - 3
112

#define XPT_SDEV_TYPE 0x06 /* Set the device type information */
#define XPT_SCAN_BUS 0x07 /* Scan SCSI Bus */

/* XPT SCSI control functions, 0x10 - 0x1F */
#define XPT_ABORT 0x10 /* Abort the selected CCB */
#define XPT_RESET_BUS 0x11 /* Reset the SCSI bus */
#define XPT_RESET_DEV 0x12 /* Reset the SCSI device, BDR */
#define XPT_TERM_IO 0x13 /* Terminate the I/O process */
#define XPT_SCAN_LUN 0x14 /* Scan Logical Unit */
#define XPT_CAM3_CCB 0x15 /* The CAM-3 CCB indicator */
#define XPT_BIND 0x16 /*Bind to a Connection */
#define XPT_BIND_QUERY 0x17 /* Query if Bind exist or options */
#define XPT_BIND_REL 0x18 /* Release your Bind */
#define XPT_ DISCOV_START_PORT_ID 0x19 /* Discovery Start Port_ID *.
#define XPT_DISCOV_START_TARGET_ID 0x1A /* Discovery Start Target Identifier */
#define XPT_DISCOV_ADDR 0x1B /* Discovery Get Address */
#define XPT_DISCOV_END 0x1C /* Discovery End */

/* HA engine commands, 0x20 - 0x2F */
#define XPT_ENG_INQ 0x20 /* HA engine inquiry */
#define XPT_ENG_EXEC 0x21 /* HA execute engine request */

/* Target mode commands, 0x30 - 0x3F */
#define XPT_EN_LUN 0x30 /* Enable LUN, Target mode support */
#define XPT_TARGET_IO 0x31 /* Execute the target I/O request */
#define XPT_ACCEPT_TARG 0x32 /* Accept Host Target Mode CDB */
#define XPT_CONT_TARG 0x33 /* Cont. Host Target I/O Connection */
#define XPT_IMMED_NOTIFY 0x34 /* Notify Host Target driver of event */
#define XPT_NOTIFY_ACK 0x35 /* Acknowledgment of event */

If a function code, which is not supported, is issued to the XPT or a SIM, the XPT or SIM shall
complete the request and post CAM Status of Invalid Request.

− cam_protocol;
The valid CAM defined protocol type (i.e., SCSI, NETWORK).

− port_id;

This member is the XPT assigned port number of the described device (e.g., SCSI bus number).

− addr_spec1[2];
Array of 2 CAM_U32s to contain the SCSI target specifier. The addr_spec1[0] member shall contain
the lower 32 bits (least significant portion) of the SCSI target specifier. . The addr_spec1[1] member
shall contain the upper 32 bits (most significant portion) of the SCSI target specifier.

− addr_spec2[2];
Array of 2 CAM_U32s to contain the SCSI Logical Unit specifier. The addr_spec1[0] member shall
contain the lower 32 bits (least significant portion) of the SCSI Logical Unit specifier. . The
addr_spec1[1] member shall contain the upper 32 bits (most significant portion) of the SCSI Logical

X3T10/990D revision 3

dpANS Common Access Method - 3
113

Unit specifier.

− cam_sim_generation;
This member reflects the SIM generation number that is associated to a Bind. The value is returned
upon a successful Bind function. See Clause XXX for further information on binding functions.

− cam_sim_bhandle;
This member reflects the SIM bind handle that is return when a binding operation is performed by the
peripheral driver. See Clause XXX for further information on binding functions.

− cam_xpt_ptr;
Pointer to the XPT’s working space. The vendor of the XPT may use this space for any purpose it
deems appropriate.

− cam_pdrv_ptr;
Pointer to the XPT assigned peripheral driver working space. See Clause 9.3.3.13 for further
information on how a peripheral driver requests this space to be allocated that meets the peripheral
driver’s needs.

− cam_sim_ptr;
Pointer to the XPT assigned SIM working space. See Clause 10.7.1 for further information on how a
SIM requests this space to be allocated that meets the SIM’s needs.

− cam_pdrv_len;
The length in bytes of the peripheral driver working space as pointed to by the cam_pdrv_ptr
member.

− cam_sim_len;
The length in bytes of the SIM working space as pointed to by the cam_sim_ptr member.

11.7 SCSI CAM-3 Specific CCB Function Formats

11.7.1 CAM-3 NOP CCB
A peripheral driver can execute this function at any time. The XPT shall call the indicated SIM’s
sim_action() routine passing this CCB if the Path ID is valid. The SIM shall return immediately.

The supplier of the XPT shall define the CAM-3 NOP CCB structure as shown in Table 8:

DATA TYPE MEMBER NAME ORIG/RECP DESCRIPTIVE TEXT
data structure ccb_header3
pointer

my_addr; XPT The address of this CCB

CAM_U16 cam_ccb_len; XPT Length of the entire CCB
CAM_U8 cam_func_code; ORIG XPT function code contains CAM-3 CCB Identifier
CAM_U8 cam_status; RECP Returned CAM subsystem status
CAM_U32 logical_id; The assigned Logical ID of the device.
CAM_U32 cam_flags; Flags for operation of the subsystem
CAM_U32 cam3_func_code; ORIG The actual function code for a CAM-3 CCB

X3T10/990D revision 3

dpANS Common Access Method - 3
114

CAM_U32 cam_protocol; ORIG The protocol type SCSI
CAM_U32 port_id; ORIG A registered SIM/HA port number
CAM_U32 addr_spec1[2]; Array of 2 CAM_U32s to contain the target specifier
CAM_U32 addr_spec2[2]; Array of 2 CAM_U32s to contain the LUN specifier
CAM_U32 reserved1; Reserved for future expansion
CAM_U32 cam_sim_generation; Generation number returned by BIND CCB
CAM_VOID_OFFSET cam_sim_bhandlle SIM Bind Handle returned by the BIND CCB
CAM_VOID_OFFSET cam_xpt_ptr; XPT Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; XPT Pointer to the XPT assigned peripheral driver working

space
CAM_VOID_OFFSET cam_sim_ptr; XPT Pointer to the XPT assigned SIM working space
CAM_U32 cam_pdrv_len; XPT The length in bytes of the peripheral driver working

space
CAM_U32 cam_sim_len; XPT The length in bytes of the SIM working space

Table 8 ccb_noop3

“C” language example for ccb_noop3:
typedef struct ccb_noop3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
} CCB_NOOP3;

11.7.1.1 Member Descriptions for NOP

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_NOOP function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• cam_flags;
There are no CAM flags defined for this function.

11.7.1.2 Returns for NOP

This function shall return a CAM Status of:
− CAM Status of Request Completed without Error.
− CAM Status of Invalid Path ID indicates that the specified Path ID is not installed.

11.7.2 Discovery CCB Functions

This Clause describes the CAM-3 Discovery CCB functions to obtain topology information for SCSI

X3T10/990D revision 3

dpANS Common Access Method - 3
115

devices. The behavior of the XPT and SIMs are described in detail in Clause 11.1.

11.7.2.1 CAM-3 Discovery Start CCB - Scan Port ID function

The Discovery Start CCB - Scan Port ID function starts a Topology Discovery Process for the specified
Port_ID.

The supplier of the XPT shall define the CAM-3 Discovery Start CCB - Scan Port ID function structure as
shown in Table 9

DATA TYPE MEMBER NAME ORIG/RECP DESCRIPTIVE TEXT
data structure ccb_header3
pointer

my_addr; XPT The address of this CCB

CAM_U16 cam_ccb_len; XPT Length of the entire CCB
CAM_U8 cam_func_code; ORIG XPT function code contains CAM-3 CCB Identifier
CAM_U8 cam_status; RECP Returned CAM subsystem status
CAM_U32 logical_id; The assigned Logical ID of the device.
CAM_U32 cam_flags; Flags for operation of the subsystem
CAM_U32 cam3_func_code; ORIG The actual function code for a CAM-3 CCB
CAM_U32 cam_protocol; ORIG The protocol type SCSI
CAM_U32 port_id; ORIG A registered SIM/HA port number
CAM_U32 addr_spec1[2]; Array of 2 CAM_U32s to contain the target specifier
CAM_U32 addr_spec2[2]; Array of 2 CAM_U32s to contain the LUN specifier
CAM_U32 reserved1; Reserved for future expansion
CAM_U32 cam_sim_generation; Generation number returned by BIND CCB
CAM_VOID_OFFSET cam_sim_bhandlle SIM Bind Handle returned by the BIND CCB
CAM_VOID_OFFSET cam_xpt_ptr; XPT Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; XPT Pointer to the XPT assigned peripheral driver working

space
CAM_VOID_OFFSET cam_sim_ptr; XPT Pointer to the XPT assigned SIM working space
CAM_U32 cam_pdrv_len; XPT The length in bytes of the peripheral driver working

space
CAM_U32 cam_sim_len; XPT The length in bytes of the SIM working space

Table 9 ccb_discov_port_id3

“C” language example for ccb_discov_port_id3:
typedef struct ccb_disc_port_id3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
}CCB_DISCOV_PORT_ID3;

11.7.2.1.1 Member Descriptions for Discovery Start CCB - Port ID function

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_DISCOV_START_PORT_ID function code;

X3T10/990D revision 3

dpANS Common Access Method - 3
116

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• cam_flags;
There are no CAM flags defined for this function.

11.7.2.1.2 Returns for Discovery Start CCB - Port ID function

This function shall return a CAM Status of:
− Request Completed without Error.
− Invalid Path ID indicates that the specified Path ID is not installed.
− Discovery in progress indicates that a Topology Discovery Process is already in existence for the

specified Port_ID.

11.7.2.2 CAM-3 Discovery Start CCB - Scan Target ID function

The Discovery Start CCB - Scan Target ID function starts a Topology Discovery Process for the specified
Port_ID and target identifier.

The supplier of the XPT shall define the CAM-3 Discovery Start CCB - Scan Target ID function structure
as shown in Table 10

DATA TYPE MEMBER NAME ORIG/RECP DESCRIPTIVE TEXT
data structure ccb_header3
pointer

my_addr; XPT The address of this CCB

CAM_U16 cam_ccb_len; XPT Length of the entire CCB
CAM_U8 cam_func_code; ORIG XPT function code contains CAM-3 CCB Identifier
CAM_U8 cam_status; RECP Returned CAM subsystem status
CAM_U32 logical_id; The assigned Logical ID of the device.
CAM_U32 cam_flags; Flags for operation of the subsystem
CAM_U32 cam3_func_code; ORIG The actual function code for a CAM-3 CCB
CAM_U32 cam_protocol; ORIG The protocol type SCSI
CAM_U32 port_id; ORIG A registered SIM/HA port number
CAM_U32 addr_spec1[2]; ORIG Array of 2 CAM_U32s to contain the target specifier
CAM_U32 addr_spec2[2]; Array of 2 CAM_U32s to contain the LUN specifier
CAM_U32 reserved1; Reserved for future expansion
CAM_U32 cam_sim_generation; Generation number returned by BIND CCB
CAM_VOID_OFFSET cam_sim_bhandlle SIM Bind Handle returned by the BIND CCB
CAM_VOID_OFFSET cam_xpt_ptr; XPT Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; XPT Pointer to the XPT assigned peripheral driver working

space
CAM_VOID_OFFSET cam_sim_ptr; XPT Pointer to the XPT assigned SIM working space
CAM_U32 cam_pdrv_len; XPT The length in bytes of the peripheral driver working

space
CAM_U32 cam_sim_len; XPT The length in bytes of the SIM working space

Table 10 ccb_discov_target_id3

“C” language example for ccb_discov_target_id3:

X3T10/990D revision 3

dpANS Common Access Method - 3
117

typedef struct ccb_discov_target_id3
{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
}CCB_DISCOV_TARGET_ID3;

11.7.2.2.1 Member Descriptions for Discovery Start CCB - Target ID function

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_DISCOV_START_TARGET_ID function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• cam_flags;
There are no CAM flags defined for this function.

11.7.2.2.2 Returns for Discovery Start CCB - Target ID function

This function shall return a CAM Status of:
− Request Completed without Error.
− Invalid Path ID indicates that the specified Path ID is not installed.
− Discovery in progress indicates that a Topology Discovery Process is already in existence for the

specified Port_ID or target identifier.

11.7.2.3 CAM-3 Discovery Address CCB

The Discovery ADDRESS CCB function queries the identified SIM/HA for the next available target
identifier that has not been returned by previous Discovery Address CCB functions. The SIM/HA returns
the next available target identifier in the ccb_header3 addr_spec1 member.

The supplier of the XPT shall define the Discovery Address CCB structure as shown in Table 11

DATA TYPE MEMBER NAME ORIG/RECP DESCRIPTIVE TEXT
data structure ccb_header3
pointer

my_addr; XPT The address of this CCB

CAM_U16 cam_ccb_len; XPT Length of the entire CCB
CAM_U8 cam_func_code; ORIG XPT function code contains CAM-3 CCB Identifier
CAM_U8 cam_status; RECP Returned CAM subsystem status
CAM_U32 logical_id; The assigned Logical ID of the device.

X3T10/990D revision 3

dpANS Common Access Method - 3
118

CAM_U32 cam_flags; Flags for operation of the subsystem
CAM_U32 cam3_func_code; ORIG The actual function code for a CAM-3 CCB
CAM_U32 cam_protocol; ORIG The protocol type SCSI
CAM_U32 port_id; ORIG A registered SIM/HA port number
CAM_U32 addr_spec1[2]; RECP Array of 2 CAM_U32s to contain the target specifier
CAM_U32 addr_spec2[2]; Array of 2 CAM_U32s to contain the LUN specifier
CAM_U32 reserved1; Reserved for future expansion
CAM_U32 cam_sim_generation; Generation number returned by BIND CCB
CAM_VOID_OFFSET cam_sim_bhandlle SIM Bind Handle returned by the BIND CCB
CAM_VOID_OFFSET cam_xpt_ptr; XPT Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; XPT Pointer to the XPT assigned peripheral driver working

space
CAM_VOID_OFFSET cam_sim_ptr; XPT Pointer to the XPT assigned SIM working space
CAM_U32 cam_pdrv_len; XPT The length in bytes of the peripheral driver working

space
CAM_U32 cam_sim_len; XPT The length in bytes of the SIM working space

Table 11 ccb_discov_addr3

 “C” language example for ccb_discov_addr3:
typedef struct ccb_discov_addr3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
}CCB_DISCOV_ADDR3;

11.7.2.3.1 Member Descriptions for Discovery Address CCB function

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_DISCOV_ADDR function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall be set by the SIM/HA before the successful completion of this CCB. The value

shall be the next available target identifier not returned for the Topology Discover process.

• cam_flags;
There are no CAM flags defined for this function.

11.7.2.3.2 Returns for Discovery Address CCB function

This function shall return a CAM Status of:
− Request Completed without Error.

X3T10/990D revision 3

dpANS Common Access Method - 3
119

− Invalid Path ID indicates that the specified Path ID is not installed.
− Invalid Request indicates that the SIM does not support this CCB function
− Request Completed with error indicates that there are no more target identifiers available for this

Topology Discovery process (all have been obtained).

11.7.2.4 CAM-3 Discovery End CCB

The Discovery End CCB function ends the Topology Discovery process for the identified SIM/HA.

The supplier of the XPT shall define the Discovery End CCB structure shown in

DATA TYPE MEMBER NAME ORIG/RECP DESCRIPTIVE TEXT
data structure ccb_header3
pointer

my_addr; XPT The address of this CCB

CAM_U16 cam_ccb_len; XPT Length of the entire CCB
CAM_U8 cam_func_code; ORIG XPT function code contains CAM-3 CCB Identifier
CAM_U8 cam_status; RECP Returned CAM subsystem status
CAM_U32 logical_id; The assigned Logical ID of the device.
CAM_U32 cam_flags; Flags for operation of the subsystem
CAM_U32 cam3_func_code; ORIG The actual function code for a CAM-3 CCB
CAM_U32 cam_protocol; ORIG The protocol type SCSI
CAM_U32 port_id; ORIG A registered SIM/HA port number
CAM_U32 addr_spec1[2]; RECP Array of 2 CAM_U32s to contain the target specifier
CAM_U32 addr_spec2[2]; Array of 2 CAM_U32s to contain the LUN specifier
CAM_U32 reserved1; Reserved for future expansion
CAM_U32 cam_sim_generation; Generation number returned by BIND CCB
CAM_VOID_OFFSET cam_sim_bhandlle SIM Bind Handle returned by the BIND CCB
CAM_VOID_OFFSET cam_xpt_ptr; XPT Pointer to the XPT working space */
CAM_VOID_OFFSET cam_pdrv_ptr; XPT Pointer to the XPT assigned peripheral driver working

space
CAM_VOID_OFFSET cam_sim_ptr; XPT Pointer to the XPT assigned SIM working space
CAM_U32 cam_pdrv_len; XPT The length in bytes of the peripheral driver working

space
CAM_U32 cam_sim_len; XPT The length in bytes of the SIM working space

Table 12 ccb_discov_end3

“C” language example for ccb_discov_end3:
typedef struct ccb_discov_end3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
}CCB_DISCOV_END3;

11.7.2.4.1 Member Descriptions for Discovery End CCB function

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

X3T10/990D revision 3

dpANS Common Access Method - 3
120

This member shall contain the XPT_DISCOV_END function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• cam_flags;
There are no CAM flags defined for this function.

11.7.2.4.2 Returns for Discovery Address CCB function

This function shall return a CAM Status of:
− Request Completed without Error.
− Invalid Path ID indicates that the specified Path ID is not installed.

11.7.3 Binding CCB Functions

This Clause describes the CAM-3 Binding functions and behavior for peripheral drivers and SIMs.

11.7.3.1 CAM-3 Bind CCB

The Bind function binds the originator of this CCB to a logical representation of a Logical Unit within a
SIM. An originator of CCBs (XPT or peripheral driver) to a Logical Unit shall not send any CCB that
requires a SIM Bind Handle without first performing a Bind function. This shall mean that the
documented description for a particular CCB function shall state whether a SIM Bind Handle is required
as follows;
− cam_sim_bhandle;

This member shall reflect the SIM bind handle that is return for the current bind operation.

The Bind function allows a SIM to ready itself for operations with a specified device. The Bind function
also provides an interlock between a peripheral driver and a SIM for those events that can cause a
devices interconnect address specifiers to change.

For the SIMs that support a SCSI protocol that logs into a device (e.g., FCP). The SIM shall cause a
protocol specific login to the device. If the protocol specific login fails, the SIM shall fail the Bind as
specified.

The originator of CCBs (peripheral drivers) shall perform a valid Bind function for each Connection_ID to
which it will send CCBs.

There shall be only one Bind on a device for a specific Port_ID and a Connection_ID (e.g., interconnects
address specifiers) , unless the second Bind is from the XPT. If there currently is a Bind on a
Connection_ID the SIM shall compare the second Bind requests cam_pdrv_reg member to that of the
XPT’s peripheral drivers registration number (Refer to Clause XX for further information). If the compare
is equal to the XPT’s peripheral drivers registration number then the second Bind shall be allowed.

The XPT shall share the current Bind parameters if a Bind is currently present, to allow the XPT the

X3T10/990D revision 3

dpANS Common Access Method - 3
121

operations needed to perform a Discovery process (e.g. send INQUIRY commands to the specified
device). If for any reason the device reports that the connection has been lost (e.g., Device reports a log
out) the SIM shall release the original Bind. The SIM shall also perform an Asynchronous Event
notification as specified for the original Bind and Bind to the for the XPT’s request.

Note 14
The above case occurs during Discovery Process and the XPT is discovering topology.

There may be more then one Bind for the uniquely identified device (Logical_ID) in effect for different
Port_IDs or the same Port_ID. For example, a uniquely identified device (Logical_ID) can be seen from
the same host on multiple SIM/Has (multi-initiator). The peripheral driver may Bind to the device
through each identified Port_ID.

The SIM shall term a successful Bind function as the following:
− There are no current Binds against the Connection_ID;
− The Bind operational attributes requested can be fulfilled;

The SIM, upon a successful Bind function for the specified Connection_ID, shall do the following:
− Set the cam_sim_generation member so that it reflects the SIM's generation number that is

associated to a Bind. The value shall be unique and shall be different for every successful Bind.
− set into the cam_sim_bhandle its SIM Bind Handle for the Connection_ID. The SIM’s

cam_sim_bhandle can be a pointer or a number. It is recommended that the SIM Bind Handle be a
pointer to a SIM specific data structure representing the described device (Connection_ID).

The SIM shall store the following information when a successful Bind is accomplished:
− cam_pdrv_reg member value;
− logical_id member value;

If the Bind function is not successful due to a requested Bind operational attribute that can not be
furnished. The SIM shall clear the not supported Bind operational attribute flag(s) and return the
specified error indication.

If the interconnect protocol supports the concept of command delivery time reporting (e.g. FC). The SIM
shall place into the cam_delivery_time member the current time, in seconds, to deliver a command to
the device. The SIM shall always round up the time to the nearest second (e.g., 125 milliseconds is
rounded up to 1 second). SIMs that can not determine the delivery time of a command due to non-
existence mechanisms in the protocol shall set this value to 0 (e.g., SPI).

The SIM shall post an Asynchronous Event if the SIM detects a delivery time change as reported by the
protocol. This shall mean that if the delivery time changes so that it is different then the what was
reported in the current Bind, the SIM shall post an Asynchronous Event. See SCSI Asynchronous
Events for further detail.

A Bind can be released automatically by a SIM when notified by the XPT, through an Asynchronous
Event Callback of a change to the device. The changes to a device that can cause a automatic release
of a Bind are as follows:
− Device has a new Connection_ID;
− Device is no longer in existence;
− Device has changed type;

X3T10/990D revision 3

dpANS Common Access Method - 3
122

The shall release a Bind and perform an Asynchronous Event when:
− SIM detects that the device has performed explicit protocol specific events that denotes a lost of

communication to the device (e.g., a FCP logout).

When a Bind is automatically broken by the SIM or by notification by the XPT to release a Bind (if one
exists) the SIM shall:
− Return all CCBs for that Connection_ID with a CAM Status of Bind Broken.. Refer to Clauses XXX

and XXX for further information.

The originator of the Bind (peripheral drivers) shall be prepared to deal with the automatic release of a
Bind.

The supplier of the XPT shall define the CAM-3 BIND CCB as follows:
typedef struct ccb_bind3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
CAM_U32 cam_bind_ops; /* Operational attributes */
CAM_U32 cam_pdrv_reg; /* The requesters driver registration number */
CAM_U32 cam_delivery_time; /* Command delivery time if available */
} CCB_BIND3;

•
11.7.3.1.1 Member Descriptions for Bind

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_BIND function code;

• logical_id;
This member shall reflect the correct logical identifier for the Connection_ID.

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_flags;
There are no CAM flags defined for this function.

X3T10/990D revision 3

dpANS Common Access Method - 3
123

− cam_bind_ops;
There are no currently defined operational attributes and this member shall be set to zero.

− cam_pdrv_reg;
This member is the requesters peripheral driver registration number. This member shall be set by
the requesters acquired peripheral driver registration number.

11.7.3.1.2 Returns for Bind

− Request Completed without Error: the Bind function was successful.
− Request Completed with Error: indicates that a Bind is currently in existence for the Connection_ID.
− Invalid Request: the request has been rejected because one or more of the operational attributes can

not be fulfilled.
− Invalid Path ID indicates that the specified Path ID is not installed.

11.7.3.2 CAM-3 Bind Release

This function shall cause the release of a Bind for the specified Connection_ID. The SIM shall verify that
the owner of the Bind is the same as the requester releasing the Bind. The SIM shall compare the
cam_pdrv_reg member, the cam_sim_bhandle member, and the cam_sim_generation member to the
original stored values to for the current Bind. If the values are not equal to the to what has been stored
the SIM shall not release the Bind.

The supplier of the XPT shall define the CAM-3 Bind Release CCB structure as follows:
typedef struct ccb_bind_release3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
CAM_U32 cam_pdrv_reg; /* The requesters driver registration number */
} CCB_BIND_RELEASE3;

11.7.3.2.1 Member Descriptions for Bind Release

− Required information for the CCB members that shall be set by the originator of the CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_BIND_REL function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

X3T10/990D revision 3

dpANS Common Access Method - 3
124

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;

This member shall reflect the SIM bind handle that was returned for the current bind operation.

• cam_flags;
There are no CAM flags defined for this function.

• cam_pdrv_reg;
This member is the requesters peripheral driver registration number. This member shall be set
by the requesters acquired peripheral driver registration number.

11.7.3.2.2 Returns for Bind Release

− Request Completed without Error: the Bind Release function was successful.
− Request Completed with Error: indicates that a Bind is no current in existence for the Connection_ID.
− Invalid Request: the request has been rejected because the CCB originator is not current owner of

Bind.
− Invalid Path ID indicates that the specified Path ID is not installed.

11.7.3.3 CAM-3 Bind Query CCB

This function shall cause the SIM to set into the cam_bind_ops member the functionality it supports and
to report whether there is a current Bind to the Connection_ID. If there is a current Bind for the
Connection_ID the SIM shall place into the cam_sim_bhandle member, an arbitrary positive value
(recommended value is a one).

If the interconnect protocol supports the concept of command delivery time reporting (e.g. FC). The SIM
shall place into the cam_delivery_time member the current time, in seconds, to deliver a command to
the device. The SIM shall always round up the time to the nearest second (e.g., 125 milliseconds is
rounded up to 1 second). SIMs that can not determine the delivery time of a command due to non-
existence mechanisms in the protocol shall set this value to 0 (e.g., SPI).

The supplier of the XPT shall define the CAM-3 Bind Query CCB structure as follows:
typedef struct ccb_bind_query3

{
CCB_HEADER3 ccb_header3; /* CCB_HEADER3 information fields */
CAM_U32 cam_bind_ops; /* Operational attributes */
CAM_U32 cam_pdrv_reg; /* The requesters driver registration number */
} CCB_BIND_QUERY3;

X3T10/990D revision 3

dpANS Common Access Method - 3
125

11.7.3.3.1 Member Descriptions for Bind Query

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_BIND_REL function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_flags;
There are no CAM flags defined for this function.

− cam_bind_ops;
There are no currently defined operational attributes and this member shall be set to zero for any
SIM that complies with this version of CAM-3..

11.7.3.3.2 Returns for Bind Query

− Request Completed without Error: the Bind Release function was successful.
− Invalid Path ID indicates that the specified Path ID is not installed.

11.7.4 CAM-3 Get Device Type

For a given Logical Unit this function returns the Peripheral Device Type of the INQUIRY response data
in the cam_pd_type member, and optionally the first 36 bytes of inquiry data in the buffer supplied.

The information on attached SCSI devices is gathered at times when necessary by the XPT/SIM (to
eliminate the need for each driver to duplicate the effort of scanning the SCSI bus for devices).

The supplier of the XPT shall define the Get Device Type CCB structure as follows:
typedef struct ccb_getdev3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CAM_U8 *cam_inq_data; /* Pointer to the inquiry data space */
CAM_U8 cam_pd_type; /* Peripheral device type */
} CCB_GETDEV3;

X3T10/990D revision 3

dpANS Common Access Method - 3
126

11.7.4.1 Member Descriptions for Get Device Type

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_GDEV_TYPE function code;

• cam_protocol;
The shall contain the SCSI_PROTOCOL number.

• logical_id;
 This member is the XPT assigned logical identifier of the device for the protocol specified.

• cam_flags;
There are no CAM flags defined for this function.

− cam_pd_type;
The Peripheral Device Type of the Logical Unit field is the Peripheral Device Type from the
INQUIRY response data. The XPT/SIM shall generate this data by taking byte 0 of the INQUIRY
response data and setting bits 7-5 to zero.

− cam_inq_data;
If the Inquiry Data Pointer field contains a value other then null, it shall point to a buffer of at least 36
bytes. When the Inquiry Data Pointer field is not null the XPT/SIM shall copy the first 36 of INQUIRY
response data from its internal tables to the identified buffer, if the Logical Unit responded with
INQUIRY response data to the INQUIRY command as defined by SCSI-3.

11.7.4.2 Returns for Get Device Type

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the specified device is installed and the peripheral

device type field is valid.
− SCSI Device Not Installed indicates that the described peripheral device (CAM protocol type or

logical_id) was not found in the EDT.

11.7.5 CAM-3 Path Inquiry

This function shall return information on the installed addressed HA/SCSI bus(es) hardware, or the XPT.
 To obtain further information on a specific HA(s)/SCSI bus(es) attached, this function can be issued for
each assigned Path ID.

X3T10/990D revision 3

dpANS Common Access Method - 3
127

In some operating system environments, it may be possible to dynamically load and unload SIMs, so
Port_IDs may not be consecutive from zero to the highest Port_ID assigned.

If the CCB is addressed to the XPT, the XPT shall set into the protocol_type member all Protocol types it
supports. If the CCB is directed to a SIM, the SIM shall set into protocol_type member the Protocol
number it supports for the specified port_id member.

The supplier of the XPT shall define the Path Inquiry CCB structure and all flag bit defines. The Path
Inquiry CCB structure shall be defined follows:

typedef struct ccb_pathinq3
{
CCB_HEADER3 ccb_header3; /* Header information fields */
CAM_U8 cam_version_num[32]; /* ASCII NULL terminated string Version number */
CAM_U8 cam_interconnect[32]; /* ASCII NULL terminated string Interconnect protocol

type (e.g., SIP, FCP) */
CAM_U32 cam_ha_inquiry; /* SIM/HA support of TASK control etc. */
CAM_U32 cam_target_sprt; /* Flags for target mode support */
CAM_U32 cam_ha_misc; /* Misc HA feature flags */
CAM_U32 cam_ha_eng_cnt; /* HA engine count */
CAM_U32 cam_max_targ_addr[2]; /* Maximum SCSI target address */
CAM_U32 cam_max_lun_addr[2]; /* Maximum SCSI Logical Unit address */
CAM_U8 cam_vuha_flags[16]; /* Vendor unique capabilities */
CAM_U32 cam_async_flags; /* Event cap. for Async Callback */
CAM_U32 cam_hpath_id; /* Highest path ID in the subsystem */
CAM_U32 cam_initiator_id[2]; /* ID of the HA on the SCSI bus */
CAM_U32 cam_prsvd0; /* Reserved field, for alignment */
CAM_U8 cam_sim_vid[32]; /* Vendor ID of the SIM */
CAM_U8 cam_ha_vid[32]; /* Vendor ID of the HA */
CAM_U8 *cam_osd_usage; /* Pointer for the OSD specific area */
} CCB_PATHINQ3;

Note 15
For CCB's other than PATH INQUIRY CCB with a Path ID of the XPT the CCB is returned with a CAM Status of Invalid Path
ID.

11.7.5.1 Member Descriptions for Path Inquiry

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_PATH_INQ function code;

• port_id;

X3T10/990D revision 3

dpANS Common Access Method - 3
128

This member shall contain a port number (e.g., SCSI bus number) or the port_id number of the
XPT (0xFF).

• cam_flags;
There are no CAM flags defined for this function.

− cam_version_num;

The Version Number member shall identify the revision number of CAM-3 the SIM/HA or the XPT
conforms to. PATH INQUIRY CCBs addressed to a valid SIM/HA or the XPT shall respectively
place in the Version Number member the ASCII NULL terminated string CAM-3 revision number it
conforms to. When the ANSI CAM-3 document is accepted as a standard the revision string shall be
“CAM-3 V1” for vendors that comply with the standard. Compliance to a working draft of this
document shall represented by a string of “CAM-3 WD R[x]” where [x] is the revision number. The
current CAM-3 revision number is 2 and shall be represented by the ASCII NULL terminated string of
“CAM-3 WD R2”.

− cam_interconnect
The Interconnect Protocol type shall identify the SIM/HA’s interconnect protocol.

For SIMs that complies with one of the ANSI SCSI-3 protocol documents. The addressed Port_ID
SIM shall place into the member a NULL terminated string that shall be the ANSI document name
with its version number, if any, for the interconnect protocol.

For example a Fibre Channel SIM/HA that complies with FCP the interconnect string shall be “FCP”.
For an SSA SIM/HA that complies with SSA-2 the interconnect string shall be “SSA2”.

For SIMs that comply with the SCSI-2 standard for the SCSI parallel bus but not the ANSI SCSI-3
SIP standard the SIM shall place into the member a NULL terminated string of “SCSI-2 SIP”.

− cam_ha_inquiry;
The SCSI Capabilities member may be duplicate of byte 7 field in inquiry data. Based upon the
varying SCSI transport protocol (e.g., SIP, FCP, and SBP) some of the defined capabilities do not
apply. The SIM shall set the capabilities flags it supports as defined by the following:

• SIM supports Auto Device Resolution. This flag denotes that the SIM supports a methodology
that allows a SCSI device to change its physical address specifiers through interconnect events
(e.g., SCAM, FC). A SIM shall set this flag if it supports this type of address resolution
methodology.

 #define PI_AUTO_DEV_RESOLVE 0x80000000

• SIM does support BUS RESET TASK

PI_BUSRESET_ABLE 0x200

• SIM does support TERMINATE I/O TASK
 #define PI_TERMINATE_IO_ABLE 0x100

• SIM supports the Modify Data Pointers Message

X3T10/990D revision 3

dpANS Common Access Method - 3
129

#define PI_MDP_ABLE 0x80

• SIM supports 32 bit wide SCSI data transfers
#define PI_WIDE_32 0x40

• SIM supports 16 bit wide SCSI data transfers
#define PI_WIDE_16 0x20

• SIM supports synchronous data transfers
#define PI_SDTR_ABLE 0x10

• SIM supports linked SCSI commands
#define PI_LINKED_CDB 0x08

• SIM supports tagged queuing of command
#define PI_TAG_ABLE 0x02

• SIM supports soft reset functionality
#define PI_SOFT_RST 0x01

• Reserved flag bit defines of 0x00

− cam_target_sprt;
The Target Mode supported member reports the functionality support for Target Mode The SIM
shall set the capabilities flags it supports as defined by the following:
• Reserved flag bit defines of 0x100 to 0xFFFFFF00

• SIM supports Host Target Mode
#define PIT_HOST_MODE 0x80

• SIM supports Phase Cognizant Mode
 #define PIT_PHASE_COG_MODE 0x40

• SIM supports target mode disconnects

#define PIT_TMODE_DISCON 0x20

• SIM supports Terminate I/O Process Messages
#define PIT_TERMINATE_IO 0x10

• SIM supports Group 6 Commands
#define PIT_Group_6 0x10

• SIM supports Group 5 Commands
#define PIT_Group_5 0x20

• Reserved flag bit define of 0x01 and 0x00

X3T10/990D revision 3

dpANS Common Access Method - 3
130

− cam_ha_misc;
The miscellaneous supported member reports miscellaneous functionality support by the XPT. The
XPT shall set the capabilities flags it supports as defined by the following:
• Reserved flag bit defines of 0x10, 0x08, 0x04, 0x02, 0x01 and 0x100 to 0xFFFFFF00

• SCSI Bus Scan Direction; If the XPT scans Low to High (e.g. target 0x0 to target 0xF) the
defined bit shall be cleared. If the XPT scans high to low (e.g. target 0xF to target 0x0) the
defined bit shall be set.
#define PIM_SCANHILO 0x80

• Removable devices not included in scan, indicates that the XPT does not keep inquiry data on
those devices. If the XPT does not keep inquiry data for removable device, the indicated bit
shall be set.
#define PIM_NOREMOVE 0x40

• Inquiry Data not Kept by XPT set indicates that the XPT does not store inquiry data.
#define PIM_NOINQUIRY 0x20

− cam_ha_eng_cnt;
Engine count signifies the number of engines available at this specified Port_ID for an HA engine.

− cam_max_targ_addr;
The maximum addressable target address is an array of two CAM_U32s. The member represents
the highest target address the SIM/HA is capable of addressing. The cam_max_target_addr[0]
member shall contain the lower 32 bits (least significant portion) of the maximum SCSI target
specifier. The cam_max_target_addr[1] member shall contain the upper 32 bits (most significant
portion) of the maximum SCSI target specifier.

− cam_max_lun_addr;
The maximum addressable Logical Unit address is an array of two CAM_U32s. The member
represents the highest Logical Unit address the SIM/HA is capable of addressing. The
cam_max_lun_addr[0] member shall contain the lower 32 bits (least significant portion) of the SCSI
Logical Unit specifier. . The cam_max_lun_addr[1] member shall contain the upper 32 bits (most
significant portion) of the SCSI Logical Unit specifier.

− cam_vuha_area
Vendor Unique storage area of 16 bytes.

− cam_sim_priv;
In some environments, the Size of Private Data Area field value returned may be zero because the
OSD has central allocation of private data requirements, or it is a fixed size as defined by the OSD
vendor. See the vendor specification for the definition of vendor unique HA capabilities peculiar to a
particular HA implementation.

− cam_async_flags;
The Asynchronous Event Capabilities field indicates what reasons can cause the XPT/SIM to

X3T10/990D revision 3

dpANS Common Access Method - 3
131

generate an asynchronous event callback. The XPT or SIM shall set the capabilities flags it supports
as defined by the following:
• Bit values 0x1000000 to 0xFF000000 (bits 24 - 31) are vendor unique.

• Bit values 0x100 to 0x0FFFF00 (bits 8 - 23) are reserved

• New Devices Found During Rescan, CCB addressed to XPT (XPT sets).

◊ #define AC_FOUND_DEVICES 0x80

• SIM Module Deregistered, CCB addressed to XPT (XPT sets).
◊ #define AC_SIM_DEREGISTER 0x40

• SIM Module Registered, CCB addressed to XPT (XPT sets).
◊ #define AC_SIM_REGISTER 0x20

• Sent Bus Device Reset to Target, CCB addressed to SIM (SIM sets).
◊ #define AC_SENT_BDR 0x10

• SCSI AEN, CCB addressed to SIM (SIM sets).
◊ #define AC_SCSI_AEN 0x08

• 0X04 Reserved

• Unsolicited Reselection, CCB addressed to SIM (SIM sets).
◊ #define AC_UNSOL_RESEL 0x02

• Unsolicited SCSI Bus Reset, CCB addressed to SIM (SIM sets).
◊ #define AC_BUS_RESET 0x01

− cam_hpath_id;
If the Path ID field of the CCB has a value of FFh (the XPT Path ID), then the only fields that shall be
valid upon return to the caller are the Highest Path ID Assigned member and the Version Number
member. The highest Path ID assigned field shall not be valid if the Path ID field in the CCB
contains a value other than FFh.

If no Port_IDs exist (i.e., no SCSI buses are registered), then the highest Path ID Assigned field shall
be FFh, the ID of the XPT.

− cam_initiator_id;
The CAM initiator identifier is an array of two CAM_U32s. This member represents the target
address (initiator id) of this HA as identifier by the port_id member. The cam_initiator_id[0] member
shall contain the lower 32 bits (least significant portion) of the SCSI target specifier (initiator id). The
cam_initiator_id[1] member shall contain the upper 32 bits (most significant portion) of the SCSI
target specifier (initiator id).

− cam_sim_vid[16];
The vendor ID of SIM supplier member shall contain a NULL terminated sting of the name of the
SIM vendor.

X3T10/990D revision 3

dpANS Common Access Method - 3
132

− cam_ha_vid[16];
The vendor ID of HA supplier member shall contain a NULL terminated sting of the name of the HA
vendor.

− cam_osd_usage;
The OSD Usage Pointer field is provided for OS-specific or platform-specific functions to be
executed by the SIM. The contents of this field are vendor-specific and are not defined in this
standard.

11.7.5.2 Returns for Path Inquiry
This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the other returned fields are valid.
− No HA Detected indicates that the HA is no longer responding to the SIM.
− Invalid Path ID indicates that the specified Path ID is not installed.

11.7.6 CAM-3 Release SIM Queue

This function is provided so that the peripheral driver can decrement a SIM queue frozen count or
ascertain the SIM queue frozen count without modification for the addressed Logical Unit. Determining
the current SIM queue frozen count without modification is accomplished by issuing this function with the
CAM Flag of SIM Queue Freeze bit set to a one. With the CAM Flag of SIM Queue Freeze bit set to
zero, the SIM/HA shall decrement the SIM queue frozen count by one and shall release the SIM queue
for the addressed Logical Unit when the count reaches zero. The SIM/HA shall return the current SIM
queue freeze count for the Logical Unit in the SIM Queue Frozen Count Field for either value of the CAM
Flag of SIM Queue Freeze bit. See Clause XXX for further clarification on the SIM queue frozen state.

The supplier of the XPT shall define the Release SIM Queue CCB structure as follows:
typedef struct ccb_relsim3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CAM_U32 cam_frzn_cnt; /* Current freeze count */
} CCB_RELSIM3;

11.7.6.1 Member Descriptions for Release SIM Queue

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_NOOP function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

X3T10/990D revision 3

dpANS Common Access Method - 3
133

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

• cam_flags;
 If the defined CAM Flag of CAM_SIM_QFREEZE bit is set to a one, the SIM/HA shall place the

current SIM queue frozen count without any modifications into the cam_frzn_cnt member.

If the defined CAM Flag of CAM_SIM_QFREEZE bit is set to a zero, the SIM/HA shall
decrement its by one the current SIM queue frozen count and shall place that value if positive or
a zero if negative into the cam_frzn_cnt member.

− cam_frzn_cnt;
The SIM Queue Frozen Count field shall be zero or a positive value and shall be ascertained by the
setting of the defined CAM Flag of CAM_SIM_QFREEZE.

11.7.6.2 Returns for Release SIM Queue

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error.
− Invalid Path ID indicates that the Path ID is invalid.
− No Bind indicates that either no Bind has been established or Bind has been lost.

11.7.7 CAM-3 Scan SCSI Bus

X3T10/990D revision 3

dpANS Common Access Method - 3
134

This function shall cause the XPT/SIM to update its internal tables on the installed devices on the
identified Path ID. The target and Logical Unit fields shall be ignored. The XPT/SIM shall scan each
Logical Unit address on the SCSI bus and update its tables with the inquiry data provided by each
Logical Unit that responds.

This function shall not be issued to a Port_ID that supports Auto Device Resolution as indicated in the
Path Inquiry function.

The information on attached SCSI devices is gathered at initialization by the XPT. This function is
provided to force an update of the EDT contents. Using this function at any other time is not
recommended because its execution can take a long time. In addition, execution of this function
severely degrades SCSI Bus performance. Furthermore, the thread that calls this function can do no
further work until this function completes. Any new devices detected during the scan shall generate
asynchronous callbacks to peripheral drivers registered for new devices found.

The supplier of the XPT shall define the Scan Bus CCB as follows:
typedef struct ccb_scanbus3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
}CCB_SCANBUS3;

11.7.7.1 Member Descriptions for Scan Bus

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_SCAN_BUS function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• cam_flags;
There are no CAM flags for this function.

11.7.7.2 Returns for Scan Bus

X3T10/990D revision 3

dpANS Common Access Method - 3
135

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the devices have been scanned and the table

updated.
− Invalid Path ID indicates that the Path ID is invalid.
− Invalid Request indicates that the SIM that supports Auto Device Resolution and this CCB should not

be issued.

11.7.8 CAM-3 Scan Logical Unit

This function shall cause the XPT/SIM to update its internal tables on the installed device on the
identified Path ID, Target ID, and Logical Unit. The XPT/SIM shall scan the Logical Unit addressed on
the SCSI bus and update its tables with the inquiry data provided by the Logical Unit that responds.

This function is provided to force an update of the table contents for a Logical Unit not present or
configured when the Scan SCSI Bus function was invoked. Execution of this function can severely
degrade SCSI Bus performance if the scanned Logical Unit does not respond to selections.
Furthermore, the thread that calls this function can do no further work until this function completes. A
new Logical Unit detected during the scan shall generate asynchronous callbacks to peripheral drivers
registered for new devices found.

The supplier of the XPT shall define the Scan Logical Unit CCB structure as follows:

typedef struct ccb_scanlun3
{
CCB_HEADER3 ccb_header3; /* Header information fields */
} CCB_SCANLUN3;

11.7.8.1 Member Descriptions for Scan Logical Unit

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_SCAN_LUN function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

X3T10/990D revision 3

dpANS Common Access Method - 3
136

• cam_flags;
There are no CAM flags for this function

11.7.8.2 Returns for Scan Logical Unit

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the devices have been scanned and the table

updated.
− Invalid Path ID indicates that the Path ID is invalid.
− SCSI device not installed there indications that the Logical Unit responded with XXX
− Target selection timeout indicated that the SCSI target did not respond.

11.7.9 CAM-3 Set Asynchronous Callback

Editors Mark this needs to be updated for New method (e.g. Logical unit) Currently not valid.

Asynchronous event callbacks are described in Clause XXX.

This function is provided so that a peripheral driver or SIM can register a callback routine for the selected
logical_id or port_id. The function shall register a routine for receipt of callbacks for selected
asynchronous events that occur on the selected logical_id or port_id. It is required that the asynchronous
callback field is filled in with the callback routine address if any of the asynchronous events enabled bits
are set.

The supplier of the XPT shall define the Scan Logical Unit CCB structure as follows:
typedef struct ccb_setasync3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CAM_U32 cam_async_flags; /* Event enables for Callback response */
CAM_VOID (*cam_async_func)(); /* Async Callback function address */
CAM_U8 *pdrv_buf; /* Buffer set aside by the PD */
CAM_U8 pdrv_buf_len; /* The size of the buffer */
} CCB_SETASYNC3;

11.7.9.1 Member Descriptions for Set Asynchronous Callback
#define AC_FOUND_DEVICES 0x80 /* During a rescan new device found */
#define AC_SIM_DEREGISTER 0x40 /* A loaded SIM has deregistered */
#define AC_SIM_REGISTER 0x20 /* A loaded SIM has registered */
#define AC_SENT_BDR 0x10 /* A BDR message was sent to target */
#define AC_SCSI_AEN 0x08 /* A SCSI AEN has been received */
#define AC_UNSOL_RESEL 0x02 /* An unsolicited reselection occurred */
#define AC_BUS_RESET 0x01 /* A SCSI bus RESET occurred */

X3T10/990D revision 3

dpANS Common Access Method - 3
137

11.7.9.2 Returns for Set Asynchronous Callback

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the registration of the callback routine was accepted.
− Request Completed with Error indicates that the registration was rejected (possibly due to invalid

parameter settings).
− Invalid Path ID indicates that the Path ID is invalid.

11.7.10 CAM-3 Set Device Type - “To be DELETED by committee”

In response to this function, the XPT/SIM shall add the Target ID, Logical Unit, and peripheral type to the
table of attached peripherals built during CAM initialization.

The XPT/SIM does not check the validity of the information supplied by the peripheral driver.
Note 16

Insertion of device type information may corrupt the table, and the results would be unpredictable.

The supplier of the XPT shall define the Set Device Type CCB structure as follows:
typedef struct ccb_setdev3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CAM_U8 cam_dev_type; /* Valid for the device type field in EDT */
} CCB_SETDEV3;

11.7.10.1 Member Descriptions for Set Device Type
− cam_dev_type;

Peripheral Device Type of Logical Unit.

11.7.10.2 Returns for Set Device Type

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the specified information was inserted into the table

of SCSI devices.
− Request Completed with Error indicates a problem (e.g., not enough room in the table to add the

device information).

11.7.11 CAM 3 Abort SCSI Command

This function requests that a SCSI command is aborted by identifying the CCB associated with the
request. It should be issued on any I/O request that has not completed that the driver expects to abort.
The SIM/HA shall issue an ABORT message or an ABORT TAG message on the SCSI bus based on the
following conditions:
− ABORT message:

X3T10/990D revision 3

dpANS Common Access Method - 3
138

The CCB identified in the CCB to be Aborted Pointer field is not an established I_T_L_Q nexus I/O
process and is an established I_T_L nexus I/O process (untagged command currently active).

− ABORT TAG message:
The CCB identified in the CCB to be Aborted Pointer field is an established I_T_L_Q nexus I/O
process.

If a contingent allegiance condition is in effect for the specified Execute I/O Request CCB (e.g., a SCSI
status has been returned from the Logical Unit of CHECK CONDITION or COMMAND TERMINATED),
then the EXECUTE SCSI I/O REQUEST CCB shall complete normally as specified by this standard. If
autosense is specified for the EXECUTE SCSI I/O REQUEST CCB then the SIM/HA shall retrieve the
autosense data.

This request does not necessarily result in an ABORT message or an ABORT TAG message being
issued over the SCSI Bus if the CCB identified is not an established I/O process.

The specified Execute I/O Request CCB may be in one of the following states which ascertains the
ultimate results of the Abort SCSI Command function.
− Not contained within the SIM/HA queues for the addressed Logical Unit.

The SIM/HA shall not be responsible for any further processing for the specified CCB.

− Contained within the SIM/HA queues for the addressed Logical Unit, but is not an I/O process within
the Logical Unit.

The SIM/HA shall set the CAM Status field in the specified CCB to Request Aborted by Host and
return the CCB by the mechanisms specified within the CCB.

− Contained within the SIM/HA queues for the addressed Logical Unit, and is an I/O process within the
Logical Unit.

The SIM/HA detects a SCSI bus phase other than BUS FREE in response to the initiators ABORT or
ABORT TAG message. The SIM/HA shall set the CAM Status field for the specified CCB to Unable
to Abort Request and shall complete processing for the specified CCB as specified in this standard.

The SIM/HA detects a SCSI bus phase of BUS FREE in response to the initiators ABORT or ABORT
TAG message. The SIM/HA shall set the CAM Status field for the specified CCB to Request Aborted
by Host and shall complete processing for the specified CCB as specified in this standard.

The supplier of the XPT shall define the Abort SCSI Command CCB structure as follows:
typedef struct ccb_abort

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CCB_HEADER3 *cam_abort_ch; /* Pointer to the CCB to abort */
} CCB_ABORT;

11.7.11.1 Member Descriptions for Abort SCSI Command

X3T10/990D revision 3

dpANS Common Access Method - 3
139

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_ABORT function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

• cam_flags;
There are no CAM flags for this function. The state of the queue for this device (e.g., frozen or
not frozen) shall be controlled by the CAM flags of the CCB that is being aborted.

− cam_abort_ch;
CCB to be aborted pointer

11.7.11.2 Returns for Abort SCSI Command

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the Path ID is valid.
− Invalid Path ID indicates that the Path ID is invalid.
− No Bind indicates that either no Bind has been established or Bind has been lost.

11.7.12 CAM-3 Reset SCSI Bus

This function is used to reset the specified SCSI Port_ID. This function should not be used in normal
operation.

X3T10/990D revision 3

dpANS Common Access Method - 3
140

SCSI serial interconnects may not support this function. A SIM/HA shall reject this function if it does not
support a RESET Task function with Cannot Provide Requested Capability as a CAM status.

This request may result in the SCSI RST signal being asserted (e.g., SIP).

The supplier of the XPT shall define the Reset SCSI Bus CCB structure as follows:
typedef struct ccb_resetbus3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
} CCB_RESETBUS3;

11.7.12.1 Member Descriptions for Reset SCSI Bus

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_RESET_BUS function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• cam_flags;
There are no CAM flags for this function.

11.7.12.2 Returns for Reset SCSI Bus

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the Path ID is valid.
− Invalid Path ID indicates that the Path ID is invalid.

The actual failure or success of the Reset SCSI Bus function is indicated by the asynchronous callback
information.

11.7.13 CAM-3 Reset SCSI Device

This function is used to reset the specified SCSI target. This function should not be used in normal
operation. This request shall always result in a BUS DEVICE RESET Task being issued.

The supplier of the XPT shall define the Reset SCSI Device CCB structure as follows:
typedef struct ccb_resetdev3

{
CCB_HEADER3 ccb_header3; /* Header information fields */

X3T10/990D revision 3

dpANS Common Access Method - 3
141

} CCB_RESETDEV3;

11.7.13.1 Member Descriptions for Reset SCSI Device

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_RESET_DEV function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

• cam_flags;
There are no CAM flags for this function.

11.7.13.2 Returns for Reset SCSI Device

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the Path ID is valid.
− Invalid Path ID indicates that the Path ID is invalid.
− No Bind indicates that either no Bind has been established or Bind has been lost.

The actual failure or success of the Reset SCSI Device function is indicated by the asynchronous
callback information.

11.7.14 CAM-3 Terminate I/O Process

This function requests that a SCSI I/O request be terminated by identifying the CCB associated with the
request. It should be issued on any I/O request that has not completed that the driver expects to
terminate. The SIM/HA shall issue an TERMINATE I/O PROCESS message on the SCSI bus based on
one of the following conditions:
− The CCB identified in the CCB to be Terminated Pointer field is an established I_T_L nexus I/O

process (untagged command currently active).

X3T10/990D revision 3

dpANS Common Access Method - 3
142

− The CCB identified in the CCB to be Terminated Pointer field is an established I_T_L_Q nexus I/O
process.

If a contingent allegiance condition is in effect for the specified Execute I/O Request CCB (e.g., a SCSI
status has been returned from the Logical Unit of CHECK CONDITION or COMMAND TERMINATED),
then the EXECUTE SCSI I/O REQUEST CCB shall complete normally as specified by this standard. If
autosense is specified for the EXECUTE SCSI I/O REQUEST CCB then the SIM/HA shall retrieve the
autosense data.

This request does not necessarily result in an TERMINATE I/O PROCESS message being issued over
the SCSI Bus if the CCB identified is not an established I/O process.

The supplier of the XPT shall define the Terminate I/O Process CCB structure as follows:
typedef struct ccb_termio3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CCB_HEADER3 *cam_termio_ch; /* Pointer to the CCB to terminate */
} CCB_TERMIO33;

11.7.14.1 Member Descriptions for Terminate I/O Process

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_TERM_IO function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

• cam_flags;

X3T10/990D revision 3

dpANS Common Access Method - 3
143

There are no CAM flags for this function. The state of the queue for this device (e.g., frozen or
not frozen) shall be controlled by the CAM flags of the CCB that is being aborted.

− cam_termio_ch;
CCB to be Terminated Pointer

11.7.14.2 Returns for Terminate I/O Process

This function shall return a CAM Status other than Request in Progress. The CAM Status shall be one of
the following:
− Request Completed without Error indicates that the Path ID is valid.
− Invalid Path ID indicates that the Path ID is invalid.
− No Bind indicates that either no Bind has been established or Bind has been lost.

The specified Execute I/O Request CCB may be in one of the following states which ascertains the
ultimate results of the Terminate I/O Process function.
− Not contained within the SIM/HA queues for the addressed Logical Unit.

The SIM/HA shall not be responsible for any further processing for the specified CCB.

− Contained within the SIM/HA queues for the addressed Logical Unit, but is not an I/O process within
the Logical Unit.

The SIM/HA shall set the CAM Status field in the specified CCB to Terminate I/O Process and return
the CCB by the mechanisms specified within the CCB.

− Contained within the SIM/HA queues for the addressed Logical Unit, and is an I/O process within the
Logical Unit.

The SIM/HA receives a MESSAGE REJECT message in response to the initiators TERMINATE I/O
PROCESS message. The SIM/HA shall set the CAM Status field for the specified CCB to Unable to
TERMINATE I/O Process when the I/O Process is completed as specified in ANSI X3.131-1994 and
shall complete processing for the specified CCB as specified in this standard.

The SIM/HA receives a SCSI-2 status byte other than COMMAND TERMINATED for the specified
CCB. The SIM/HA shall set the CAM Status field for the specified CCB to Unable to TERMINATE I/O
Process when the I/O Process is completed as specified in ANSI X3.131-1994 and shall complete
processing for the specified CCB as specified in this standard.

The SIM/HA receives a SCSI-2 status byte of COMMAND TERMINATED for the specified CCB.
The SIM/HA shall set the CAM Status field to Request Completed with Error when the I/O Process is
completed as specified in ANSI X3.131-1994 and shall complete processing for the specified CCB as
specified in this standard (e.g., Autosense mechanisms).

11.8 CAM-3 Control Blocks to Request I/O

X3T10/990D revision 3

dpANS Common Access Method - 3
144

Peripheral drivers should make all of their SCSI I/O requests using this CCB, which is designed to take
advantage of all features of SCSI that can be provided by virtually any HA/SIM combination. The CCB
is common in format and structure for the following function codes:
− Execute SCSI I/O (see Clause 11.8.1 and Table XXX for further information)
− Execute Target I/O (see Clause 12.2.6 and Table XXX for further information)
− Accept Target I/O (see Clause 12.3.10 and Table XXX for further information)
− Continue Target I/O (see Clause 12.3.11 and Table XXX for further information)

11.8.1 CAM-3 Execute SCSI I/O Request

This function typically returns a CAM Status of Request in Progress, indicating that the request was
queued successfully. Request completion can be ascertained by polling for a CAM status other than
Request in Progress or through use of the Callback on Completion field. Polling for completion of a CCB
is not recommended.

The SCSI Command Descriptor Block can be either a contiguous array of 16 bytes or can be a pointer to
a contiguous array of bytes. The supplier of the XPT shall define the SCSI Command Descriptor Block
for the Execute SCSI I/O Request CCB structure as follows:
typedef union cdb_un

{
CAM_U8 *cam_cdb_ptr; /* Pointer to the CDB bytes to send */
CAM_U8 cam_cdb_bytes[16]; /* Array of bytes for the CDB to send */
} CDB_UN;

The supplier of the XPT shall define the Execute SCSI I/O Request CCB structure as follows:
typedef struct ccb_scsiio3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CCB_HEADER3 *cam_next_ccb; /* Ptr to the next CCB for action */
CAM_VOID_OFFSET *cam_req_map; /* Ptr for mapping info on the Req. */
CAM_VOID (*cam_cbfcnp)(); /* Callback on completion function */
CAM_U8 *cam_data_ptr; /* Pointer to the data buf/SG list */
CAM_U32 cam_dxfer_len; /* Data xfer length */
CAM_U8 cam_cdb_len; /* Number of bytes for the CDB */
CAM_U8 cam_reserved1; /* Reserved for alignment */
CAM_U16 cam_sglist_cnt; /* Num. of scatter gather list entries */
CAM_U32 cam_vu_field; /* Vendor Unique field/
CAM_U8 cam_scsi_status; /* Returned SCSI device status */
CAM_U8 cam_reserved2; /* Reserved for alignment */
CAM_U16 cam_sense_resid; /* Autosense resid length: 2's comp */
CAM_I32 cam_resid; /* Transfer residual length: 2's comp */
CAM_U32 cam_timeout; /* Timeout value */
CDB_UN3 cam_cdb_io; /* Union for CDB bytes/pointer */
CAM_U8 *cam_msg_ptr; /* Pointer to the message buffer */
CAM_U16 cam_msgb_len; /* Num. of bytes in the message buf */

X3T10/990D revision 3

dpANS Common Access Method - 3
145

CAM_U16 cam_vu_flags; /* Vendor unique flags */
CAM_U8 cam_tag_action; /* What to do for tag queuing */
CAM_U8 cam_reserved3[3]; /* Reserved for alignment */
CAM_U32 cam_tag_id; /* Tag ID */
CAM_U32 cam_initiator_id[2]; /* Initiator ID target operations */
CAM_U16 cam_sense_len; /* Number of bytes to request for Autosense */
CAM_U8 cam_reserved4; /* Reserved for alignment */
CAM_U32 cam_sim_sense[16]; /* Working area for a SIM for retrieving sense data */
CAM_U8 cam_sense_buf[256]; /* Sense data buffer */

} CCB_SCSIIO3;

11.8.1.1 Member Descriptions for Execute SCSI I/O Request

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_SCSI_IO function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

X3T10/990D revision 3

dpANS Common Access Method - 3
146

− cam_flags;
This member contains bit settings as described to indicate special handling of the requested function.
The setting of required behavior specifics as specified by the CAM flags should be done with a
logical or function. An example of this is a peripheral wishes to indicate that the data transfer
direction is into the initiator and that scatter/gather list is valid. The peripheral driver may
accomplish this by the following:

ccb->ccb_header3.cam_flags |= (CAM_DIR_IN | CAM_SCATTER_VALID);

The flags shall be defined as follows:

• CAM Direction flags shall specify the direction of the data transfer in relation to the SCSI
initiator. These encoded bits identify the direction of data movement during data transfer.
◊ Reserved
 #define CAM_DIR_RESV 0x00000000

◊ Data direction in (read from Logical unit);
 #define CAM_DIR_IN 0x00000040

◊ Data direction out (write to logical unit);
 #define CAM_DIR_OUT 0x00000080

◊ Data direction none (no data transfer);
 #define CAM_DIR_NONE 0x000000C0

• The Disable Autosense feature flag has been deleted. Autosense is now a mandatory feature in
CAM-3.

• Scatter/gather list is valid when set to 1, this bit indicates that data is not to be transferred

to/from a single location in memory but to/from several. In this case the Data Buffer Pointer
refers to a list of addresses and lengths in bytes at each address to which the data is to be
transferred.
#define CAM_SCATTER_VALID 0x00000010

The format of the SG List shall be defined as follows:
typedef struct sg_elem

{
CAM_U8 *cam_sg_address; /* Scatter/Gather address */
U32 cam_sg_count; /* Scatter/Gather byte count */
} SG_ELEM;

• Disable Callback on Completion - When set to 1, the peripheral driver does not want the SIM to
callback automatically when the request is completed. This implies that the caller is polling for a
CAM Status other than Request in Progress status, which indicates completion of the request.
#define CAM_DIS_CALLBACK 0x00000008

• Linked CDB - When set to 1, this CDB is a SCSI linked command. If this bit is set, then the

X3T10/990D revision 3

dpANS Common Access Method - 3
147

Control field in the CDB shall have bit 0=1. If not, the results are unpredictable. See Clause
XXX for further information.
#define CAM_CDB_LINKED 0x00000004

• Tag Queue actions are enabled when set to a 1. The SCSI CDB contained or pointed to within
the SCSI I/O REQUEST CCB shall have Tag Queuing attributes. See Clause XXX for further
information.
#define CAM_QUEUE_ENABLE 0x00000002

• CDB member is a pointer - When set to a 1, the first four bytes of the CDB field shall contain a
pointer to the location of the CDB
#define CAM_CDB_POINTER 0x00000001

• Disable SCSI bus disconnects when set to a 1. The disconnect capability of SCSI is disabled.
The default of 0 sets bit 6=1 in the SCSI IDENTIFY message.
#define CAM_DIS_DISCONNECT 0x00008000

• Initiate Synchronous Transfers when set to a 1, indicates the SIM shall negotiate for the best
transfer parameters it is capable of with the target, and wherever possible execute the negotiated
transfer parameters (synchronous, fast, wide transfers). The peripheral driver shall not set this
bit and the bit CAM_DIS_SYNC. These bits are mutually exclusive.
#define CAM_INITIATE_SYNC 0x00004000

• Disable Synchronous Transfers when set to a 1, indicates the SIM shall negotiate for the least
transfer parameters (asynchronous, narrow transfers) if the SIM previously negotiated
synchronous. If unable to negotiate synchronous (best transfer parameters) or negotiation has
not yet been attempted, the SIM shall not initiate negotiation. The peripheral driver shall not set
this bit and the bit CAM_INITIATE_SYNC. These bits are mutually exclusive.
#define CAM_DIS_SYNC 0x00002000

• SIM Queue Priority when set to a 1, the SIM shall place this CCB ahead of all CCB operations
with normal priority sent to the Logical Unit and at the tail of the Logical Unit's (FIFO order)
priority internal queue. When set to a 0 the SIM shall place the CCB at the tail of all CCB
operations with normal priority sent to the Logical Unit.
#define CAM_SIM_QHEAD 0x00001000

• SIM Queue Freeze - When set to a 1, the SIM shall place its internal Logical Unit queue into the
frozen state. Upon callback, the CAM Status for this CCB shall have the SIM Queue Freeze flag
set. This bit should only be set for SIM error recovery and should be used in conjunction with the
SIM Queue Priority bit and the release SIM queue command. Refer to Table XXX for further
information. The peripheral driver shall not set this bit and the bit CAM_SIM_QFRZDIS. These
bits are mutually exclusive.

•
#define CAM_SIM_QFREEZE 0x00000800

• SIM Queue Freeze Disable - When set to a 1, the SIM queue freeze mechanism shall be
disabled (i.e., the SIM queue shall not be frozen for the Logical Unit addressed in this CCB in the
event of a CAM Status other than Request Complete without Error). Refer to Table XXX for

X3T10/990D revision 3

dpANS Common Access Method - 3
148

further information. The peripheral driver shall not set this bit and the bit CAM_SIM_QFRZDIS.
These bits are mutually exclusive.
#define CAM_SIM_QFRZDIS 0x00000400

CAM_SIM_QFREEZE CAM_SIM_QFRZDIS ACTION
0 0 SIM Queue Frozen if CAM Status not Request Complete w/o Error
0 1 SIM Queue not Frozen for all CAM Statuses
1 0 SIM Queue Frozen when CCB completes
1 1 Invalid setting of CAM Flags

Table 13 SIM Queue Actions

• Engine Synchronize - This bit is used in conjunction with the Direction in or out settings to flush
any residual bits before terminating engine processing (see Clause XXX for further information).
#define CAM_ENG_SYNC 0x00000200

• Reserved bit value 0x00000100

• Scatter/Gather Host/Engine is used to accommodate buffering associated with an HA Engine.
The flag when set to a 1 is used to specify that the normal data buffer pointer is actually a
physical address in the buffer space of the engine. When set to a 0 the data buffer is in host
memory. The format of the address (physical/virtual) is controlled by the CAM_DATA_PHYS bit
flag.
#define CAM_ENG_SGLIST 0x00800000

• The following CAM flags bit definitions describe the memory type (virtual/physical) of certain
described members of the Execute SCSI I/O Request CCB. The Pointer fields are set up to
have one characteristic. If a bit is set to 1 it shall indicate the pointer field described contains a
Physical Address. If set to 0 it shall indicate the pointer contains a Virtual Address. If the SIM
needs an address in a different form to that provided, it shall be converted by the SIM (using
OSD facilities) and stored in Private Data
◊ CDB pointer is physical when set to a 1 shall indicate that the pointer in the cam_cdb_io

member is physical.
#define CAM_CDB_PHYS 0x00400000

◊ Data Buffer/Scatter Gather pointer is physical when set to a 1 shall indicate that the pointer
in the cam_data_ptr member is physical.
#define CAM_DATA_PHYS 0x00200000

◊ Sense buffer pointer is physical when set to a 1 shall indicate that the pointer in the
cam_sense_ptr member is physical.
#define CAM_SNS_BUF_PHYS 0x00100000

◊ Message buffer pointer is physical when set to a 1 shall indicate that the pointer in the
cam_msg_ptr member is physical.
#define CAM_MSG_BUF_PHYS 0x00080000

◊ Next CCB pointer is physical when set to a 1 shall indicate that the pointer in the
cam_next_ccb member is physical.

X3T10/990D revision 3

dpANS Common Access Method - 3
149

#define CAM_NXT_CCB_PHYS 0x00040000

◊ Callback on Completion pointer is physical when set to a 1 shall indicate that the pointer in
the cam_cbfcnp member is physical.

 #define CAM_CALLBCK_PHYS 0x00020000

◊ Scatter/Gather list pointers within the array of SG_ELEM structure when set to a 1 shall
indicate that the pointer in the cam_sg_address member is physical.
#define CAM_SG_LIST_PHYS 0x00010000

• The following CAM flags bit definitions describe both Phase-Cognizant mode and Host Target
mode. The actual meaning of the flags shall be dependent upon whether Phase-Cognizant
mode or Host Target mode is specified as dictated by the CAM_TGT_PHASE_MODE flag. See
below for correct setting of the flag.

◊ The following flags shall apply to Phase-Cognizant mode. The Phase-Cognizant mode only
flags are only active on ENABLE LUN or EXECUTE TARGET I/O CCBs. See Clause XXX
for complete details.

⇒ The buffer valid bits identify which buffers have contents. In the event that more than

one bit is set, they shall be transferred in the sequence of data buffer, status, message
buffer.

♦ Data buffer valid when set to a 1 shall indicate that the data as specified in
cam_data_ptr member is valid for use.
#define CAM_DATAB_VALID 0x80000000

♦ Status valid when set to a 1 shall indicate that the data as specified in
cam_scsi_status member is valid for use.
#define CAM_STATUS_VALID 0x40000000

♦ Message Buffer valid when set to a 1 shall indicate that the data as specified in
cam_msg_ptr member is valid for use.
#define CAM_MSGB_VALID 0x20000000

⇒ Phase-Cognizant mode when set to a 1 shall indicate that the peripheral driver indicates
that it wants Phase-Cognizant functionality. If target operations are supported, when set
to 1, the SIM shall operate in Phase-Cognizant Mode, otherwise it shall operate in Host
Target Mode.
#define CAM_TGT_PHASE_MODE 0x08000000

⇒ Target CCB Available when set to 1, this bit indicates that the SIM can use this CCB to
process this request. A value of 0 indicates that this CCB is not available to the SIM.
#define CAM_TGT_CCB_AVAIL 0x04000000

⇒ Autodisconnect when set to 1, this bit disables autodisconnect. The default of 0 causes
the SIM/HA to automatically disconnect, if the IDENTIFY message indicates discpriv is
set.

X3T10/990D revision 3

dpANS Common Access Method - 3
150

#define CAM_DIS_AUTODISC 0x02000000

⇒ Autosave - When set to 1, this bit disables autosave feature for Phase-Cognizant Mode.
 The default of 0 causes the XPT/SIM to automatically send a SAVE DATA POINTER
message on an autodisconnect.
#define CAM_DIS_AUTOSRP 0x01000000

◊ The following flags shall apply to Host Target mode. The Host Target Mode flags are shall
only be valid for the ENABLE LUN, ACCEPT TARGET I/O and CONTINUE TARGET I/O
CCBs. See Clause 12 for complete details.

⇒ Send Status when set to a 1, this bit directs the SIM/HA that it shall go to status phase
after data phase (if there is a data phase for this CCB) and send the SCSI status byte
contained within this CCB in the cam_scsi_status member.
#define CAM_SEND_STATUS 0x80000000

⇒ Disconnects Mandatory when set to a 1, this bit directs the SIM/HA that it shall
disconnect from the SCSI bus for each CCB processed for the enabled Logical Unit
#define CAM_DISCONNECT 0x40000000

⇒ Terminate I/O when set to a 1, this bit informs the SIM/HA that the Host Target Mode
peripheral driver is supporting the TERMINATE I/O PROCESS SCSI message.
#define CAM_TERM_IO 0x20000000

⇒ Phase-Cognizant mode when set to a 0 shall indicate that the peripheral driver indicates
that it wants Host Target mode functionality. If target operations are supported, when set
to 0, the SIM shall operate Host Target mode in, otherwise it shall operate in Phase-
Cognizant mode.
#define CAM_TGT_PHASE_MODE 0x08000000

− cam_req_map;
The request map information member is a pointer to an OSD data structure which is associated with
the original I/O request.

− cam_next_ccb;
This member contains a pointer to the next command block in a chain of command blocks. A value
of 0 indicates the last command block on the chain. This field is used for linking commands.

− cam_cbfcnp;
See Clause 10.3.2 for callback on completion of a queued CCB.

− cam_data_ptr;
The cam data buffer pointer member is either a pointer to a logically contiguous buffer or a pointer to
an array of SG_ELEM structures. The format type is defined by the CAM flag of
CAM_SCATTER_VALID. The data buffers described shall either contain data to be transfer to the
Logical Unit or to be used receive data from the Logical Unit.

X3T10/990D revision 3

dpANS Common Access Method - 3
151

− cam_dxfer_len;
The cam data transfer length contains the length in bytes of the data to be transferred.

− cam_cdb_len;
For EXECUTE SCSI I/O REQUEST CCBs the CDB length member shall contain the length in bytes
of the CDB. For ACCEPT TARGET I/O CCBs and EXECUTE TARGET I/O CCBs this member shall
contain the length in bytes of the buffer for CDB placement

− cam_sglist_cnt;
The number of scatter/gather entries member shall contain the number of SG_ELEM(s) pointed to
by cam_data_ptr member if the CAM flag of CAM_SCATTER_VALID is a 1. The member shall be 0
if the CAM flag of CAM_SCATTER_VALID is a 0.

− cam_vu_field;
The vendor unique member is defined in the SIM vendor specification.

− cam_scsi_status;
The SCSI status member contains the status byte returned by the SCSI Logical Unit after the
command is completed as defined in ANSI X3.131-1994. This field shall be valid for the CAM Status
of Request Complete without Error and Request Complete with Error.

− cam_sense_valid;
The cam sense valid member shall contain the number of bytes that have been obtained for
autosense.

− cam_resid;
The data residual length member contains the difference in twos complement form of the number of
data bytes transferred by the HA for the SCSI command compared with the number of bytes
requested by the CCB cam_dxfer_len member. This is calculated by the total number of bytes
requested to be transferred by the CCB minus the actual number of bytes transferred by the HA.

− cam_cdb_io;
 The cam CDB member either contains the SCSI CDB (command descriptor block), or a pointer to
the CDB, to be dispatched. The member shall be define by the CDB_UN data type (union definition).

− cam_timeout;

X3T10/990D revision 3

dpANS Common Access Method - 3
152

The timeout member contains the maximum period in seconds that an issued SCSI command
request can remain outstanding. If this value is exceeded then the CAM Status shall report the
timeout condition. A value of 00h in the CCB means the peripheral driver accepts the SIM default
timeout. A value of F...Fh in the CCB specifies an infinite period. The timeout value member is on a
per CCB basis, and is measured from successful selection to command completion. If the CCB has
timed out and the command has not completed (e.g., COMMAND COMPLETE or LINKED
COMMAND COMPLETE message has not been received for the CCB), the SIM/HA shall reselect
the addressed Logical Unit and issue an ABORT message or an ABORT TAG message. If the
command that timed out is an I_T_L I/O process then an ABORT message shall be issued by the
SIM/HA. If the command that timed out is an I_T_L_Q I/O process then an ABORT TAG message
for the identified I_T_L_Q I/O process shall be issued by the SIM/HA.

− cam_msg_ptr;
The message buffer member contains a pointer to a buffer containing messages. This pointer is only
valid for use in target mode (see Clause 12 for further information).

− cam_msgb_len;
The message buffer length contains the length in bytes of the cam_msg_ptr member which is to be
used to hold message information in the event that the peripheral drivers needs to issue any SCSI
Messages. This field is exclusive to target mode operation (see Clause 12 for further information).

− cam_vu_flags;
The vendor unique flags member is vendor unique and uses for this member are defined in the SIM
vendor specification.

− cam_tag_action;
SCSI provides the capability of tagging commands to force execution in a specific sequence, or of
letting the target optimize the sequence of execution to improve performance. For a description of
the tagged command queuing philosophy see SCSI-2 or SCSI-3

When the CAM_QUEUE_ENABLE bit in the cam_flags member is set, the CDB issued by the SIM
shall be associated with the queue action specified as:

• 20h = SIMPLE QUEUE TAG request
• 21h = HEAD of QUEUE TAG request
• 22h = ORDERED QUEUE TAG request

− cam_tag_id;
The tag identifier member indicates the SCSI TAG QUEUE ID that this CCB is in response to if
tagged queue operation. This field is valid only for Host Target Mode operation

− cam_initiator_id
The initiator identifier member indicates which SCSI initiator this CCB is in response to. This field is
only valid for target mode operation. This member is an array of 2 CAM_U32s to contain the SCSI
target specifier. The cam_initiator_id[0] member shall contain the lower 32 bits (least significant
portion) of the SCSI target specifier. . The cam_initiator_id[1] member shall contain the upper 32
bits (most significant portion) of the SCSI target specifier.

X3T10/990D revision 3

dpANS Common Access Method - 3
153

− cam_sense_len;
This member contains the number of bytes to request for autosense information. This value shall
not exceed the number 256. This value may not be valid for all interconnect protocols. This value is
only valid for those interconnects that explicitly denote the transfer size of the sense data. For
example SIP but not FCP.

− cam_sim_sense;
This member is an array of 16 CAM_32s that is available to a SIM as working space for the retrieval
of autosense information.

− cam_sense_buf;
This member is an array of 256 CAM_8s that is available for the placement of autosense
information. A SIM shall place all autosense information obtained from a device in this buffer. The
SIM shall not place more than 256 CAM_U8s into the cam_sense_buf.

11.8.1.2 Returns for Execute SCSI I/O Request

The final CAM Status shall be one of the following:
− Request Completed without Error: the request has completed and no error condition was

encountered.
− Request Aborted by Host: the request was aborted by the SIM/HA as instructed by the peripheral

driver.
− Unable to Abort Request: the SIM was unable to abort the request as instructed by the peripheral

driver.
− Request Completed with Error: the request has completed and an error condition was encountered.
− CAM Busy: CAM unable to accept request at this time.
− Invalid Request: the request has been rejected because it is invalid.
− Invalid Path ID: indicates that the Path ID is invalid.
− Unable to Terminate I/O Process: the SIM was unable to terminate the request as instructed by the

peripheral driver.
− Target Selection Timeout: The target failed to respond to selection.
− Command Timeout: the specified command did not complete within the timer value specified in the

CCB. Prior to reporting this status the SIM/HA shall ensure the command is no longer active in the
target.

− Message Reject Received: The SIM/HA received a SCSI MESSAGE REJECT message.
− SCSI Bus Reset Sent/Received: The SCSI operation was terminated at some point because the SCSI

bus was reset.
− Uncorrectable Parity Error Detected: An uncorrectable SCSI bus parity error was detected.
− Autosense Request Sense Command Failed: The SIM/HA attempted to obtain sense data and failed.
− No HA Detected: HA no longer responding to SIM (assumed to be a hardware problem).
− Data Overrun: target transferred more data bytes than peripheral driver indicated in the CCB.
− Unexpected Bus Free: an unexpected bus free condition occurred.
− Target Bus Phase Sequence Failure: the Logical Unit failed to operate in compliance with ANSI

X3.131-1994.
− CCB Length Inadequate: more private data area is required in the CCB (refer to Clause 9.2.3 for

X3T10/990D revision 3

dpANS Common Access Method - 3
154

further clarification) .
− Cannot Provide Requested Capability: resources are not available to provide the capability requested

in the CAM Flags.
− Bus Device Reset Sent: this CCB was terminated because a BUS DEVICE RESET message was sent

to the target.
− Terminate I/O Process: this CCB terminated due to a Terminate I/O Process Request CCB was

received by the SIM/HA and the CCB was not an I/O Process within the Logical Unit.
− Unrecoverable Host Bus Adapter Error: this CCB was terminated because of a hardware error

detected by the HA. The error does not indicate a SCSI bus problem but an error within the HA or
host.

11.9 Command Linking (optional)

The SIM/HA supports SCSI's ability to link commands in order to guarantee the sequential execution of
several requests. This function requires that both the SIM/HA and the involved Logical Unit support the
SCSI link capability. The SIM/HA shall indicate its support for command linking by setting the Linked
Commands bit in response to a PATH INQUIRY CCB (see Clause 11.7.5 Path Inquiry for further details).

To utilize linking, a chain of CCBs is built with the next CCB pointer being used to link the CCBs
together. The CAM Linked CDB flag bit shall be set in all CCBs but the last in the chain. The first CCB in
the linked list of CCBs shall have a valid Callback on Completion field set and the CAM Flag of Disable
Callback on completion cleared. When a SCSI Logical Unit returns the LINKED COMMAND
COMPLETE message or LINKED COMMAND COMPLETE (WITH FLAG) message, the next CCB is
processed, and its associated CDB is dispatched. Any SCSI status other than INTERMEDIATE or
INTERMEDIATE CONDITION MET returned by the Logical Unit on a linked command shall break the
chain. The SIM/HA shall callback the peripheral driver using the first CCB's Callback on Completion
field when the linked list of CCBs is completed or when the chain is broken.

The peripheral driver shall:
− Build a valid list of EXECUTE I/O CCBs with the CAM Linked CDB flag bit set except for the last

CCB in the linked CCB chain.
Note 17

The peripheral driver is responsible for the correct settings of the Flag and Link bits in the control field of all CDBs
within CCBs.

− Call xpt_action() with the address of the first CCB as the argument.

− Wait for completion of the linked CCB list.

− On callback ascertain completion status by starting with the first CCB in the linked list and examining
the CAM Status field, then proceeding to the next in the list. The following CCB statuses shall be
used to ascertain completion of a individual CCB and the list.

• The CAM Status of Request completed without Error indicates that this CCB completed
successfully and if the CAM Linked CDB flag bit is clear the CCB linked list completed without
error.

• The CAM Status of Request In Progress indicates the chain was broken and this CDB contained

X3T10/990D revision 3

dpANS Common Access Method - 3
155

within this CCB was not issued to the Logical Unit.

• The CAM Status of Request Completed with Error indicates that the Logical Unit sent a SCSI
status other than INTERMEDIATE or INTERMEDIATE CONDITION MET for this CCB.

• All other CAM Statuses indicate that another CAM condition occurred while processing this CCB
and the chain was broken at this point.

The peripheral driver may:
− Monitor chain CCB processing by examining the CAM Status field of each CCB within the list but

shall not attempt to modify any CCB within the list until callback on completion by the SIM/HA.

− Abort the linked CCB chain by issuing an Abort SCSI Command function or Terminate I/O Process
Request function to the first CCB within the list.

The SIM/HA shall for linked CCB lists:
− Validate each CCB within the list (e.g. the first CCB in the linked list of CCBs shall have a valid

Callback on Completion field set and the CAM flag of Disable Callback on completion cleared and
the CAM Linked CDB flag bit shall be set in all CCBs but the last in the chain).

− Establish an I/O Process for the CCB list (e.g. issue the first CCB then proceeding to the next CCB
when a LINKED COMMAND COMPLETE message or a LINKED COMMAND COMPLETE (WITH
FLAG) message) is received.

− A COMMAND COMPLETE message for the any CCB but the last CCB shall break the chain.

− A COMMAND COMPLETE message for the last CCB shall indicate successful completion of the
chain.

− When each CCB within the chain completes, set all appropriate fields within the CCB.

− When the chained CCB list is completed or broken, callback the peripheral driver using the first CCB
Callback on Completion field.

− If the peripheral driver terminates or aborts the first CCB within the chain:
• If the CCB chain to be aborted or terminated has a current I/O process, it shall abort or terminate

the CCB as specified by this standard and break the chain (e.g., the current I/O process CCB has
a CAM Status of Request Aborted by Host or Terminate I/O Process).

• If the CCB chain to be aborted or terminated does not have a current I/O Process, it shall break
the chain.

• If the CCB specified for a CCB chain is not the first CCB of a chain, it shall ignore the request.

• The SIM/HA shall ensure that the SCSI bus and the Logical Unit are not left in a hung state as
specified by ANSI X3.131-1994.

X3T10/990D revision 3

dpANS Common Access Method - 3
156

12. Target mode (optional)

The Target Mode functionality causes the HA associated with the specified SCSI bus to be set up so that
it may be selected as a target. The Target Mode model allows a peripheral driver to mimic any SCSI
device type.

If a Target Mode function is specified by a CCB and this functionality is not provided by a particular SIM
implementation, then a CAM Status of Function Not Implemented shall be returned in the CCB.

12.1 Target mode overview

There are two different modes of target operation, either or both of which may be supported by the
SIM/HA as defined by the Target Mode Support flags in the PATH INQUIRY CCB:
− Phase-Cognizant Mode
− Host Target Mode

For both Phase-Cognizant Mode and Host Target Mode the CDB group codes of 6 and 7 (vendor unique)
shall only be of one size for each group code (e.g., group code 6 having a size of 20 and group code 7
having a size of 15).

Phase-Cognizant mode permits a target peripheral driver tight control over what takes place when a
SCSI command is received by the SIM. When a Phase-Cognizant application registers itself and a
command is received, the XPT/SIM does an immediate Callback on Completion after placing the SCSI
command in an available CCB. The Phase-Cognizant peripheral driver is responsible for setting up data,
message, status fields and CAM Flags in the CCB. It then reissues the CCB with an Execute Target I/O
function code so that the XPT/SIM knows which phase it should execute. The "callback-reissue CCB"
cycle may happen multiple times before a command completes execution.

Phase-Cognizant mode is only applicable to the SCSI Interlock Protocol inter-connects. The restriction is
a result of the design of Phase-Cognizant mode and its explicit control of bus phases.

In summary, Phase-Cognizant peripheral drivers get a callback immediately after the SCSI command
block is received and they are expected to instruct the XPT/SIM which phases to go through to perform
the command.

Host Target Mode permits a peripheral driver to register itself as a LUN and provide a set of one or more
ACCEPT TARGET I/O CCBs that the SIM/HA can use for Target Mode command processing. In this
mode, when the adapter is selected and the XPT/SIM receives an IDENTIFY message for a LUN that
has registered as a Host Target LUN, the SIM/HA may accept any target mode command, based on
conditions specified in this document. Using one of the available ACCEPT TARGET I/O CCBs, the
SIM/HA shall pass the received Host Target mode command to the Peripheral Driver CDB Received
Completion function. The peripheral driver shall interpret the command and based on its internal
knowledge shall decide how to respond. Response shall be in the form of one or more CONTINUE
TARGET I/O CCBs to the SIM/HA. The SIM/HA shall callback as specified by the peripheral driver for
each completed CONTINUE TARGET I/O CCB.

Some SCSI bus message processing and event notification is handled both in the SIM/HA and the Host

X3T10/990D revision 3

dpANS Common Access Method - 3
157

Target Mode peripheral driver. An example of this is the ABORT message. Other messages are
handled transparently by the SIM/HA. An example of this is the SYNCHRONOUS DATA TRANSFER
REQUEST message. For optional messages that require notification from the SIM/HA, the peripheral
driver decides which optional messages it shall support. If the Host Target Mode peripheral driver has
indicated that the message is not to be supported, the SIM/HA shall reject the message. On receipt of a
supported target message that is not handled transparently, the SIM/HA shall immediately notify the Host
Target Mode peripheral driver using the mechanisms provided by the IMMEDIATE NOTIFY CCB. The
IMMEDIATE NOTIFY CCB ownership shall always be with the SIM/HA until the LUN is no longer
enabled.

In summary, Host Target Mode peripheral drivers can be called back multiple times for a command
received by the SIM/HA, once for each command received and an additional number depending on the
command and how the Host Target Mode peripheral driver has been implemented. The model allows all
phase handling and SCSI command processing nuances to be performed by the SIM/HA but allows the
peripheral driver enough functionality for emulated device control.

12.2 Phase-cognizant mode

The following SCSI-3 functionality is not supported by Phase-Cognizant mode:
− Command Tagged queuing

The following SCSI-2 messages shall be handled transparently by the SIM/HA:
− ABORT TAG
− CLEAR QUEUE
− COMMAND COMPLETE
− DISCONNECT
− IDENTIFY
− MESSAGE PARITY ERROR
− MESSAGE REJECT (for specified conditions)
− NO OPERATION
− Queue Tag Messages
− SAVE DATA POINTER (for specified conditions)
− SYNCHRONOUS DATA TRANSFER REQUEST
− WIDE DATA TRANSFER REQUEST

The following SCSI-2 messages shall be received by SIM/HA and provided to the target peripheral driver
by the mechanisms specified by this standard:
− ABORT
− BUS DEVICE RESET
− TERMINATE I/O PROCESS
− INITIATOR DETECTED ERROR

For the following messages received by the SIM/HA for an enabled Phase-Cognizant LUN, the SIM/HA
shall issue a MESSAGE REJECT as a response:
− ABORT TAG
− CLEAR QUEUE
− All Queue Tag Messages

X3T10/990D revision 3

dpANS Common Access Method - 3
158

12.2.1 Enable LUN for Phase Cognizant mode

The specified Target ID shall match that returned by the HA Path Inquiry Function for the HA. The
specified LUN is the one enabled for selection. If the HA is to respond as an additional LUN, another
Enable LUN is required.

The supplier of the XPT shall define the ENABLE LUN CCB structure as follows:

typedef struct ccb_enable_lun3
{

CCB_HEADER3 ccb_header3; /* Header information fields */
CAM_U16 cam_grp6_length; /* Group 6 Vendor Unique CDB Lengths */
CAM_U16 cam_grp7_length; /* Group 7 Vendor Unique CDB Lengths */
CAM_U8 *cam_immed_notify_list; /* Pointer to the Immediate Notify CCB
 list */
CAM_U32 cam_immed_notify_cnt; /* Number of Immediate Notify CCBs */
CAM_U8 *cam_accept_targ_list; /* Pointer to the Accept Target I/O CCB

 list */
CAM_U32 cam_accept_targ_cnt; /* Number of Accept Target I/O CCBs */

} CCB_ENABLE_LUN3;

12.2.1.1 Member Descriptions for ENABLE LUN

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_EN_LUN function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

X3T10/990D revision 3

dpANS Common Access Method - 3
159

− cam_flags;
The following are the valid cam_flags for this function. A complete description of the cam_flags bit
is in Clause 11.8.1.1.

• Phase-Cognizant mode (CAM_TGT_PHASE_MODE) shall be set to a 1.

− cam_grp6_length;
If the target peripheral driver supports Vendor Unique CDB having a group code of six (6), then the
CDB Length field of the CCB shall reflect the largest supported CDB.

− cam_grp7_length;
If the target peripheral driver supports Vendor Unique CDB having a group code of seven (7), then
the CDB Length field of the CCB shall reflect the largest supported CDB.

− cam_immed_notify_list;
This member is not used in Phase-Cognizant mode and shall be set to a null.

− cam_immed_notify_cnt;
This member is not used in Phase-Cognizant mode and shall be set to a zero.

− cam_accept_targ_list;
This member shall either point to a list of CAM-3 Execute Target I/O CCBs (CCB_EXEC_TARGET3)
or shall be null. Refer to

− cam_accept_targ_cnt;
This member shall either be set to the number of CAM-3 Execute Target I/O CCBs that the
cam_accept_targ_list points to or shall be zero.

If the Number of Target CCBs is zero, then Target Mode is disabled, otherwise the Pointer to CAM-3
Execute Target I/O CCB List (cam_accept_targ_list member) refers to a list of addresses of CCBs to
which the data is to be transferred (see Table 14).

CAM-3 Execute Target I/O CCB List
CCB_EXEC_TARGET3 *
CCB_EXEC_TARGET3 *

:
CCB_EXEC_TARGET3 *

Table 14 CAM-3 EXECUTE TARGET I/O CCB List

12.2.1.2 Returns for ENABLE LUN

The Enable LUN function shall return CAM Status of:
− Request Completed without Error indicates that the Enable LUN was completed successfully.
− LUN Already Enabled indicates that this LUN is already enabled.
− Terminate I/O Process indicates that there is currently a nexus established with an initiator that shall

X3T10/990D revision 3

dpANS Common Access Method - 3
160

be terminated first.
− Invalid Request indicates that one or more of the CCB(s) supplied is invalid.
− Invalid Path ID indicates that the Path ID is invalid.
− Invalid Target ID indicates that the Target ID does not match that used by the HA specified by the

Path ID field.
− Invalid LUN indicates that the LUN specified is outside the supported range of the SCSI bus.
− Function Not Implemented indicates that Phase Cognizant Target mode is not supported by this

SIM/HA.

12.2.2 Function description for Phase Cognizant ENABLE LUN

X3T10/990D revision 3

dpANS Common Access Method - 3
161

The target peripheral driver shall not alter the list until a successful disable of the LUN is accomplished.

The SIM/HA shall place the pointer to the list of CCBs in a list until the specified Target ID and LUN is
disabled on the SCSI bus specified by the Path ID field. While the LUN is enabled for Phase-Cognizant
Mode operation, the CAM Status field of each Target CCB shall be set to Request in Progress. The
target peripheral driver is required to poll the CAM Status field of the Target CCB or provide a
Completion Callback routine in the Target CCB.

The CCB(s) provided to the SIM/HA by the ENABLE LUN CCB shall only be used for CDB reception and
continuation of an I/O process (linked commands). The target peripheral driver shall use other allocated
Execute Target I/O CCBs to receive/transmit data, messages and status to the selecting initiator. It is
recommended that the target peripheral driver supply at least 1 CCB per initiator it expects to
communicate with when the Phase-Cognizant LUN is enabled.

The SIM/HA shall keep an indication of whether a single CCB or list of CCBs was provided on the
ENABLE LUN service.

The SIM/HA shall set the following in each Execute Target I/O CCB when they are first provided:
− CAM Status to Request in Progress
− CAM Flags shall be the same as those in the ENABLE LUN CCB
− CAM Flags shall be set with the Target CCB Available bit

Within the Execute Target I/O CCB(s) provided, the following information shall be present and valid:
− CDB field is valid for the Command Blocks that may be received. That is, either CDBs are

embedded in the CCB, or a pointer to a CDB buffer area is provided in the CDB field.
− Timeout Value field shall be set to the infinity value.

If the target peripheral driver supports Vendor Unique CDB(s), then the CDB Length field of the CCB
shall reflect the largest supported CDB. If a CDB greater than the size of the CDB field is desired, then
the CDB field shall contain a pointer to a CDB buffer.

To disable the selection of a specific LUN, the target peripheral driver performs an Enable LUN with a
zero value for the Number of Target CCBs.

When a CDB is received by a SIM/HA for a LUN that is not enabled, one of the following sequences shall
occur depending on the command received:

A) INQUIRY Command
If the SIM receives a CDB for the INQUIRY command for a non-enabled LUN, the SIM shall return
only byte 0 of the inquiry data set to 23H:
− The peripheral qualifier is set to 01B indicating the target is capable of supporting a physical

device on this logical unit, however the physical device is not currently connected to this LUN.
− The peripheral device type set to 3H indicating Processor device type.

B) REQUEST SENSE Command
If a REQUEST SENSE command is received for a non-enabled LUN, the SIM shall return sense
data in which the sense key shall be set to ILLEGAL REQUEST and the additional sense code shall

X3T10/990D revision 3

dpANS Common Access Method - 3
162

be set to LOGICAL UNIT NOT SUPPORTED.

C) All other commands
If a command other than INQUIRY or REQUEST SENSE is received for a non-enabled LUN, the
SCSI status returned shall be CHECK CONDITION. Any subsequent REQUEST SENSE command
shall behave as in Item B.

12.2.3 I/O process creation for phase cognizant mode

If the HA is selected with the SCSI bus signal of ATN being false the SIM/HA shall go BUS FREE. When
the HA is selected, the SIM/HA automatically sets the HA to the MESSAGE OUT phase to receive the
IDENTIFY, SYNCHRONOUS DATA TRANSFER REQUEST and other messages that may be sent by
the Initiator. The SIM/HA response to these messages shall be as defined in ANSI X3.131-1994 and this
standard.

The SIM/HA shall maintain an indication (in a vendor unique manner) that an I/O process is present for
each enabled Phase-Cognizant LUN on a per initiator basis. The indication is maintained from I/O
process creation (CDB received and passed to target peripheral driver) to the COMMAND COMPLETE
message for the I/O process or one of the SCSI control messages that terminate I/O process(es) (Refer
to ANSI X3.131-1994 for control messages). The indication is maintained for correct coordination of the
LUN behavior between the target peripheral driver and the SIM/HA for the ABORT, TERMINATE I/O
PROCESS and BUS DEVICE RESET messages and bus reset. See Clause 12.2.5 for further details.

If the LUNTAR bit (or any of the reserved bits) of the IDENTIFY message is set to 1, then the SIM/HA
shall send a MESSAGE REJECT message back to the initiator, and go to BUS FREE phase.

The LUN shall be extracted from the IDENTIFY message and the SIM/HA shall scan the CAM Flags in
the CCB(s) provided with Enable LUN. If none of them have the Target CCB Available bit set, the
SIM/HA shall post BUSY status and then send a COMMAND COMPLETE message. The Initiator ID
field shall be set to the ID of the initiator that performed the selection. This field shall be used by the
target peripheral driver for subsequent functions, such as reselect, to determine the Initiator's ID.

 Note 18

The target peripheral driver should ensure that there are always CCBs with the Target CCB Available bit set especially for
linked commands.

If the DiscPriv bit in the IDENTIFY message was set, which results in the Disable Disconnect bit of the
CAM Flags being cleared, and the Disable AutoDisconnect bit of the CAM Flags field is cleared, the
SIM/HA shall automatically disconnect upon receipt of the command block. The disconnect shall be
performed before clearing the CCB Available bit in the CAM Flags and the callback of the target
peripheral driver.

The Disable Disconnect bit in the CAM Flags field shall be updated to indicate the state of the DiscPriv
bit in the IDENTIFY message that was received from the initiator. If the DiscPriv bit was set in the
IDENTIFY message, then the Disable Disconnect bit shall be cleared, and vice-versa.

Note 19

X3T10/990D revision 3

dpANS Common Access Method - 3
163

The default state of the Disable Disconnect bit in the CAM Flags is cleared, implying that disconnect is enabled.

If an ABORT, TERMINATE I/O PROCESS or BUS DEVICE RESET message was received in the initial
MESSAGE OUT Phase the SIM/HA shall handle these messages as specified in Clause 12.2.5. Once
the initial MESSAGE OUT Phase is complete, the SIM/HA automatically sets the HA to the Command
Out Phase to request the SCSI CDB. After receiving the SCSI CDB bytes, the SIM/HA shall set the CAM
Status field to CAM Status of SCSI CDB received. The SIM/HA shall clear the CCB Available bit in the
CAM Flags and if the CAM flag of Disable Callback on Completion is a zero for this CCB the SIM/HA
shall callback the target peripheral driver.

If the Group Code of the Operation Code of the CDB is Vendor Unique, the SIM/HA shall transfer the
number of CDB bytes specified in the ENABLE LUN CCB for this LUN. The Group Code in the incoming
CDB (either 6 or 7) shall select the Vendor Unique CDB size from the ENABLE LUN CCB. If the
selected CDB size (specified in the ENABLE LUN CCB) is zero, the SIM/HA shall transfer only the CDB
Operation Code. If the required number of bytes is not transferred or the specified size for this Group
Code is zero, then the SIM shall set in the selected CCB the CDB bytes transferred in the area provided
and shall set the CAM Status to Invalid CDB. The SIM shall then clear the CCB Available bit in the CAM
Flags and if the CAM flag of Disable Callback on Completion is a zero for this CCB the SIM/HA shall
callback the target peripheral driver.

The target peripheral driver for CDB reception on the callback or upon noticing the CCB Available bit is
clear for a Target mode CCB shall process the CCB (e.g, determine if valid CDB, copying pertinent data
from the Target CCB). After processing the CDB from a Target CCB, the target peripheral driver shall
set CCB Available in the CAM Flags, which passes the CCB back to the SIM/HA.

The target peripheral driver shall be responsible for completing all I/O process(es) as defined in ANSI
X3.131-1994. The SIM/HA shall pass a Target CCB to a target peripheral driver with a CAM Status of
CDB Received or Invalid CDB. All other events relating to the creation of an I/O process shall be
handled transparently unless otherwise specified.

12.2.4 Continuation and completion of an I/O process for phase cognizant mode

The SIM/HA shall receive an EXECUTE TARGET I/O CCB from the target peripheral driver, by the
target peripheral driver calling xpt_action() with the address of the CCB as the argument. The SIM/HA
shall reject the CCB based on the conditions specified in Clauses 12.2.4, 12.2.5 and 12.2.6.

The SIM shall reject any CCB which has a Timeout Value of other than infinity with a CAM Status of
Invalid Request.

The SIM/HA shall perform an automatic reselect if the SIM/HA had disconnected after the receipt of the
CDB, or had disconnected upon completion of a previous Execute Target I/O (within the same I/O
process).

If the Data Valid bit is set, the SIM/HA shall enter the data phase indicated by the direction bits in the
CAM Flags field (i.e., DATA IN or DATA OUT). It shall send/receive data indicated by the CAM Direction
Flags to/from the buffer(s) indicated in the CCBs Scatter Gather List or Data Pointer. The CAM Direction
flags shall interpreted as the following:
− Bit 7 = 0 and 6 = 0: Reserved (CAM_DIR_RESV)

X3T10/990D revision 3

dpANS Common Access Method - 3
164

− Bit 7 = 0 and 6 = 1: Data in to initiator (data from target to initiator CAM_DIR_IN)
− Bit 7 = 1 and 6 = 0: Data out from initiator (data from initiator to target CAM_DIR_OUT)
− Bit 7 = 1 and 6 = 1: No data transfer (CAM_DIR_NONE)

If the Status Buffer Valid bit is set, the SIM/HA shall send the status byte specified in the SCSI Status
field to the current initiator and then send the COMMAND COMPLETE message if the Message Buffer
Valid bit is cleared and go to BUS FREE phase. If the Status Buffer Valid bit and Message Buffer Valid
bit are both set then the SIM/HA shall send the status byte specified in the SCSI Status field to the
current initiator and then send the message contained in the Message buffer. The Message buffer shall
contain a single message being one of the following:
− LINKED COMMAND COMPLETE
− LINKED COMMAND COMPLETE (WITH FLAG)

The SIM/HA shall perform the following after successfully transmitting the LINKED COMMAND
COMPLETE or the LINKED COMMAND COMPLETE (WITH FLAG) message:
− Post the required CAM Status in the EXECUTE TARGET I/O CCB and call back the target peripheral

if specified.
− If a Target CCB is available to the SIM/HA, go to COMMAND phase and receive the CDB bytes for

the next linked command.
− If a Target CCB is not available to the SIM/HA, the SIM/HA shall not change phase and shall wait

until a Target CCB is available. Once a Target CCB is available the SIM/HA shall go to COMMAND
phase and receive the CDB bytes for the next linked command.

Note 20
A target peripheral driver can hang the SCSI bus if Target CCBs are not available to the SIM/HA. Care should be taken if
linked commands are supported to prevent this situation.

If the Message Buffer Valid bit is set and the Status Buffer Valid bit is clear, the SIM/HA shall enter the
MESSAGE phase and transfer the contents of the Message buffer. The target peripheral driver shall not
place a DISCONNECT message into the Message buffer and set the Message Buffer Valid bit. The
SIM/HA shall be able to detect a DISCONNECT message in the Message Buffer and if the SIM/HA
detects this condition the SIM/HA shall not enter MESSAGE phase to transmit the message. The
SIM/HA shall process all other phases indicated by the EXECUTE TARGET I/O CCB as defined by this
standard.

The SIM/HA shall receive and respond to any messages resulting from ATN being asserted by the
initiator, in addition to any messages it sends to the initiator (see Clause 12.2.5 for further details).

The SIM/HA shall be able to execute all the phases indicated by the Buffer Valid bits of the CAM Flags,
within a single invocation of the Execute Target I/O (i.e., if more than one bit is set), the order of
execution of the phases shall be data, status, and message.

If either the Status Buffer Valid bit or the Message Buffer Valid bit of the CAM Flags field are set for an
invocation of Execute Target I/O, the AutoDisconnect and AutoSave features shall be disabled.

Going to BUS FREE phase or disconnecting from the SCSI bus (e.g., sending a DISCONNECT
message) and going to BUS FREE phase shall be governed by the following:
− If a COMMAND COMPLETE message is successfully transmitted on the SCSI bus, the SIM/HA shall

X3T10/990D revision 3

dpANS Common Access Method - 3
165

go to BUS FREE phase.
− If the Disable AutoDisconnect bit of the CAM Flags is cleared, and the Disable Disconnect of the

CAM Flags bit is cleared, then the SIM/HA shall disconnect on the completion of a data transfer
specified by the Data Buffer Valid bit set. If the Disable AutoSave bit of the CAM Flags is cleared,
then the SIM/HA shall send a SAVE DATA POINTERS message to the initiator prior to sending the
DISCONNECT message.

Upon completion of the function(s) specified in the EXECUTE TARGET I/O CCB, the SIM/HA shall post
the required CAM Status in the CCB and call back the target peripheral driver if specified.

Upon the last Execute Target I/O, the target peripheral driver should consider setting the Disable
AutoSave bit, which shall disable the sending of the Save Data Pointers.

12.2.5 Non-transparent event handling for phase cognizant mode

When the SIM/HA receives a ABORT message from a initiator for an enabled Phase-Cognizant LUN it
shall perform the following actions:
− Go to BUS FREE phase;
− If a I/O process exists for this I_T_L and EXECUTE TARGET I/O CCB(s) are held by the SIM/HA for

this I_T_L with CAM Status of Request in Progress, the SIM/HA shall return the CCB(s) to the target
peripheral driver with the CAM Status field set to Request Aborted by Host;

− If an I/O process exists for this I_T_L it shall reject all EXECUTE TARGET I/O CCBs received for
this I_T_L with a CAM status of Request Aborted by Host set into the CAM Status field and a return
status of Request Aborted by Host, until the establishment of a new I/O process for this I_T_L;

− If an I/O process does not exist for this I_T_L then the only action taken is the BUS FREE response
to the message;

When the SIM/HA receives a BUS DEVICE RESET message from a initiator for an enabled Phase-
Cognizant LUN it shall perform the following actions:
− Go to BUS FREE phase;
− Perform an asynchronous event callback as specified in Clause 11.2 (e.g., return all EXECUTE

TARGET I/O CCBs held by SIM/HA with a CAM Status of Bus Device Reset Sent);
− Determine if a I/O process(es) exists for this target for all enabled Phase-Cognizant LUNs (in a

vendor unique manner);
− If an I/O process exists for this target it shall reject all EXECUTE TARGET I/O CCBs sent an

enabled Phase-Cognizant LUN with a CAM status of Bus Device Reset Sent set into the CAM Status
field and a return status of Bus Device Reset Sent, until the establishment of a new I/O process for a
particular I_T_L;

When the SIM/HA receives a TERMINATE I/O PROCESS message from a initiator for an enabled
Phase-Cognizant LUN it shall perform the following actions:
− If an I/O process exists for this I_T_L and no EXECUTE TARGET I/O CCB(s) are held by the

SIM/HA for this I_T_L;
− If the IDENTIFY message had the DiscPriv bit set the SIM/HA shall disconnect from the SCSI bus;
− The SIM/HA shall reject the next EXECUTE TARGET I/O CCB received for this I_T_L with a CAM

status of Terminate I/O Process set into the CAM Status field and a return status of Terminate I/O
Process, all subsequent EXECUTE TARGET I/O CCBs received for the I_T_L shall be processed

X3T10/990D revision 3

dpANS Common Access Method - 3
166

normally;
− If an I/O process exists for this I_T_L and EXECUTE TARGET I/O CCB(s) are held by SIM/HA for

this I_T_L have a CAM Status of Request in Progress and SCSI status has not been sent.
− If the I/O process is the current I/O process the SIM/HA shall examine the CAM flags to determine if

disconnecting from the SCSI allowed. If the Disable AutoDisconnect bit of the CAM Flags is cleared,
and the Disable Disconnect of the CAM Flags bit is cleared, then the SIM/HA shall disconnect from
the SCSI bus. If a data transfer is specified by the Data Buffer Valid bit set and the Disable
AutoSave bit of the CAM Flags is cleared, then the SIM/HA shall send a SAVE DATA POINTERS
message to the initiator prior to sending the DISCONNECT message.

− The SIM/HA shall properly set the Residual Length field of the CCB if a data phase is specified and
return the CCB(s) to target peripheral driver with a CAM Status of Terminate I/O Process.

− The SIM/HA shall not reject any subsequent EXECUTE TARGET I/O CCBs for the I_T_L;
− If an I/O process exists for this I_T_L and an EXECUTE TARGET I/O CCB is held by SIM/HA for this

I_T_L and SCSI status has been sent, the SIM/HA shall continue normal processing of this CCB;
− If an I/O process does not exist for this I_T_L then the only action taken is the BUS FREE response

to the message;

When the SIM/HA receives a INITIATOR DETECTED ERROR message from a initiator for an enabled
Phase-Cognizant LUN it shall perform the following actions:
− If a I/O process exists for this I_T_L and no EXECUTE TARGET I/O CCB(s) are held by the SIM/HA

for this I_T_L;
− If the IDENTIFY message had the DiscPriv bit set the SIM/HA shall disconnect from the SCSI bus;
− If an I/O process exists for this I_T_L it shall reject the next EXECUTE TARGET I/O CCB received

for this I_T_L with a CAM status of Initiator Detected Error set into the CAM Status field and a return
status of Initiator Detected Error, all subsequent EXECUTE TARGET I/O CCBs received for the
I_T_L shall be processed normally;

− If an I/O process exists for this I_T_L and EXECUTE TARGET I/O CCB(s) are held by SIM/HA for
this I_T_L have a CAM Status of Request in Progress;

− The SIM/HA shall examine the CAM flags to determine if disconnecting from the SCSI bus allowed.
If the Disable AutoDisconnect bit of the CAM Flags is cleared, and the Disable Disconnect of the
CAM Flags bit is cleared, then the SIM/HA shall disconnect from the SCSI bus;

− The SIM/HA shall properly set the Residual Length field of the CCB if a data phase is specified and
return the CCB(s) to target peripheral driver with a CAM Status of Initiator Detected Error.

− The SIM/HA shall not reject any subsequent EXECUTE TARGET I/O CCBs for the I_T_L;
− If an I/O process does not exist for this I_T_L then the only action taken is the BUS FREE response

to the message;

When the SIM/HA detects a bus reset for an enabled Phase-Cognizant LUN it shall perform the following
actions:
− Perform an asynchronous event callback as specified in Clause 11.2 (e.g., return all EXECUTE

TARGET I/O CCBs held by SIM/HA with a CAM Status of SCSI Bus Reset Sent/Received);
− Determine if a I/O process(es) exists for this target for all enabled Phase-Cognizant LUNs (in a

vendor unique manner);
− If an I/O process exists for this target it shall reject all EXECUTE TARGET I/O CCBs sent to an

enabled Phase-Cognizant LUN with a CAM status of SCSI Bus Reset Sent/Received set into the
CAM Status field and a return status of SCSI Bus Reset Sent/Received, until the establishment of a
new I/O process for a particular I_T_L;

X3T10/990D revision 3

dpANS Common Access Method - 3
167

If the target peripheral driver receives an EXECUTE TARGET I/O CCB with a CAM Status of either
Terminate I/O Process or Initiator Detected Error then an I/O process is still in existence for the I_T_L
specified by the CCB. It shall be the target peripheral drivers responsibility to complete the I/O process
as specified in ANSI X3.131-1994.

12.2.6 Execute Target I/O CCB

This function typically returns a CAM Status of Request in Progress, indicating that the request was
queued successfully. Request completion can be determined by polling for a CAM status other than
Request in Progress or through use of the Callback on Completion field. Polling for completion of a CCB
is not recommended.

The SCSI Command Descriptor Block can be either a contiguous array of 16 bytes or can be a pointer to
a contiguous array of bytes. Refer to Clause 11.8.1.1 for the description and definition of the CDB_UN
structure.

The supplier of the XPT shall define the Execute Target I/O Request CCB structure as follows:
typedef struct ccb_exec_target3

{
CCB_HEADER3 ccb_header3; /* Header information fields */
CCB_HEADER3 *cam_next_ccb; /* Ptr to the next CCB for action */
CAM_VOID_OFFSET *cam_req_map; /* Ptr for mapping info on the Req. */
CAM_VOID (*cam_cbfcnp)(); /* Callback on completion function */
CAM_U8 *cam_data_ptr; /* Pointer to the data buf/SG list */
CAM_U32 cam_dxfer_len; /* Data xfer length */
CAM_U8 cam_cdb_len; /* Number of bytes for the CDB */
CAM_U8 cam_reserved1; /* Reserved for alignment */
CAM_U16 cam_sglist_cnt; /* Num. of scatter gather list entries */
CAM_U32 cam_vu_field; /* Vendor Unique field/
CAM_U8 cam_scsi_status; /* Returned SCSI device status */
CAM_U8 cam_reserved2; /* Reserved for alignment */
CAM_U16 cam_sense_resid; /* Autosense resid length: 2's comp */
CAM_I32 cam_resid; /* Transfer residual length: 2's comp */
CAM_U32 cam_timeout; /* Timeout value */
CDB_UN3 cam_cdb_io; /* Union for CDB bytes/pointer */
CAM_U8 *cam_msg_ptr; /* Pointer to the message buffer */
CAM_U16 cam_msgb_len; /* Num. of bytes in the message buf */
CAM_U16 cam_vu_flags; /* Vendor unique flags */
CAM_U8 cam_tag_action; /* What to do for tag queuing */
CAM_U8 cam_reserved3[3]; /* Reserved for alignment */
CAM_U32 cam_tag_id; /* Tag ID */
CAM_U32 cam_initiator_id[2]; /* Initiator ID target operations */
CAM_U16 cam_sense_len; /* Number of bytes to request for Autosense */
CAM_U8 cam_reserved4; /* Reserved for alignment */
CAM_U32 cam_sim_sense[16]; /* Working area for a SIM for retrieving sense data */
CAM_U8 cam_sense_buf[256]; /* Sense data buffer */

X3T10/990D revision 3

dpANS Common Access Method - 3
168

} CCB_SCSIIO3;

12.2.6.1 Member Descriptions for Execute Target I/O Request

The Execute Target I/O Request CCB has the exact struct format as the Execute SCSI I/O CCB. The
member descriptions in this Clause reference the member names that are used in the Execute Target
I/O Request CCB. For complete struct member descriptions refer to Clause 11.8.1.1

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_TARGET_IO function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

− cam_flags;
The following are the valid cam_flags for this function. Refer to Clause 11.8.1.1 for bit defines and
bit descriptions.

• CAM Direction flags shall specify the direction of the data transfer in relation to the SCSI
initiator. These flags are only valid when the If the Data bit (CAM_DATAB_VALID) is set. These
encoded bits identify the direction of data movement during data transfer.

• Scatter/gather list is valid when set to 1 (CAM_SCATTER_VALID);

• Disable Callback on Completion (CAM_DIS_CALLBACK);

• Linked CDB (CAM_CDB_LINKED);

• CDB member is a pointer (CAM_CDB_POINTER);

X3T10/990D revision 3

dpANS Common Access Method - 3
169

• The valid CAM flags for memory type (virtual/physical)

◊ CDB pointer is physical when set to a 1 (CAM_CDB_PHYS);

◊ Data Buffer/Scatter Gather pointer is physical when set to a 1 (CAM_DATA_PHYS);

◊ Message buffer pointer is physical when set to a 1 (CAM_MSG_BUF_PHYS);

◊ Next CCB pointer is physical when set to a 1 (CAM_NXT_CCB_PHYS);

◊ Callback on Completion pointer is physical when set to a 1 (CAM_CALLBCK_PHYS);

◊ Scatter/Gather list are physical pointers within the array of SG_ELEM structure when set to a
1 (CAM_SG_LIST_PHYS);

• Target mode flags;
◊ The buffer valid bits;

⇒ Data buffer valid when set to a 1 (CAM_DATAB_VALID);

⇒ Status valid when set to a 1 (CAM_STATUS_VALID);

⇒ Message Buffer valid when set to a 1 (CAM_MSGB_VALID);

⇒ Target CCB Available when set to 1 (CAM_TGT_CCB_AVAIL);

⇒ Autodisconnect when set to 1, this bit disables autodisconnect (CAM_DIS_AUTODISC);

⇒ Autosave - When set to 1, this bit disables autosave feature for Phase-Cognizant Mode
(CAM_DIS_AUTOSRP);

− cam_req_map;
The request map information structure pointer (OSD data structure);

− cam_cbfcnp;
Callback on completion of a queued CCB;

− cam_data_ptr;
The cam data buffer pointer;

− cam_dxfer_len;
The cam data transfer length;

− cam_cdb_len;
The CDB length member shall contain the length in bytes of the buffer for CDB placement

X3T10/990D revision 3

dpANS Common Access Method - 3
170

− cam_sglist_cnt;
The number of scatter/gather entries;

− cam_vu_field;
Vendor unique;

− cam_cdb_io;
The cam CDB member either contains the SCSI CDB (command descriptor block), or a pointer to
the CDB buffer.

− cam_msg_ptr;
The message buffer;

− cam_msgb_len;
The message buffer length;

− cam_vu_flags;
The vendor unique flags;

− cam_initiator_id
The initiator identifier

12.2.6.2 Final CAM Status for Execute Target I/O CCBs

− The final CAM Status shall be one of the following:
− Request Completed without Error: the request has completed and no error condition was

encountered.
− Request Aborted by Host: the request was aborted by the SIM/HA as instructed an initiator.
− Request Completed with Error: the request has completed and an error condition was encountered.
− CAM Busy: CAM unable to accept request at this time.
− Invalid Request: the request has been rejected because it is invalid.
− Invalid Path ID: indicates that the Path ID is invalid.
− Target Selection Timeout: the specified initiator failed to respond to reselection.
− Message Reject Received: The SIM/HA received a SCSI MESSAGE REJECT message in response

to a message sent contained in the Message Buffer.
− SCSI Bus Reset Sent/Received: The SCSI operation was terminated at some point because the

SCSI bus was reset.
− Uncorrectable Parity Error Detected: An uncorrectable SCSI bus parity error was detected.
− No HA Detected: HA no longer responding to SIM (assumed to be a hardware problem).
− CCB Length Inadequate: more private data area is required in the CCB (refer to Clause 11.7.5 for

further clarification) .
− Cannot Provide Requested Capability: resources are not available to provide the capability

requested in the CAM Flags.
− Bus Device Reset Sent: this CCB was terminated because a BUS DEVICE RESET message was

sent to the target.
− Terminate I/O Process: this CCB terminated due to a TERMINATE I/O PROCESS message was

received by the SIM/HA for the specified I_T_L.

X3T10/990D revision 3

dpANS Common Access Method - 3
171

− Unrecoverable Host Bus Adaptor Error: this CCB was terminated because of a hardware error
detected by the HA. The error does not indicate a SCSI bus problem but an error within the HA or
host.

− Initiator Detected Error: this CCB terminated due to a INITIATOR DETECTED ERROR message was
received by the SIM/HA for the specified I_T_L.

− Invalid CDB: indicates that the SIM/HA has detected an error condition on reception of a CDB. .
− Invalid LUN: indicates that the Logical Unit specified is outside the supported range of the SCSI bus.

− Invalid Target ID indicates that the Target ID does not match that used by the HA specified by the
Path ID field.

− Nexus Not Established: there is currently no connection established between the specified Target ID
and target LUN with any initiator.

− Invalid Initiator ID: the initiator ID specified is outside the valid range that is supported.

Note 21
This status can also be returned if the target tries to reselect an initiator other than the one to which it was previously
connected.

− SCSI CDB Received: indicates that the target has been selected and that the SCSI CDB is present in
the CCB.

− SCSI Bus Busy: the SIM failed to win arbitration for the SCSI bus during several different bus free
phases.

12.3 Host target mode

12.3.1 Host target mode functionality not specified

This standard does not address the following SCSI functionality for Host Target Mode operation:
A) LUNTAR
B) Linked Commands
C) Extended Contingent Allegiance
D) Soft Reset

12.3.2 SCSI Serial interconnects

Host target mode specifies certain characteristics that only apply to the SCSI Interlock Protocol (SIP).
These characteristics are:
− BUS FREE phase;
− SCSI Disconnects;

SIM/HA implementers that supports a SCSI serial interconnect protocol (e.g., SSA, SBP and FCP) shall
disregard these characteristics as specified. SCSI serial interconnect protocols have no functional
concept of these characteristics.

12.3.3 Host target mode messages

X3T10/990D revision 3

dpANS Common Access Method - 3
172

The SCSI messages outlined below are in two main categories for Host Target Mode. The categories
are transparent message handling and notification message handling. These 2 main categories can
further be divided into mandatory messages and optional messages. Transparent message handling
shall mean that the SIM/HA shall handle the message and that there is no notification of the message to
a peripheral driver. Notification message handling shall mean that the SIM/HA shall receive the
message and notify the Host Target Mode peripheral driver as specified by this standard. For notification
message handling the SIM/HA shall maintain certain state information about the message, but how that
is accomplished is left to the discretion of the SIM/HA implementer.

A) Mandatory Transparent Message Handling

1) COMMAND COMPLETE
2) IDENTIFY
3) INITIATOR DETECTED ERROR
4) MESSAGE PARITY ERROR
5) MESSAGE REJECT
6) NO OPERATION

B) Optional Transparent Message Handling at the discretion of SIM/HA.

1) DISCONNECT
2) IGNORE WIDE RESIDUE
3) MODIFY DATA POINTER
4) RESTORE POINTERS
5) SAVE DATA POINTERS
6) SYNCHRONOUS DATA TRANSFER REQUEST
7) WIDE DATA TRANSFER REQUEST

C) Mandatory Message Handling that requires notification to the Host Target Mode peripheral driver.

1) ABORT message:

2) Host Target Mode peripheral driver shall be notified by the IMMEDIATE NOTIFY CCB
mechanism.

3) BUS DEVICE RESET message:
Host Target Mode peripheral driver shall be notified by the Asynchronous Event mechanism.

D) Optional Message handling that requires notification to the Host Target Mode peripheral driver.
1) ABORT TAG
2) CLEAR QUEUE
3) HEAD OF QUEUE TAG (see 11.3.8)
4) ORDERED QUEUE TAG (see 11.3.8)
5) SIMPLE QUEUE TAG (see 11.3.8)
6) TERMINATE I/O PROCESS

Note 22
See Clause 12.3.4 (Use of the IMMEDIATE NOTIFY CCB), Clause 12.3.5 (Enable Target Mode LUN for Host Target Mode), and
Clause 12.3.9 (ACCEPT TARGET I/O and CONTINUE TARGET I/O CCB Operation) for clarification.

X3T10/990D revision 3

dpANS Common Access Method - 3
173

12.3.4 Use of the IMMEDIATE NOTIFY CCB

The IMMEDIATE NOTIFY CCB is for Host Target Mode use only. It is used to notify the Host Target
Mode peripheral driver of events detected by the SIM/HA. The IMMEDIATE NOTIFY CCBs, once
passed to the SIM/HA by the ENABLE LUN CCB, shall be maintained by the SIM/HA for its exclusive
use. Ownership of IMMEDIATE NOTIFY CCB(s) shall not be returned to the Host Target Mode
peripheral driver until the successful completion of an DISABLE TARGET MODE LUN. The
IMMEDIATE NOTIFY CCB contents shall be valid to the Host Target Mode peripheral driver only at the
point where the SIM/HA does the callback for notification of an event. The Host Target Mode peripheral
driver should at that point read its contents to determine event and sense data. Upon callback return, the
contents of IMMEDIATE NOTIFY CCB shall no longer be considered valid.

The Immediate Notify mechanism from the SIM/HA has a corresponding Notify Acknowledgement
mechanism. The IMMEDIATE NOTIFY CCB shall contain a unique sequence identifier for a Host Target
Mode LUN. For each event/message delivered to the Host Target Mode peripheral driver by the callback
mechanism, the Host Target Mode peripheral driver shall do the following:

A) Any processing needed to comply with this standard and ANSI X3.131-1994.

B) Issue a NOTIFY ACKNOWLEDGE CCB with the Sequence Identifier field set to the value from
Sequence Identifier field of the IMMEDIATE NOTIFY CCB for the event/message being processed.

There shall be a one to one correspondence between the Immediate Notify and the Notify
Acknowledgement from the Host Target Mode peripheral driver. For each Immediate Notify for a LUN
there shall be a Notify Acknowledgement.

Sequence identifiers shall be unique for each Host Target Mode LUN. There shall not be two identical
sequence identifiers in use at the same time for a Host Target Mode LUN. A sequence identifier is "in
use" from the time the peripheral driver callback is invoked until the receipt of the Notify
Acknowledgement from the peripheral driver. Sequence identifiers shall be non zero value(s).

If an event/message is detected by the SIM/HA that requires a notification back to the Host Target Mode
peripheral driver and there are no IMMEDIATE NOTIFY CCBs available, the SIM/HA shall do the
following:

A) Record all information about the event/message as specified later in this section, and preserve
ordering of the event/message, in FIFO fashion.

B) When an IMMEDIATE NOTIFY CCB becomes available for use the SIM/HA shall notify the Host
Target Mode peripheral driver using the mechanisms specified later in this section.

The ordering of Host Target Mode peripheral driver notification and when the SIM/HA releases the SCSI
bus to the BUS FREE phase is not specified. The change to Bus Free phase and the peripheral driver
callback in Clause 12.3.4.1 may occur in either order, but both steps are required. In all other cases, the
order in which Clause 12.3.4.1 lists operations is the order in which those operations shall be performed.

X3T10/990D revision 3

dpANS Common Access Method - 3
174

The order in which the SIM/HA places the Extended message arguments into the IMMEDIATE NOTIFY
CCB Message Arguments field for an Extended message is specified. After the Extended message code
is received all Extended message bytes received for the Extended message shall be placed into the
IMMEDIATE NOTIFY CCB Message Arguments field in ascending order in the order that they were
received. The first Extended message argument byte received after the Extended message code shall
be placed into the Message Arguments array[0] field. The next Extended message argument byte
received shall be placed into the Message Arguments array[1] field.

For the SCSI ABORT and CLEAR QUEUE messages, the order in which the CCBs are returned to the
Host Target Mode peripheral driver and the IMMEDIATE NOTIFY CCB callback is done to the driver is
specified. The order shall be as follows:

A) All CONTINUE TARGET I/O CCBs

B) IMMEDIATE NOTIFY CCB callback to the Host Target Mode peripheral driver

12.3.4.1 The events/messages that use the immediate notify mechanism

12.3.4.1.1 Sense data preservation where no nexus has been established

There are certain events that require or optionally provide for sense data preservation by the target.
These events are specified in ANSI X3.131-1994. If one of these events is detected by the SIM/HA, the
SIM/HA shall respond as follows for each enabled Host Target Mode LUN:

A) Set the pathid of an IMMEDIATE NOTIFY CCB to the bus number of this bus and target id of the
SIM/HA.

B) The SIM/HA shall form the SCSI-2 required 18 bytes of correct sense data for the event and place
the sense data in the sense buffer provided in the IMMEDIATE NOTIFY CCB. It shall not be
considered an error if the sense buffer bytes are zero, indicating NOSENSE. However, the Host
Target Mode peripheral driver shall not be required to preserve NOSENSE data.

C) The SIM/HA shall set the CAM Status to Nexus Not Established in the IMMEDIATE NOTIFY CCB
indicating that a nexus was not yet established.

D) The SIM/HA shall indicate in the CAM Status field of the IMMEDIATE NOTIFY CCB that Autosense
is valid. Autosense valid indicates to the Host Target Mode peripheral driver that the sense buffer
data is valid and can be copied. The Host Target Mode peripheral driver shall save the copied sense
data for use if the next received command is request sense.

E) The SIM/HA shall form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs
Sequence Identifier field.

F) The SIM/HA shall transition the SCSI Bus to BUS FREE. The SIM/HA shall callback the Host Target
Mode peripheral driver using the callback notify field in the available IMMEDIATE NOTIFY CCB.
The exact order of these two operations is not specified.

X3T10/990D revision 3

dpANS Common Access Method - 3
175

G) For all initial connections, the SIM/HA for this enabled Host Target Mode LUN shall transparently
respond with a SCSI Status of BUSY until all events are acknowledged by the Host Target Mode
peripheral driver.

H) All CONTINUE TARGET I/O CCBs received by the SIM/HA for this enabled Host Target Mode LUN
shall be rejected until all events are acknowledged by the Host Target Mode Peripheral driver. The
rejected CCBs shall have:

1) A CAM Status field set to Unacknowledged Event by Host

2) A return status of Unacknowledged Event by Host.

Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished when
the SIM/HA receives an NOTIFY ACKNOWLEDGE CCB for this LUN with the Sequence Identifier field
equal to the sequence identifier of the IMMEDIATE NOTIFY CCB for this event.

The Host Target Mode peripheral driver shall be responsible for preserving Contingent Allegiance
conditions.

12.3.4.1.2 Mandatory messages

This Clause describes the handling of mandatory messages that are handled jointly between the SIM/HA
and the corresponding Host Target Mode peripheral driver.

Note 23
The ABORT message is the only mandatory message that is handled with the IMMEDIATE NOTIFY CCB. BUS DEVICE
RESET messages are handled by the Asynchronous Event mechanism (see Clause 12.3.13.2).

12.3.4.1.2.1 ABORT message

When an ABORT message is received for an enabled Host Target Mode LUN by the SIM/HA, the
SIM/HA shall:

A) Accept the message.

B) Set the Path ID of an IMMEDIATE NOTIFY CCB to the bus number of this bus. Set the Target ID of
the SIM/HA, and LUN ID from the IDENTIFY message. Set the Initiator ID field of the IMMEDIATE
NOTIFY CCB to the ID of the Initiator that selected this SIM/HA.

C) Set the IMMEDIATE NOTIFY CCB CAM Status to Message Received.

D) Form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs Sequence
Identifier field.

E) Set the IMMEDIATE NOTIFY CCB Message Code field to the ABORT Message code.

F) All CONTINUE TARGET I/O CCBs for this I_T_L or I_T_L_Q nexus shall have the CAM Status set
to Request Aborted by Host and shall be returned to the Host Target Mode peripheral driver by the

X3T10/990D revision 3

dpANS Common Access Method - 3
176

CONTINUE TARGET I/O CCB callback mechanism.

G) The SIM/HA shall transition the SCSI Bus to BUS FREE. The SIM/HA shall callback the Host Target
Mode peripheral driver using the callback notify field in the available IMMEDIATE NOTIFY CCB.
The exact order of these two operations is not specified.

H) For all initial connections the SIM/HA for this I_T_L or I_T_L_Q shall transparently respond with a
SCSI Status of BUSY until all events are acknowledged by the Host Target Mode peripheral driver.

I) All CONTINUE TARGET I/O CCBs received by the SIM/HA for this I_T_L or I_T_L_Q shall be
rejected until all events are acknowledged by the Host Target Mode Peripheral driver. The rejected
CCBs shall have:

1) A CAM Status field set to Unacknowledged Event by Host

2) A return status of Unacknowledged Event by Host.

Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished when
the SIM/HA receives an NOTIFY ACKNOWLEDGE CCB for this I_T_L or I_T_L_Q with the Sequence
Identifier field equal to the sequence identifier of the IMMEDIATE NOTIFY CCB for this event.

12.3.4.1.3 Optional messages

This Clause describes optional messages that are handled by the SIM/HA with or without notification to
the corresponding Host Target Mode peripheral driver.

12.3.4.1.3.1 Optional messages that are not supported

For all messages in this category which are not supported:

− If the SIM/HA can not provide support or the Host Target Mode peripheral driver has indicated
through the ENABLE TARGET LUN CCB that a message is not supported, the SIM/HA shall reject
the message and shall continue normal SCSI bus processing. The Host Target Mode peripheral
driver shall not be notified of the event.

12.3.4.1.3.2 ABORT TAG message

The ABORT TAG message shall be supported if Tagged Queue Operation is active for this LUN. When
an ABORT TAG message is received for an enabled Host Target Mode LUN by the SIM/HA, the SIM/HA
 shall:

A) Accept the message.

B) If the current I/O process is not fully identified (e.g., no Queue Tag message) then the SIM/HA shall:

1) Go to BUS FREE phase.

X3T10/990D revision 3

dpANS Common Access Method - 3
177

2) No other processing is required (see ABORT TAG message in ANSI X3.131-1994 for further
information).

C) Set the Path ID of an IMMEDIATE NOTIFY CCB to the bus number of this bus. Set the Target ID of
the SIM/HA, and LUN ID from the IDENTIFY message. Set the Initiator ID field of the IMMEDIATE
NOTIFY CCB to the ID of the initiator that selected this SIM/HA.

D) Set the IMMEDIATE NOTIFY CCB CAM Status to Message Received.

E) Set the IMMEDIATE NOTIFY CCB Message Code field to the ABORT TAG Message code. Place
the Additional Arguments to the message (Queue Tag) in the Message arguments array of the
IMMEDIATE NOTIFY CCB.

F) The SIM/HA shall form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs
Sequence Identifier field.

G) The SIM/HA shall search the list of CONTINUE TARGET I/O CCB(s) for this I_T_L_Q nexus looking
for a match between the TAG ID field of the CCB and the Queue Tag of the I_T_L_Q nexus. For
each match is found, that CONTINUE TARGET I/O CCBs CAM Status shall be set to Request
Aborted by Host and shall be returned to the Host Target Mode peripheral driver by the CONTINUE
TARGET I/O CCB callback mechanism.

H) The SIM/HA shall transition the SCSI Bus to BUS FREE. The SIM/HA shall callback the Host Target
Mode peripheral driver using the callback notify field in the available IMMEDIATE NOTIFY CCB.
The exact order of these two operations is not specified.

I) For all initial connections, the SIM/HA for this I_T_L or I_T_L_Q shall transparently respond with a
SCSI Status of BUSY until all events are acknowledged by the Host Target Mode peripheral driver.

J) All CONTINUE TARGET I/O CCBs received by the SIM/HA for this I_T_L or I_T_L_Q shall be
rejected until all events are acknowledged by the Host Target Mode peripheral driver. The rejected
CCBs shall have:

1) A CAM Status field set to Unacknowledged Event by Host

2) A return status of Unacknowledged Event by Host.

Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished when
the SIM/HA receives a NOTIFY ACKNOWLEDGE CCB for this I_T_L or I_T_L_Q nexus with the
Sequence Identifier field equal to the sequence identifier of the IMMEDIATE NOTIFY CCB for this event.

12.3.4.1.3.3 CLEAR QUEUE message

The CLEAR QUEUE message shall be supported if Tagged Queue Operation is active for this LUN.
When an CLEAR QUEUE message is received for an enabled Host Target Mode LUN by the SIM/HA,
the SIM/HA shall:

X3T10/990D revision 3

dpANS Common Access Method - 3
178

A) Accept the message.

B) Set the Path ID of an IMMEDIATE NOTIFY CCB to the bus number of this bus. Set the Target ID of
the SIM/HA, and LUN ID from the IDENTIFY message. Set the Initiator ID field of the IMMEDIATE
NOTIFY CCB to the ID of the initiator that selected this SIM/HA.

C) Set the IMMEDIATE NOTIFY CCB CAM Status to Message Received.

D) Set the IMMEDIATE NOTIFY CCB Message Code field to the CLEAR QUEUE Message code.

E) The SIM/HA shall form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs
sequence identifier field.

F) All CONTINUE TARGET I/O CCB(s) for this enabled Host Target Mode LUN, shall have the CAM
Status set to Request Aborted by Host and shall be returned to the Host Target Mode peripheral
driver by the CONTINUE TARGET I/O CCB callback mechanism.

G) The SIM/HA shall transition the SCSI Bus to BUS FREE. The SIM/HA shall callback the Host Target
Mode peripheral driver using the callback notify field in the available IMMEDIATE NOTIFY CCB.
The exact order of these two operations is not specified.

H) For all initial connections the SIM/HA for this LUN shall transparently respond with a SCSI Status of
BUSY until all events are acknowledged by the Host Target Mode peripheral driver.

I) All CONTINUE TARGET I/O CCBs received by the SIM/HA for this LUN shall be rejected until all
events are acknowledged by the Host Target Mode Peripheral driver. The rejected CCBs shall have:

1) A CAM Status field set to Unacknowledged Event by Host.

2) A return status of Unacknowledged Event by Host.

Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished when
the SIM/HA receives a NOTIFY ACKNOWLEDGE CCB for this LUN with the Sequence Identifier field
equal to the sequence identifier of the IMMEDIATE NOTIFY CCB for this event.

12.3.4.1.3.4 HEAD OF QUEUE, ORDERED QUEUE and SIMPLE QUEUE TAG
messages

The handling of these messages is described in detail in Clause 12.3.9.

12.3.4.1.3.5 TERMINATE I/O PROCESS message

When the supported TERMINATE I/O PROCESS message is received for an enabled Host Target Mode
LUN by the SIM/HA, the SIM/HA shall:

A) If there is no matching I/O process, the SIM/HA shall reject the message, and no further processing

X3T10/990D revision 3

dpANS Common Access Method - 3
179

is required.

B) If there is a matching I/O process, accept the message.

C) If disconnects are mandatory the SIM/HA shall disconnect from the bus. If disconnects are allowed
the SIM/HA should disconnect from the bus.

D) Set the Path ID of an IMMEDIATE NOTIFY CCB to the bus number of this bus. Set the Target ID of
the SIM/HA, and LUN ID from the IDENTIFY message. Set the Initiator ID field of the IMMEDIATE
NOTIFY CCB to the ID of the initiator that selected this SIM/HA.

E) The SIM/HA shall form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs
Sequence Identifier field.

F) Set the IMMEDIATE NOTIFY CCB CAM Status to Message Received.

G) Set the IMMEDIATE NOTIFY CCB Message Code field to the TERMINATE I/O PROCESS message
code.

H) Each CONTINUE TARGET I/O CCB for this I_T_L or I_T_L_Q nexus shall have the CAM Status set
to Terminate I/O Process, The Residual Length field shall be set to valid number of bytes not
transferred for this CCB. The CCB(s) shall be returned to the Host Target Mode peripheral driver by
the CONTINUE TARGET I/O CCB callback mechanism.

I) Call back the Host Target Mode peripheral driver by the mechanism provided by the IMMEDIATE
NOTIFY CCB.

J) For all initial connections the SIM/HA for this I_T_L or I_T_L_Q shall transparently respond with a
SCSI Status of BUSY until all events are acknowledged by the Host Target Mode peripheral driver.

K) All CONTINUE TARGET I/O CCBs received by the SIM/HA for this I_T_L or I_T_L_Q shall be
rejected until all events are acknowledged by the Host Target Mode peripheral driver. The rejected
CCBs shall have:

1) A CAM Status field set to Unacknowledged Event by Host

2) A return status of Unacknowledged Event by Host.

L) Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished
when the SIM/HA receives an NOTIFY ACKNOWLEDGE CCB for this I_T_L nexus with the
Sequence Identifier field equal to the Sequence Identifier of the IMMEDIATE NOTIFY CCB for this
event.

The Host Target Mode peripheral driver shall acknowledge the event and properly terminate the I/O
process as specified in ANSI X3.131-1994.

12.3.4.1.4 Resource unavailable to SIM/HA

X3T10/990D revision 3

dpANS Common Access Method - 3
180

If the SIM/HA receives a CDB on the SCSI bus for an enabled LUN in Host Target Mode that does not
have any ACCEPT TARGET I/O CCBs available for use, it shall do the following:

A) Set the Path ID of an IMMEDIATE NOTIFY CCB to the bus number of this bus. Set the Target ID of
the SIM/HA, and LUN ID from the IDENTIFY message. Set the Initiator ID field of the IMMEDIATE
NOTIFY CCB to the ID of the initiator that selected this SIM/HA.

B) Set the IMMEDIATE NOTIFY CCB CAM Status to Unavailable Resource.

C) The SIM/HA shall form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs
sequence identifier field.

D) The SIM/HA shall transition the SCSI bus to status phase and return BUSY status to the initiator and
then go to BUS FREE phase. The SIM/HA shall callback the Host Target Mode peripheral driver
using the callback notify field in the available IMMEDIATE NOTIFY CCB. These operations shall be
performed in the order shown here.

E) For all initial connections the SIM/HA for this LUN shall transparently respond with a SCSI Status of
BUSY until all events are acknowledged events by the Host Target Mode peripheral driver.

Note 24
ACCEPT and CONTINUE TARGET I/O CCBs are allowed to be received and processed by the SIM/HA for this event. The
Host Target Mode peripheral driver should send a number of ACCEPT TARGET I/O CCBs to the enabled LUN and then
acknowledge the event to replenish the resource.

Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished when
the SIM/HA receives a NOTIFY ACKNOWLEDGE CCB for this LUN with the Sequence Identifier field
equal to the sequence identifier of the IMMEDIATE NOTIFY CCB for this event.

12.3.4.1.5 HA faults

If a controlling SIM detects that a HA has faulted/failed in a way that causes the HA to be not usable in
its current state (e.g., has ceased responding, declared itself insane, needs to be initialized/restarted), it
shall do the following for each Host Target Mode enabled LUN for the faulted/failed HA:

A) Set the Path ID of an IMMEDIATE NOTIFY CCB to the bus number of this HA. Set the Target ID of
the HA, and the LUN ID to the LUN number being reported.

B) Set the IMMEDIATE NOTIFY CCB CAM Status to No HA Detected.

C) The SIM/HA shall form an unique sequence identifier and place it in the IMMEDIATE NOTIFY CCBs
sequence identifier field.

D) All CONTINUE TARGET I/O CCBs for this Host Target Mode LUN shall have the CAM Status set to
No HA Detected and shall be returned to the Host Target Mode peripheral driver by the CONTINUE
TARGET I/O CCB callback mechanism.

X3T10/990D revision 3

dpANS Common Access Method - 3
181

E) The SIM shall clear the unacknowledged event list of all other unacknowledged events for this LUN
(e.g., the only unacknowledged event for this LUN is this event).

F) The SIM shall callback the Host Target Mode peripheral driver using the callback notify field in the
available IMMEDIATE NOTIFY CCB.

G) All CONTINUE TARGET I/O CCBs received by the SIM for this LUN until all events are
acknowledged by the Host Target Mode peripheral driver shall be rejected with:

1) A CAM Status field set to Unacknowledged Event by Host

2) A return status of Unacknowledged Event by Host.

H) The SIM may rectify fault/failure for the HA and bring the HA to a usable state once again. The
recovery actions that the SIM employs are vendor specific but the SIM/HA responses to connects are
specified for the fault/failure recovery period. The term "fault/failure recovery period" shall mean
from the SIMs initial recovery action (e.g., the first step done by the SIM to correct the HA
fault/failure) to the SIM/HA being able to comply to this standard for an enabled Host Target Mode
LUN.

During the fault/failure recovery period the SIM/HA shall respond to connects in one of the following
ways:

1) No response to selections (selection timeout) until the recovery period ends.

2) SCSI-2 BUSY status in response to connections until the recovery period ends.

3) No response to selections (selection timeout) for a period of time then SCSI-2 BUSY status in
response to connections until the recovery period ends.

I) The state of the SIM/HA shall be reflected in the response to PATH INQUIRY CCBs (see Clause
11.7.5 Path Inquiry for further details).

Note 25
The Host Target Mode LUN is not disabled unless the Host Target Mode peripheral driver explicitly does a disable LUN
function.

Acknowledgment of this event by the Host Target Mode peripheral driver shall be accomplished when
the SIM receives a NOTIFY ACKNOWLEDGE CCB for this LUN with the Sequence Identifier field equal
to the sequence identifier of the IMMEDIATE NOTIFY CCB for this event.

The Host Target Mode peripheral driver shall recognize that this event is analogous to a power off of the
HA. The Host Target Mode peripheral driver may disable the LUN or may try to continue processing
(e.g., determine if the SIM has brought the HA to a usable state) or may try to continue processing and
then disable the LUN.

The Host Target Mode peripheral driver shall determine through the Path Inquiry function if the SIM has

X3T10/990D revision 3

dpANS Common Access Method - 3
182

brought the HA to a usable state. If the SIM has brought the HA to usable state again the Host Target
Mode peripheral driver shall treat this condition as a power on/reset of the I_T_L or I_T_L_Q.

Note 26
The Host Target Mode peripheral driver should respond with CHECK CONDITION status and UNIT ATTENTION sense key in
response to REQUEST SENSE command for the first command received except for INQUIRY and REQUEST SENSE
commands for this I_T_L or I_T_L_Q. The Host Target Mode peripheral driver should ensure that there are ACCEPT TARGET
I/O CCBs available to the SIM/HA before acknowledging the event if processing with the SIM/HA is to be resumed.

12.3.5 IMMEDIATE NOTIFY CCB

The supplier of the XPT shall define the IMMEDIATE NOTIFY CCB structure as follows:

typedef struct ccb_immed_notify3
{

CCB_HEADER3 cam_ch; /* Header information fields */
void *reserved; /* Reserved pointer for compatibility */
void (*cam_cbfnot)(); /* Callback on notification function */
CAM_U8 *cam_sense_ptr; /* Pointer to the sense data buffer */
CAM_U8 cam_sense_len; /* Num of bytes in the Autosense buf */
CAM_U32 cam_initiator_id[2]; /* ID of Initiator that selected */
CAM_U16 cam_seq_id; /* Sequence Identifier */
CAM_U8 cam_msg_code; /* Message Code */
CAM_U8 cam_msg_args[7]; /* Message Arguments */

} CCB_IMMED_NOTIFY3;

12.3.5.1 Member Descriptions for IMMEDIATE NOTIFY CCB

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_IMMED_NOTIFY function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

X3T10/990D revision 3

dpANS Common Access Method - 3
183

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

− cam_flags;
The following cam_flags are valid for this function. Refer to Clause 11.8.1.1 for bit defines and bit
descriptions.

• Sense buffer pointer (CAM_SNS_BUF_PHYS);

− (*cam_cbfnot)();
This member shall contain the address of the host target mode peripheral
driver’s immediate notification routine.

− *cam_sense_ptr;
The Pointer to Sense Buffer member shall contain a pointer to a buffer having minimum of 18 bytes.

− cam_sense_len;
The Sense Buffer Length member shall be the length of the sense buffer. The length shall be at
least 18.

− cam_initiator_id[2];
Initiator identifier member is the SCSI BUS ID of the Initiator that selected the SIM/HA. This
member is an array of 2 CAM_U32s to contain the SCSI target specifier. The cam_initiator_id[0]
member shall contain the lower 32 bits (least significant portion) of the SCSI target specifier. . The
cam_initiator_id[1] member shall contain the upper 32 bits (most significant portion) of the SCSI
target specifier.

cam_seq_id;
Sequence identifier member is used to store the immediate notify sequence
identifier.

cam_msg_code;
The Message Code member is used to store the SCSI message code for received messages.

− cam_msg_args[7];
The Message Arguments member is used to store SCSI message arguments received.

12.3.5.2 Returns for IMMEDIATE NOTIFY

The following are the only possible CAM Status values for the IMMEDIATE NOTIFY CCB passed to the
SIM/HA from the Host Target Mode peripheral driver:
− Invalid Request - Indicates that the CCB has invalid field(s).
− Invalid Path ID - Indicates the Path ID is not known.
− Invalid Target ID - Indicates the Target ID is not that of the target device.
− Invalid LUN ID - Indicates the Target LUN is not in the valid range for LUNs.

The following are the only possible CAM Status values for the IMMEDIATE NOTIFY CCB passed from

X3T10/990D revision 3

dpANS Common Access Method - 3
184

the SIM/HA to the Host Target Mode peripheral driver:
− No HA Detected
− Nexus Not Established
− Message Received
− Unavailable Resource

12.3.6 NOTIFY ACKNOWLEDGE CCB

The supplier of the XPT shall define the IMMEDIATE NOTIFY CCB structure as follows:

Typedef struct ccb_notify_ack3
{

CCB_HEADER3 cam_ch; /* Header information fields */
CAM_U16 cam_seq_id; /* Sequence Identifier */
CAM_U8 cam_event; /* Event */
CAM_U8 cam_rsvd;

} CCB_NOTIFY_ACK3;

12.3.6.1 Member Descriptions for NOTIFY ACKNOWLEDGE CCB

The following lists the members of the NOTIFY ACKNOWLEDGE CCB

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_NOTIFY_ACK function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

X3T10/990D revision 3

dpANS Common Access Method - 3
185

− cam_flags;
There are no cam_flags valid for this function. Refer to Clause 11.8.1.1 for bit defines and bit
descriptions.

− cam_seq_id;
The Sequence Identifier member is the sequence event identifier which is being acknowledged.

− cam_event;
This member contains bit settings as described to indicate special handling of the requested function.
 The Event member is used for acknowledgement of events whose notifications is delivered buy the
Asynchronous Event mechanism (BUS RESET and BUS DEVICE RESET message).

There is one flag defined for this member. The flag shall be defined as follows:
#define CAM_RESET_CLEARED 0x80 /* Reset Cleared */

12.3.6.2 Returns for NOTIFY ACKNOWLEDGE

The following are the only possible CAM Status values for the NOTIFY ACKNOWLEDGE CCB passed to
the SIM/HA from the Host Target Mode peripheral driver:
− Request Complete without Error - Indicates that the event has been acknowledged by the SIM/HA.
− Invalid Request - Unknown Sequence Identifier
− Invalid Path ID - Indicates the Path ID is not known.
− Invalid Target ID - Indicates the Target ID is not that of the target device.
− Invalid LUN ID - Indicates the Target LUN is not in the valid range for LUNs.

12.3.7 Enable target mode LUN for host target mode

It is recommended that the SIM/HA reserve LUN 0 for Asynchronous Event Notification. While it is not a
requirement, it is a suggestion due to the increased complexity required to handle both Host Target Mode
and AENs. If the SIM/HA reserves LUN 0 for AENs then it shall return the CAM Status of LUN Already
Enabled for all ENABLE LUN CCBs for LUN 0.

When a peripheral driver wishes to enable a LUN for Host Target Mode it shall perform the following
tasks:

A) Issue a Path Inquiry to the SIM/HA to determine what features and options it supports.

B) If the Host Target Mode peripheral driver requires disconnecting from the SCSI bus after receiving a
CDB, supports optional immediate notify message processing or the peripheral driver wishes to
support tagged commands, it shall use the information returned from the PATH INQUIRY CCB to
determine whether the SIM/HA supports these capabilities. It is recommended that the Host Target
Mode peripheral driver return for the INQUIRY command data that reflects the features of the
SIM/HA. These features include Wide Bus 32, Wide Bus 16, and Synchronous Data Transfers and
are obtained from the PATH INQUIRY CCB. If the SIM/HA supports Tag Queuing and the Host
Target Mode peripheral driver wishes to support the feature, it shall be reflected in INQUIRY data.

X3T10/990D revision 3

dpANS Common Access Method - 3
186

C) The Host Target Mode peripheral driver shall issue the SET ASYNCHRONOUS CALLBACK CCB for
each LUN that it supports to register for bus reset and bus device reset.

Note 27
The peripheral driver should prepare, if necessary, to handle the Contingent Allegiance condition on a per initiator basis.
Therefore the peripheral driver may need to do some initial setup for this.

D) The Host Target Mode peripheral driver shall issue the ENABLE LUN CCB to the SIM to register for
Host Target Mode with the SIM/HA. The ENABLE LUN CCB shall be setup as follows:

1) If the Host Target Mode peripheral driver requires disconnects and the SIM/HA supports
disconnects (as determined by the Disconnects Supported field in the PATH INQUIRY CCB),
the Disconnect Mandatory bit in the target mode specific CAM Flags field in the ENABLE LUN
CCB shall be set.

2) If the Host Target Mode peripheral driver supports tagged commands, and if the SIM/HA
supports Tagged Queuing, the Tag Queue Enable bit shall be set in the CAM Flags field of the
ENABLE LUN CCB.

3) A Host Target Mode peripheral driver shall clear the Host Target Mode flag indicating this is a
Host Target Mode ENABLE LUN CCB. The Host Target Mode peripheral driver shall set in the
Target Mode bits of the CAM Flags all other optional settings it wishes to support.

4) The Immediate Notify CCB list pointer field shall point to a list of CCBs (of at least one) available
to the SIM/HA to use for Host Target Mode event/message notification. It is recommended that
there should at least one CCB for each and every initiator that this Host Target Mode peripheral
driver expects to have a connection with. These CCBs are pre-allocated CCBs from the XPT
layer which are empty (NULL) except for the following:

a) The Address of this CCB and CAM Control Block Length, shall contain the proper
information as defined previously in this standard.

b) The Connect ID field shall be identical to the ENABLE LUN CCB Connect ID field.

c) The completion callback function shall be set to the Immediate Notify callback function. This
is the function in the Host Target Mode peripheral driver to be called when a event is
detected by the SIM/HA. These events are described in Clause 12.3.4.

d) The function code shall be set to IMMEDIATE NOTIFY.

e) The pointer to the sense buffer, and the length of the sense buffer shall be set. The sense
buffer length shall be a minimum of 18 bytes.

Note 28
See clause 12.3.12 (Disable of Host Target Mode LUN) for the mechanism on how to retrieve ownership of the IMMEDIATE
NOTIFY CCBs.

5) The Accept Target I/O CCB List Pointer field shall point to a list of CCBs (of at least one)
available to the SIM to use for Host Target Mode operation. These CCBs are pre-allocated

X3T10/990D revision 3

dpANS Common Access Method - 3
187

CCBs from the XPT layer which are empty (NULL) except for the following:

a) The Address of this CCB and CAM Control Block Length. These fields shall contain the
proper information as defined previously in this standard.

b) The completion callback function shall be set to the CDB received callback function. This is
the function in the Host Target Mode peripheral driver to be called when a CDB is received
error free from an initiator by the SIM.

c) The function code shall be set to Accept Target I/O.

d) If the CDB Pointer bit is set in the flags field of the ACCEPT TARGET I/O CCB, the cdb
pointer and cdb length field shall be set.

e) The pointer to the sense buffer, and the length of the sense buffer shall be set.. The sense
buffer length shall be a minimum of 18 bytes.

Note 29
For error conditions detected by the SIM/HA, the sense buffers in both the ACCEPT TARGET I/O and CONTINUE TARGET I/O
CCBs are used to report proper sense data back to the Host Target Mode peripheral driver (i.e., Memory/RAM failures that the
Host Target Mode peripheral driver has no knowledge of unless reported by the SIM/HA).

6) If Group 6 and/or 7 commands are to be supported by the Host Target Mode peripheral driver,
then the Group 6 and/or 7 Vendor Unique CDB Length fields shall contain the number of bytes
for these CDB group codes. If Group 6 and/or 7 commands are not supported by the Host
Target Mode peripheral driver, then the Group 6 and/or 7 Vendor Unique CDB Length fields shall
be equal to zero. If the Host Target Mode peripheral driver supports Group 6 and/or 7
commands, then the Host Target Mode peripheral driver shall ensure that all ACCEPT TARGET
I/O CCBs passed to the SIM/HA contain sufficient storage for the received CDB. If a vendor
unique command CDB is greater than the CDB field for the Accept Target I/O is desired, then
the CDB field shall contain a pointer to a buffer of sufficient length.

E) The Host Target Mode peripheral driver shall verify that the Enable LUN succeeded by checking that
the CAM Status in the ENABLE LUN CCB is set to Request Completed without Error.

F) The Host Target Mode peripheral driver may add to the list of ACCEPT TARGET I/O CCBs by
issuing an ACCEPT TARGET I/O CCB to the SIM/HA anytime after the LUN has been enabled.

G) The Host Target Mode peripheral driver may add to the list of IMMEDIATE NOTIFY CCBs by issuing
an IMMEDIATE NOTIFY CCB to the SIM/HA anytime after the LUN has been enabled.

Note 30
Once an IMMEDIATE NOTIFY CCB is given to an enabled Host Target Mode SIM/HA, ownership of the CCB remains with the
SIM/HA until the LUN is disabled.

When the SIM/HA receives Host Target Mode ENABLE LUN CCB with a non-zero number of Target
CCBs from the Host Target Mode peripheral driver, it shall do the following:

A) If the LUN is already enabled, the ENABLE LUN CCB shall be returned with a CAM Status of LUN

X3T10/990D revision 3

dpANS Common Access Method - 3
188

Already Enabled.

B) If the path id, target id or target LUN specified in the ENABLE LUN CCB are invalid then the Enable
LUN shall be failed with the proper CAM Status. (see Clause 12.3.8).

C) The SIM/HA shall check the Host Target Mode options in the target mode specific CAM Flags field of
the ENABLE LUN CCB. If specific target mode options are set in this field and the SIM does not
support these options, the ENABLE LUN CCB shall be returned with a CAM Status of Cannot
Provide Requested Capability.

D) The SIM/HA shall check whether the Tagged Queue Enable bit is set in the CAM Flags field of the
ENABLE LUN CCB. If the Tagged Queue Enable bit is set but the SIM does not support tagged
commands, the ENABLE LUN CCB shall be returned with a CAM Status of Cannot Provide
Requested Capability.

E) The SIM/HA shall check that the ENABLE LUN CCB Immediate Notify CCB Pointer field is non zero
and for each IMMEDIATE NOTIFY in the list, the Immediate Notify CCB Callback field is set. The
SIM/HA shall check that the pointer to the sense buffer is non NULL and length of the sense buffer is
a minimum of 18 bytes for each IMMEDIATE NOTIFY CCB. If either the ENABLE LUN CCB or any
IMMEDIATE NOTIFY CCB is found to be in error, then the ENABLE LUN CCB shall fail with Invalid
Request.

F) The SIM/HA shall check that the ENABLE LUN CCB Target CCB pointer field is non NULL and for
each ACCEPT TARGET I/O CCB in the list, the Accept Target I/O CCB Callback on Completion field
is set. The SIM/HA shall check that the pointer to the sense buffer is non NULL and length of the
sense buffer is a minimum of 18 bytes for each ACCEPT TARGET I/O CCB. If either the ENABLE
LUN CCB or an ACCEPT TARGET I/O CCB is found to be in error, then the ENABLE LUN CCB
shall fail with Invalid Request.

G) If preceding checks complete without error, the CAM Status of the ENABLE LUN CCB shall be set to
Request Completed without Error and the CCB returned.

12.3.8 ENABLE LUN CCB for host target mode

The supplier of the XPT shall define the ENABLE LUN CCB structure as follows:

typedef struct ccb_enable_lun3
{

CCB_HEADER3 cam_ch; /* Header information fields */
CAM_U16 cam_grp6_length; /* Group 6 Vendor Unique CDB Lengths */
CAM_U16 cam_grp7_length; /* Group 7 Vendor Unique CDB Lengths */
CAM_U8 *cam_immed_notify_list; /* Ptr to Immediate Notify CCB list */
CAMU32 cam_immed_notify_cnt; /* Number of Immediate Notify CCBs */
CAM_U8 *cam_accept_targ_list; /* Ptr to Accept Target I/O CCB list */
CAM_U32 cam_accept_targ_cnt; /* Number of Accept Target I/O CCBs */

} CCB_ENABLE_LUN;

X3T10/990D revision 3

dpANS Common Access Method - 3
189

12.3.8.1 Member Descriptions for ENABLE LUN CCB for host target mode

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_EN_LUN function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

− cam_flags;
The following are the valid cam_flags for this function. A complete description of the cam_flags bit
is in Clause 11.8.1.1.

• Phase-Cognizant mode (CAM_TGT_PHASE_MODE) shall be set to a 0 for Host Target mode.

• Tagged Queue Action Enable (CAM_QUEUE_ENABLE) - Indicates to the SIM/HA that the Host
Target Mode peripheral driver requires tagged queued operation.

• Disconnects Mandatory (CAM_DISCONNECT) - Indicates to the SIM/HA that any IDENTIFY
message received shall have the DiscPriv bit set. Clause 12.3.9.2 describes the SIM/HA
response if the DiscPriv bit is not set when Disconnect Mandatory CAM Flag indicates that it is
required.

− cam_grp6_length;
If the target peripheral driver supports Vendor Unique CDB having a group code of six (6), then the
CDB Length field of the CCB shall reflect the largest supported CDB.

− cam_grp7_length;
If the target peripheral driver supports Vendor Unique CDB having a group code of seven (7), then
the CDB Length field of the CCB shall reflect the largest supported CDB.

X3T10/990D revision 3

dpANS Common Access Method - 3
190

− cam_immed_notify_list;
The Pointer to Immediate Notify CCB List field shall contain a pointer to a list of IMMEDIATE
NOTIFY CCBs for the Enable LUN request. Refer to Table 15 for the format of the list.

− cam_immed_notify_cnt;
The Number of Immediate Notify CCBs shall be set to the number of CCBs (greater than zero)
pointed to by the Pointer to Immediate Notify CCB List field for the Enable LUN request.

− cam_accept_targ_list;
The Pointer to Accept Target CCB List member shall contain a pointer to a list of ACCEPT TARGET
I/O CCB(s) for the Enable LUN request. For the Disable LUN request, this field shall be zero.
Refer to Table 16 for the format of the list.

− cam_accept_targ_cnt;
The Number of Accept Target CCBs shall be set to the number of CCBs (greater than zero) pointed
to by the Pointer to Accept Target CCB List field for the Enable LUN request. For the Disable LUN
request this field shall be zero.

CAM-3 IMMEDIATE NOTIFY CCB List
CCB_IMMED_NOTIFY3 *
CCB_IMMED_NOTIFY3 *

:
CCB_IMMED_NOTIFY3 *

Table 15 CAM-3 IMMEDIATE NOTIFY CCB List

CAM-3 Accept Target I/O CCB List
CCB_EXEC_TARGET3 *
CCB_EXEC_TARGET3 *

:
CCB_EXEC_TARGET3 *

Table 16 CAM-3 ACCEPT TARGET I/O CCB List

12.3.8.2 Returns for ENABLE LUN

The following are the only possible CAM Status return values for the ENABLE LUN CCB:
− Request Completed without Error - Completed without error.
− LUN Already Enabled - The specified target mode LUN is already enabled.
− Invalid Path ID - Indicates the Path ID is not known.
− Invalid Target ID - Indicates the Target ID is not that of the peripheral device.
− Invalid LUN ID - Indicates the Target LUN is not in the valid range for LUNs.

X3T10/990D revision 3

dpANS Common Access Method - 3
191

− Invalid Request - For the ENABLE LUN CCB with a list count greater than zero, this CAM Status
indicates invalid field(s) within the CCB(s). For ENABLE LUN CCB with a list count of zero
(DISABLE LUN) see section 11.3.11.

− Cannot Provide Requested Capability
A) The SIM does not support target mode.
B) The Host Target Mode peripheral driver requires disconnects but the SIM does not support

disconnects.
C) The Host Target Mode peripheral driver requested the ability to run tagged but the SIM does not

support this feature.
− CCB Length Inadequate - Indicates more private data area is required in the CCB.

12.3.9 ACCEPT TARGET I/O and CONTINUE TARGET I/O CCB operation

12.3.9.1 SIM/HA ACCEPT TARGET I/O CCB acceptance

When the SIM/HA receives an ACCEPT TARGET I/O CCB from a Host Target Mode peripheral driver, it
shall do the following:

A) Check that the path id, target id, and target LUN specified in the ACCEPT TARGET I/O CCB is that
of an enabled LUN. If the LUN is not enabled, the CCB CAM Status and xpt_action() return status
shall be Path Invalid.

B) Check that the CDB completion function is set in the ACCEPT TARGET I/O CCB. If it is not set, the
CCB CAM Status and xpt_action() return status shall be Request Completed with Error.

C) Check that the pointer to the sense buffer is set, and that the sense buffer length is a minimum of 18
bytes. If not correct, the CCB CAM Status and xpt_action() return status shall be Request
Completed with Error.

D) Otherwise the xpt_action() return status shall be Request in Progress.

12.3.9.2 SIM/HA CDB reception

Error condition handling for CDB reception for Accept Target I/O functions are described in Clause
12.3.9.6.

When the SIM/HA requests a CDB on the SCSI bus for an enabled LUN in Host Target Mode, it shall do
the following:

A) If the disconnect privilege bit is not set in the IDENTIFY message and the Disconnect Mandatory bit
was set in the target mode specific CAM Flags field of the ENABLE LUN CCB, then the SIM shall go
to BUS FREE.

Note 31
Refer to Clause 12.3.4 (Use of the IMMEDIATE NOTIFY CCB) for reference in handling this condition. Additional
information can be found in ANSI X3.131-1994 regarding BUS FREE.

B) Otherwise, the SIM shall remove a CCB from the SIM's list of available ACCEPT TARGET I/O CCBs

X3T10/990D revision 3

dpANS Common Access Method - 3
192

which were made available with the Enable LUN or Accept Target I/O function. If there are no
CCBs available, then the SIM shall go to status phase and return BUSY SCSI status to the initiator.
The SIM/HA shall notify the Host Target Mode peripheral driver of this event by the Immediate Notify
mechanism described in Clause 12.3.4.

C) The ACCEPT TARGET I/O CCB shall be filled in with the following information:
1) The Target ID of this SIM/HA.
2) Bus ID of the SIM/HA.
3) LUN ID.
4) The CDB data received from the initiator.

− If the Group Code of the Operation Code of the CDB is Vendor Unique, the SIM/HA shall
transfer the number of CDB bytes specified in the ENABLE LUN CCB for this LUN. The
Group Code in the incoming CDB (either 6 or 7) shall select the Vendor Unique CDB size
from the ENABLE LUN CCB. If the selected CDB size (specified in the ENABLE LUN CCB)
is zero, the SIM/HA shall transfer only the CDB Operation Code. If the required number of
bytes is not transferred or the specified size for this Group Code is zero, then the SIM shall
set in the selected CCB the CDB bytes transferred in the area provided (see Clause 12.3.9.6
for further details).

Note 32
The SIM/HA does not set the CDB Length field in the ACCEPT TARGET I/O CCB with number of CDB bytes
transferred. The Group Code of the CDB is used by both the SIM/HA and the Host Target Mode peripheral
driver to determine the length of the CDB. The CDB Length field is used to indicate the amount of buffer area
is available for CDB bytes.

5) The SCSI Bus ID of the initiator that selected this SIM/HA in the Initiator ID field.

D) The CAM Status shall be set to CDB Received.

E) If this is a tagged request then the SIM/HA shall do the following:

1) The SIM/HA shall check whether the Host Target Mode peripheral driver has enabled tagged
queuing with the Enable LUN command for this LUN. If the Host Target Mode peripheral driver
does not support tagged commands then the SIM/HA shall send the MESSAGE REJECT
message for the Queue Tag message and continue as specified in ANSI X3.131-1994.

2) If the Host Target Mode peripheral driver does support tagged commands, the following shall
occur:

a) The Queue Tag message (HEAD OF QUEUE TAG, ORDERED QUEUE TAG, or SIMPLE
QUEUE TAG) shall be placed in the Tag Queue Action field of the ACCEPT TARGET I/O
CCB.

b) The queue tag value shall be placed in the tag id field of the ACCEPT TARGET I/O CCB.

F) If the Host Target Mode peripheral driver requires disconnects, the SIM/HA shall send the
DISCONNECT message and go to BUS FREE phase. If disconnects are not required (ENABLE LUN
CCB) but are allowed (IDENTIFY message) the SIM/HA should send the DISCONNECT message

X3T10/990D revision 3

dpANS Common Access Method - 3
193

and go to BUS FREE phase.

G) Call the Host Target Mode peripheral driver CDB completion callback function provided in the
ACCEPT TARGET I/O CCB Callback on Completion field.

Note 33
The SIM/HA handle SDTR and WDTR messages transparently.

12.3.9.3 Host peripheral driver CDB completion callback

When the Host Target Mode peripheral driver's CDB completion callback function is called, it shall do
the following:

A) Determine how it responds to the SCSI command specified in the CDB. The Host Target Mode
peripheral driver may use the same CCB (although this is not a requirement) for the Continue Target
I/O function, filling in the connect id, initiator id, function code, the data pointer (if needed), data
count (if needed), data direction (if any), the callback completion function, and the queue tag id if
running tagged. If a data transfer is required then the Direction bits shall be set in the CAM Flags
field of the CONTINUE TARGET I/O CCB. If disconnects are enabled, the Host Target Mode
peripheral driver may require a SAVE DATA POINTERS message and DISCONNECT message
after transferring some of the data. If the request is to be completed then the SEND_STATUS bit
shall be set in the CAM Flags field of the CONTINUE TARGET I/O CCB and the SCSI status field
shall contain the SCSI status to be returned to the initiator.

B) If a CHECK CONDITION SCSI status is to be returned to the initiator, then the Host Target Mode
peripheral driver shall setup and maintain the CONTINGENT ALLEGIANCE condition as specified in
ANSI X3.131-1994.

Note 34
Host Target Mode peripheral driver sense data always represents the current status of the Host Target Mode peripheral
driver.

C) The Host Target Mode peripheral driver shall then call the SIM/HA via xpt_action() passing the
CONTINUE TARGET I/O CCB.

D) On return from the xpt_action() call, the Host Target Mode peripheral driver shall check that the
return value from xpt_action() is Request in Progress. If a status other than Request in Progress is
returned, then the command could not be transferred to the SIM/HA (possibly due to a bus reset or
the receipt of a message). It is the responsibility of the Host Target Mode peripheral driver to handle
the condition correctly.

Note 35
Refer to Clause 12.3.4 (Use of the IMMEDIATE NOTIFY CCB) for additional information.

12.3.9.4 SIM/HA CONTINUE TARGET I/O CCB acceptance

Error condition handling for Data phase and Message phase for Continue Target I/O functions are
described in Clause 12.3.9.6.

X3T10/990D revision 3

dpANS Common Access Method - 3
194

When the SIM/HA receives a CONTINUE TARGET I/O CCB it shall do the following:

A) If the SIM/HA is recovering from a bus reset or bus device reset, or an Immediate Notify Condition
the CAM Status and the xpt_action() return status shall be set appropriately.

B) Check whether there are outstanding unacknowledged events for this I_T_L nexus, if there are any
the SIM/HA shall set the CAM Status and the xpt_action() return status to Unacknowledged Event
by Host and return.

C) Check that the path id, target id, and target LUN specified in the CONTINUE TARGET I/O CCB is
that of an enabled LUN. If the LUN is not enabled, the CCB CAM Status and xpt_action() return
status shall be Path Invalid.

D) Check that the callback on completion function is set in the CONTINUE TARGET I/O CCB. If it is
not set, the CCB CAM Status and xpt_action() return status shall be Request Completed with Error.

E) Check that the pointer to the sense buffer is set, and that the sense buffer length is a minimum of 18
bytes. If not correct, the CCB CAM Status and xpt_action() return status shall be Request
Completed with Error.

F) Otherwise, the SIM shall set the CAM Status and xpt_action() return value to Request in Progress.

G) If disconnects are not enabled, the SIM/HA shall perform the necessary phase transitions. If
disconnects are enabled, the SIM/HA shall reselect the initiator, when possible, to perform the
necessary phase transitions and reestablish the I_T_L or I_T_L_Q nexus. The order of the
operations that the SIM/HA shall perform is specified as follows:

1) If the Direction Bits are set specifying DATA In (data to initiator) or DATA Out (data from the
initiator) in the CAM Flags field of the CONTINUE TARGET I/O CCB, then data shall be
transferred (Data phase).

2) If the Send Status bit is set in the CAM Flags field of the CONTINUE TARGET I/O CCB, the
SIM/HA shall go to STATUS phase and complete the request with a COMMAND COMPLETE
message and go to BUS FREE phase..

3) If disconnects are enabled and the SEND_STATUS bit is not set in the CAM Flags field of the
CONTINUE TARGET I/O CCB, the SIM/HA shall send a SAVE DATA POINTER message and a
DISCONNECT message followed by a BUS FREE phase.

4) After all operations specified in the CCB has been transferred successfully, the Host Target
Mode peripheral driver's callback completion function in the CONTINUE TARGET I/O CCB shall
be called with a CAM Status of Request Completed without Error.

12.3.9.5 Host target mode peripheral driver continue target I/O callback

X3T10/990D revision 3

dpANS Common Access Method - 3
195

The Host Target Mode peripheral driver's Continue Target I/O callback completion function shall:

A) If the CAM Status is not Request Complete Without Error, then an error has occurred. The Host
Target Mode peripheral driver shall be responsible for forming sense data, if applicable and for
maintaining it. The sense data conditions are defined in ANSI X3.131-1994. The Host Target Mode
peripheral driver also shall be responsible for maintaining the CONTINGENT ALLEGIANCE
condition associated with the sense data.

B) If the request completed and the Host Target Mode peripheral driver has more data and/or status to
send to the initiator then a CONTINUE TARGET I/O CCB shall be sent to the SIM with the proper
fields set.

C) If status has been sent to the initiator then the Host Target Mode peripheral driver may reissue the
same CCB by calling the SIM/HA passing the same CCB. The CCB shall have all fields properly set
for the ACCEPT TARGET I/O CCB as specified in this document. The SIM/HA can now reuse this
CCB to accept a new connection for the CDB received.

D) If status has not been sent, then the Host Target Mode peripheral driver can reissue the CCB as a
CONTINUE TARGET I/O CCB after it has been set up.

12.3.9.6 Command reception errors and data phase errors handling

If the command Group code is not supported (Groups 3,4,6 or 7), or there were CDB length errors, or
there were errors in the incoming CDB that could not be handled transparently, the SIM/HA shall do the
following:

A) Set the proper Connect ID in the ACCEPT TARGET I/O CCB, and the Target ID of the initiator that
selected this SIM/HA in the Initiator ID field.

B) If the condition was an error in incoming the CDB, the SIM/HA shall form the SCSI-2 required 18
bytes of correct SCSI sense data and place it in the ACCEPT TARGET I/O CCB sense buffer. The
SIM/HA shall also indicate that sense data is valid by setting the Autosense flag in CAM Status and
set the SCSI Status field to CHECK CONDITION.

C) For a Tagged Queue I/O process:

Note 36
If the SIM/HA or the Host Target Mode peripheral driver has indicated that Queue Tags are not supported, the Queue Tag
message would have been rejected.

1) The Queue Tag message (HEAD OF QUEUE TAG, ORDERED QUEUE TAG, or SIMPLE
QUEUE TAG) is placed in the Tag Queue Action field of the ACCEPT TARGET I/O CCB.

2) The Queue Tag value shall be placed in the Tag ID field of the ACCEPT TARGET I/O CCB.

3) The Tagged Queue Action Enable bit shall be set in the CAM Flags field of the ACCEPT
TARGET I/O CCB.

X3T10/990D revision 3

dpANS Common Access Method - 3
196

D) Due to the variety of SIM/HA functionality and bus conditions, the SIM/HA shall release the SCSI
BUS in one of the following ways:

1) If the Host Target Mode peripheral driver required disconnects, the SIM/HA shall send a
DISCONNECT message and go to BUS FREE phase. If disconnects are not required but
are allowed (IDENTIFY message), the SIM/HA should send a DISCONNECT message and
go to BUS FREE phase.

If the SIM/HA disconnects from the bus, then the CAM Status in the ACCEPT TARGET I/O
CCB shall be set to Invalid CDB.

2) Cause an unexpected bus free. See ANSI X3.131-1994 for further details (BUS FREE).

If the SIM/HA causes an unexpected BUS FREE condition, then the CAM Status in the
ACCEPT TARGET I/O CCB shall be set to Unexpected Bus Free.

Note 37
The Unexpected Bus Free Cam status ends the I/O process and the Host Target Mode peripheral driver should
not try to terminate it.

E) Call back the Host Target Mode peripheral driver using the callback field within the ACCEPT
TARGET I/O CCB.

The Host Target Mode peripheral driver shall be responsible the creation and preservation Contingent
Allegiance condition if the CAM Status is not Unexpected Bus Free. If the CAM Status is not
Unexpected Bus Free, it shall also complete the bus transaction by sending a CONTINUE TARGET I/O
CCB to properly terminate this connection.

If the SIM/HA detects Data phase, or Message Phase, or STATUS phase errors that cannot be handled
transparently or any other unrecoverable errors, (except timeouts) while processing a CONTINUE
TARGET I/O CCB, the SIM/HA shall:

A) Set the proper Connect ID in the CONTINUE TARGET I/O CCB, and the Target ID of the initiator
that selected this SIM/HA in the Initiator ID field.

B) The SIM/HA shall form the SCSI-2 required 18 bytes of correct SCSI sense data and place it in the
CONTINUE TARGET I/O CCB sense buffer. The SIM/HA shall also indicate that sense data is valid
by setting the Autosense flag in CAM Status and set the SCSI Status field to CHECK CONDITION.

C) For a Tagged Queue I/O process:

1) The queue tag value shall be placed in the Tag ID field of the CONTINUE TARGET I/O CCB.

2) The Tagged Queue Action Enable bit shall be set in the CAM Flags field of the CONTINUE
TARGET I/O CCB.

D) Due to the variety of SIM/HA functionality and bus conditions, the SIM/HA shall release the SCSI
BUS in one of the following ways:

X3T10/990D revision 3

dpANS Common Access Method - 3
197

1) If the Host Target Mode peripheral driver required disconnects, the SIM/HA shall send a
DISCONNECT message and go to BUS FREE phase. If disconnects are not required but are
allowed (IDENTIFY message), the SIM/HA should send a DISCONNECT message and go to
BUS FREE phase. If the SIM/HA disconnects from the bus, then the CAM Status in the
CONTINUE TARGET I/O CCB shall be set to one of the following:

a) Target Bus Phase Sequence Failure

b) Uncorrectable Parity Error Detected

c) Initiator Detected Error

2) Cause an unexpected bus free. See ANSI X3.131-1994 for further details (BUS FREE).

If the SIM/HA causes an unexpected BUS FREE condition, then the CAM Status in the
CONTINUE TARGET I/O CCB shall be set to Unexpected Bus Free.

Note 38
The Unexpected Bus Free Cam status ends the I/O process and the Host Target Mode peripheral driver should not
try to terminate it.

E) Call back the Host Target Mode peripheral driver using the callback field within the CONTINUE
TARGET I/O CCB.

The Host Target Mode peripheral driver shall be responsible the creation and preservation
Contingent Allegiance condition if the CAM Status is not Unexpected Bus Free. If the CAM Status is
not Unexpected Bus Free, it shall also complete the bus transaction by sending a CONTINUE
TARGET I/O CCB to properly terminate this connection.

12.3.9.7 ACCEPT and CONTINUE TARGET I/O CCB timeouts

For connections that have not been fully identified the SIM/HA shall use its default timeout value. Fully
identified connections shall mean the following:
− Initial connection:

The IDENTIFY message has been processed for this connection without error with the ATN signal
false.

The IDENTIFY message and the Queue Tag messages has been processed for this connection
without error with the ATN signal false.

− Reconnection:
Shall be fully identified by a valid CONTINUE TARGET I/O CCB.

For initial connections if the SIM/HAs default timeout period expires without full identification of the
connection, the SIM/HA shall behave as specified in Clause 12.3.4.1.1. When the initial connection has
been fully identified the SIM/HA shall use the ACCEPT TARGET I/O CCB Timeout field value minus in
seconds (if any) the selection time to full connection identification.

X3T10/990D revision 3

dpANS Common Access Method - 3
198

The reconnection timeout value shall be the valid CONTINUE TARGET I/O CCBs Timeout Value field.

Timeout periods specified in the CCB(s) shall be measured in seconds and shall be handled in the
following manner when the connection has been fully identified:

A) ACCEPT TARGET I/O CCB Timeouts for Initial Connections

1) The timeout period shall be from SIM/HA selection to just before Host Target Mode peripheral
driver callback.

Note 39
For this example Disconnects are used.
− When the SIM/HA is selected by an initiator, the timeout period starts.
− After the IDENTIFY message(s) and optional Queue Tag messages are received the SIM/HA goes to

COMMAND phase.
− The CDB is received and SIM/HA disconnects.
− When the SIM/HA disconnects from the bus (DISCONNECT message and BUS FREE phase).
− CCB Timeout Value - connection identification time (seconds) is positive, timeout period ends, no action is

taken.
− The SIM/HA calls back the Host Target Mode peripheral driver.
− If the timer expired before the callback then this ACCEPT TARGET I/O CCB represents a timeout condition.

For this example Disconnects are not used.
− When the SIM/HA is selected by an initiator, the timeout period starts.
− After the IDENTIFY message(s) and optional Queue Tag messages are received the SIM/HA goes to COMMAND

phase.
− The CDB is received but SIM/HA is not allowed to disconnect.
− CCB Timeout Value - connection identification time (seconds) is positive, timeout period ends, no action is

taken.
− The SIM/HA calls back the Host Target Mode peripheral driver.
− If the timer expired before the callback then this ACCEPT TARGET I/O CCB represents a timeout condition.

2) If the timeout period expires for the ACCEPT TARGET I/O CCB, the SIM/HA shall set the CAM
Status to Command Timeout.

3) The proper Connect ID shall be set in the ACCEPT TARGET I/O CCB. The SCSI BUS ID of the
initiator that selected this SIM/HA shall be set in the Initiator ID field.

4) The SIM/HA shall cause an unexpected bus free. See ANSI X3.131-1994 for further details
(BUS FREE).

5) Call back the Host Target Mode peripheral driver using the callback field within the ACCEPT
TARGET I/O CCB.

B) CONTINUE TARGET I/O CCB Timeouts for Reconnections

1) The time period shall be measured from SIM/HA reselection of the initiator to just before Host
Target Mode peripheral driver call back.

2) If the timeout period expires for the CONTINUE TARGET I/O CCB, the SIM/HA shall set the

X3T10/990D revision 3

dpANS Common Access Method - 3
199

CAM Status to Command Timeout.

3) If a data transfer has been specified for this CCB, the Residual Length shall be set to the number
of bytes not transferred.

4) The SIM/HA shall cause an unexpected bus free. See ANSI X3.131-1994 regarding unexpected
bus free.

5) Call back the Host Target Mode peripheral driver using the callback field within the CONTINUE
TARGET I/O CCB.

The Host Target Mode peripheral driver shall be responsible for forming and maintaining sense data for
all timeouts.

12.3.10 ACCEPT TARGET I/O CCB

The supplier of the XPT shall define the ACCEPT TARGET I/O CCB structure as follows:

typedef struct ccb_accept_targ3
{
CCB_HEADER3 ccb_header3; /* Header information fields */
CCB_HEADER3 *cam_next_ccb; /* Ptr to the next CCB for action */
CAM_VOID_OFFSET *cam_req_map; /* Ptr for mapping info on the Req. */
CAM_VOID (*cam_cbfcnp)(); /* Callback on completion function */
CAM_U8 *cam_data_ptr; /* Pointer to the data buf/SG list */
CAM_U32 cam_dxfer_len; /* Data xfer length */
CAM_U8 cam_cdb_len; /* Number of bytes for the CDB */
CAM_U8 cam_reserved1; /* Reserved for alignment */
CAM_U16 cam_sglist_cnt; /* Num. of scatter gather list entries */
CAM_U32 cam_vu_field; /* Vendor Unique field/
CAM_U8 cam_scsi_status; /* Returned SCSI device status */
CAM_U8 cam_reserved2; /* Reserved for alignment */
CAM_U16 cam_sense_resid; /* Autosense resid length: 2's comp */
CAM_I32 cam_resid; /* Transfer residual length: 2's comp */
CAM_U32 cam_timeout; /* Timeout value */
CDB_UN3 cam_cdb_io; /* Union for CDB bytes/pointer */
CAM_U8 *cam_msg_ptr; /* Pointer to the message buffer */
CAM_U16 cam_msgb_len; /* Num. of bytes in the message buf */
CAM_U16 cam_vu_flags; /* Vendor unique flags */
CAM_U8 cam_tag_action; /* What to do for tag queuing */
CAM_U8 cam_reserved3[3]; /* Reserved for alignment */
CAM_U32 cam_tag_id; /* Tag ID */
CAM_U32 cam_initiator_id[2]; /* Initiator ID target operations */
CAM_U16 cam_sense_len; /* Number of bytes to request for Autosense */
CAM_U8 cam_reserved4; /* Reserved for alignment */
CAM_U32 cam_sim_sense[16]; /* Working area for a SIM for retrieving sense data */
CAM_U8 cam_sense_buf[256]; /* Sense data buffer */

} CCB_ACCEPT_TARG3;

X3T10/990D revision 3

dpANS Common Access Method - 3
200

12.3.10.1 Member Descriptions for ACCEPT TARGET I/O

− Required information for the CCB_HEADER3 members that shall be set by the originator of the
CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_ACCEPT_TARG function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

− cam_flags;
The following are the valid cam_flags for this function. A complete description of the cam_flags bit
is in Clause 11.8.1.1.
• CDB is a Pointer (CAM_CDB_POINTER) - Indicates the CDB contained in the ACCEPT

TARGET I/O CCB is a pointer. The CDB Length field shall indicate the size of the CDB buffer.

• CDB Physical (CAM_CDB_PHYS) - Indicates whether the pointer address is virtual or physical.

• Sense Buffer (CAM_SNS_BUF_PHYS) - Indicates whether the pointer address is virtual or
physical.

• Disable Callback on Completion (CAM_DIS_CALLBACK).

For all other member descriptions refer to Clause 11.8.1.1. The ACCEPT TARGET I/O CCB has the
exact same definition as the EXECUTE SCSI I/O CCB.

12.3.10.2 Returns for ACCEPT TARGET I/O

The following lists the possible CAM Status values of the ACCEPT TARGET I/O CCB:
− Invalid Request - Indicates that the CCB was sent to a disabled LUN.

X3T10/990D revision 3

dpANS Common Access Method - 3
201

− CDB Received - Indicates that the CCB contains a CDB received from an initiator.
− Invalid CDB - Target Mode CDB error
− Request Aborted by Host
− SCSI Bus Reset Sent/Received - This SIM/HA is recovering from a bus reset.
− Bus Device Reset Sent - This SIM/HA is recovering from a BUS DEVICE RESET message.
− Command Timeout - Time period specified expired
− Path Invalid
− Unexpected Bus Free

12.3.11 CONTINUE TARGET I/O CCB

The supplier of the XPT shall define the CONTINUE TARGET I/O CCB structure as follows:

typedef struct ccb_cont_targ3
{
CCB_HEADER3 ccb_header3; /* Header information fields */
CCB_HEADER3 *cam_next_ccb; /* Ptr to the next CCB for action */
CAM_VOID_OFFSET *cam_req_map; /* Ptr for mapping info on the Req. */
CAM_VOID (*cam_cbfcnp)(); /* Callback on completion function */
CAM_U8 *cam_data_ptr; /* Pointer to the data buf/SG list */
CAM_U32 cam_dxfer_len; /* Data xfer length */
CAM_U8 cam_cdb_len; /* Number of bytes for the CDB */
CAM_U8 cam_reserved1; /* Reserved for alignment */
CAM_U16 cam_sglist_cnt; /* Num. of scatter gather list entries */
CAM_U32 cam_vu_field; /* Vendor Unique field/
CAM_U8 cam_scsi_status; /* Returned SCSI device status */
CAM_U8 cam_reserved2; /* Reserved for alignment */
CAM_U16 cam_sense_resid; /* Autosense resid length: 2's comp */
CAM_I32 cam_resid; /* Transfer residual length: 2's comp */
CAM_U32 cam_timeout; /* Timeout value */
CDB_UN3 cam_cdb_io; /* Union for CDB bytes/pointer */
CAM_U8 *cam_msg_ptr; /* Pointer to the message buffer */
CAM_U16 cam_msgb_len; /* Num. of bytes in the message buf */
CAM_U16 cam_vu_flags; /* Vendor unique flags */
CAM_U8 cam_tag_action; /* What to do for tag queuing */
CAM_U8 cam_reserved3[3]; /* Reserved for alignment */
CAM_U32 cam_tag_id; /* Tag ID */
CAM_U32 cam_initiator_id[2]; /* Initiator ID target operations */
CAM_U16 cam_sense_len; /* Number of bytes to request for Autosense */
CAM_U8 cam_reserved4; /* Reserved for alignment */
CAM_U32 cam_sim_sense[16]; /* Working area for a SIM for retrieving sense data */
CAM_U8 cam_sense_buf[256]; /* Sense data buffer */

} CCB_CONT_TARG3;

12.3.11.1 Member Descriptions for CONTINUE TARGET I/O

− Required information for the CCB_HEADER3 members that shall be set by the originator of the

X3T10/990D revision 3

dpANS Common Access Method - 3
202

CCB.
• cam_func_code;
 This member shall contain the XPT_CAM_3_CCB function code.

• cam3_func_code;

This member shall contain the XPT_CONT_TARG function code;

• port_id;
This member shall contain a port number (e.g., SCSI bus number).

• addr_spec1;
 This member shall contain the SCSI target specifier.

• addr_spec2;

This member shall contain the SCSI Logical Unit specifier.

• cam_sim_generation;
This member shall reflect the SIM bind generation number that was returned for the current bind
operation.

• cam_sim_bhandle;
This member shall reflect the SIM bind handle that is return for the current bind operation.

− cam_flags;
The following are the valid cam_flags for this function. A complete description of the cam_flags bit
is in Clause 11.8.1.1.
• Direction Out - Sending data from the target peripheral device to the initiator.

◊ SG List/Data Buffer Pointer and Data Transfer Length fields shall be filled in.

• Direction In - Receiving data from the initiator to the target peripheral device.
◊ SG List/Data Buffer Pointer and Data Transfer Length fields shall be filled in.

• No Direction - No data phase required.

• Scatter/Gather - Indicates that the Data Buffer Pointer is a pointer to a scatter/gather list.

• Tagged Queue Action Enable - Indicates this is a tagged request and the Tag ID shall be filled in.

• Sense Buffer - Indicates whether the pointer address is virtual or physical.

• Callback on Completion.

For all other member descriptions refer to Clause 11.8.1.1. The ACCEPT TARGET I/O CCB has the
exact same definition as the EXECUTE SCSI I/O CCB.

12.3.11.2 Returns for CONTINUE TARGET I/O

X3T10/990D revision 3

dpANS Common Access Method - 3
203

The following lists the possible CAM Status values of the CONTINUE TARGET I/O CCB:
− Invalid Request - Indicates that the CCB was sent to a disabled LUN.
− Request in Progress - Request accepted by SIM/HA.
− Request Completed with Error - Indicates that the CCB is not properly setup.
− Request Aborted by Host.
− Request Completed without Error - Request completed successfully.
− SCSI Bus Reset Sent/Received - This SIM/HA is recovering from a bus reset.
− No HA Detected - The HA is no longer responding.
− Bus Device Reset Sent - This SIM is recovering from a BUS DEVICE RESET message.
− Target Bus Phase Sequence Failure
− Uncorrectable Parity Error Detected
− Initiator Detected Error
− Unexpected Bus Free
− Target Selection Timeout - Initiator failed to response to selection
− Command Timeout - Time period specified expired
− Path Invalid
− Unacknowledged Event by Host - An event has not been acknowledged by the Host Target Mode

peripheral driver.

12.3.12 Disable of a host target mode LUN

When a Host Target Mode peripheral driver wishes to disable Host Target Mode for an enabled LUN, it
shall perform the following tasks:

A) Issue an ABORT CCB for all ACCEPT TARGET I/O CCBs which were sent to the SIM, and have not
been returned.

B) Wait for processing of all CONTINUE TARGET I/O CCBs sent to the SIM to be completed.

C) Once all CCBs are owned by the Host Target Mode peripheral driver, it shall issue an ENABLE LUN
CCB to the SIM/HA with the Number of Target CCBs equal to zero (indicating the LUN should be
disabled).

D) Upon successful completion of the disable for the Host Target Mode LUN (indicated by a CAM
Status if Request Completed without Error) the Host Target Mode peripheral driver shall own all
IMMEDIATE NOTIFY CCBs it sent to the SIM/HA. The Host Target Mode peripheral driver may now
free the CCBs if it so desires.

When the SIM receives an ENABLE LUN CCB with the Number of Target CCBs equal to zero (disable
LUN) it shall perform the following tasks:

A) If the LUN was never enabled, then the ENABLE LUN CCB shall be returned with a CAM Status of
Invalid Request.

B) If there are ACCEPT TARGET I/O CCBs or CONTINUE TARGET I/O CCBs still owned by the SIM,

X3T10/990D revision 3

dpANS Common Access Method - 3
204

then the disable LUN request shall fail with Request Completed with Error.

C) The SIM/HA unacknowledged event list shall be cleared.

D) All subsequent ACCEPT TARGET I/O and CONTINUE TARGET I/O CCBs received by the SIM prior
to the receipt of another ENABLE LUN CCB that enables the LUN shall be returned with a CAM
Status of Invalid Request.

12.3.13 Exception conditions

12.3.13.1 BUS RESET

When a bus reset (hard reset) is sent or received, the following sequence of events shall occur:

A) The SIM/HA shall:

1) Clear any outstanding target I/O's owned by the SIM/HA for the bus that suffered the reset by
calling the callback completion function with a CAM Status of SCSI Bus Reset Sent/Received.
Requests owned by the SIM/HA are:

a) Any I/O currently on the bus.

b) Any Continue Target I/O requests which are currently queued in the SIM/HA.

2) Cause the Host Target Mode peripheral driver asynch callback function to be called as part of
the normal asynch callback notification.

3) All initial connections shall complete with a SCSI status of BUSY, until the SIM/HA receives an
applicable NOTIFY ACKNOWLEDGE CCB.

4) All CONTINUE TARGET I/O CCBs that are received by the SIM while the reset recovery is in
progress shall be returned with a CAM Status of SCSI Bus Reset Sent/Received.

5) Reset recovery shall be complete when the Host Target Mode peripheral driver issues a NOTIFY
ACKNOWLEDGE CCB with the Reset Cleared field set, and the Sequence Identifier equal to
zero.

6) The SIM/HA unacknowledged event list shall be cleared for all registered LUNs on the bus which
experienced the bus reset.

B) The Host Target Mode peripheral driver asynch callback routine shall:

1) Clear all pending sense data.

2) Cease processing on any outstanding requests owned by the Host Target Mode peripheral driver.
 These are ACCEPT TARGET I/O or CONTINUE TARGET I/O CCBs being processed by the
Host Target Mode peripheral driver.

X3T10/990D revision 3

dpANS Common Access Method - 3
205

3) For all initiators, sense data shall be formed and saved indicating the UNIT ATTENTION
condition caused as a result of the bus reset. See ANSI X3.131-1994 for further details on
forming and clearing the contingent allegiance condition.

4) Issue a NOTIFY ACKNOWLEDGE CCB with the Reset Cleared field set and the Sequence
Identifier equal to zero.

5) If necessary, the Host Target Mode peripheral driver shall issue/reissue ACCEPT TARGET I/O
CCB(s) so that the SIM/HA can resume normal processing.

12.3.13.2 BUS DEVICE RESET message

When a BUS DEVICE RESET message is sent/received, the following sequence of events shall occur:

A) The SIM/HA shall:

1) Clear any outstanding target I/O's owned by the SIM/HA for the target that received the BUS
DEVICE RESET message by calling the callback completion function with a CAM Status of Bus
Device Reset. Requests owned by the SIM/HA are:

a) Any I/O currently on the bus.

b) Any Continue Target I/O requests which are currently queued in the SIM.

2) Cause the Host Target Mode peripheral driver asynch callback function to be called as part of
the normal asynch callback notification.

3) All initial connections shall complete with a SCSI status of BUSY, until the SIM/HA receives an
applicable NOTIFY ACKNOWLEDGE CCB.

4) All CONTINUE TARGET I/O CCBs that are received by the SIM while the reset recovery is in
progress shall be returned with a CAM Status of Bus Device Reset.

5) Reset recovery shall be complete when the Host Target Mode peripheral driver issues an
NOTIFY ACKNOWLEDGE CCB with the Reset Cleared field set and the Sequence Identifier
equal to zero.

6) The SIM/HA unacknowledged event lists shall cleared for all enabled LUNs on the target that
received the BUS DEVICE RESET message.

B) The Host Target Mode peripheral driver asynch callback routine shall:

1) Clear all pending sense data.

2) Cease processing on any outstanding requests owned by the Host Target Mode peripheral driver.
 These are ACCEPT TARGET I/O or CONTINUE TARGET I/O CCBs being processed by the

X3T10/990D revision 3

dpANS Common Access Method - 3
206

Host Target Mode peripheral driver.

3) For all initiators, sense data shall be formed and saved indicating the UNIT ATTENTION
condition caused as a result of the bus reset. See ANSI X3.131-1994 for further details on
forming and clearing the contingent allegiance condition.

4) Issue a NOTIFY ACKNOWLEDGE CCB with the Reset Cleared field set and the Sequence
Identifier equal to zero.

5) If necessary, the Host Target Mode peripheral driver shall issue/reissue ACCEPT TARGET I/O
CCB(s) so that the SIM/HA can resume normal processing.

12.3.14 CDB reception on a non enabled LUN

When a CDB is received by a SIM/HA for a LUN that is not enabled, one of the following sequences shall
occur depending on the command received:

A) INQUIRY Command
If the SIM receives a CDB for the INQUIRY command for a non-enabled LUN, the SIM shall return
only byte 0 of the inquiry data set to 23H:
− The peripheral qualifier is set to 01B indicating the target is capable of supporting a physical

device on this logical unit, however the physical device is not currently connected to this LUN.
− The peripheral device type set to 3H indicating Processor device type.

B) REQUEST SENSE Command
If a REQUEST SENSE command is received for a non-enabled LUN, the SIM shall return sense
data in which the sense key shall be set to ILLEGAL REQUEST and the additional sense code shall
be set to LOGICAL UNIT NOT SUPPORTED.

C) All other commands
If a command other than INQUIRY or REQUEST SENSE is received for a non-enabled LUN, the
SCSI status returned shall be CHECK CONDITION. Any subsequent REQUEST SENSE command
shall behave as in Item B.

12.3.15 Retrieving unused ACCEPT TARGET I/O CCBs from the SIM

If a Host Target Mode peripheral driver wishes to retrieve an ACCEPT TARGET I/O CCB which was sent
to the SIM (probably due to the lack of resources) the Host Target Mode peripheral driver may issue an
ABORT CCB. This shall result in the CDB completion function of the ACCEPT TARGET I/O CCB being
called with a CAM Status of Request Aborted by Host.

