
Netgraph in 5 and beyond

What Netgraph is, what changed, and why.



Netgraph's goals

● Simple modules with minimal overhead code.
(don't worry about the infrastructure, just
worry about what you are trying to do).

● Able to prototype a node type in userland.
This means the userland interface must be
not too dissimilar to the internal node
interface.

● Allow arbitrary orderring of nodes.
● Allow a sysad to configure a node without
having to install a utility for every node type.

● Able to connect many nodes to one node.



Netgraph's goals (cont.)

● Data in transit to have minimal delays at the
expense of more expensive configuration
operations.

● Ability to pair metadata with inline data. (e.g.
Packet priority)

● Able to be connected to other system
components as a source or sink of data.

● In SMP systems, data travelling in opposite
directions should be able to pass without
causing problems (at least, none from the
framework). (New)



Netgraph's goals (cont.)

● No built-in concept of up or down.
● Ability to address any node for configuration.
● Ability for a node to generate configuration
requests for another node.

● Ability to associate a node with a meaningful
name.

● Nodes types to be loadable at run time.
● Netgraph framework to be loadable at run
time.

● Data moving between nodes could be
immediately used or queued. (node decides).



A sample configuration.
(Appears graph like, hmmmm).

KERNEL

USERSPACE

prototype



Original Design.

● Based on the original BSD scheme of spl()
with nodes generally running at netisr()
priority level with code associated with
hardware generally running at splimp() level.

● Implied that we needed to queue data from
edge nodes and internal nodes could pass
data directly (probably).

● Relied on there only being one processor in
the code at one time.

● Nodes could force queueing if the had a
reason to do so.



Other influences.

● I always liked the modularity of sysV
STREAMS.

● I didn't like some of the limitations as to what
you could do with them, e.g. It was heavily
bases on a protocol “stack” idea with inbuilt
ideas about “up” and “down”.

● I didn't like having to disassemble the stack
to configure nodes.

● I didn't like the requirement to queue items
between elements.



Other influences.

● The BSD modules had flexible interfaces but
they had been warped so much byu special
cases that they were no longer general
enough.

● The BSD interfaces were different at each
level.

● Needed a new idea. In particular I wanted to
be able to configure a new node without
having to load a new userland utility to do it.



The basic idea.

● Give the nodes the ability to have “hooks”.
● Give the hooks the ability to have names.
● Give the nodes the ability to recognise
special names. This allows simple
configuration just by selcting the right names
for the connections.

● Make the connections between hooks
symetrical.

● Hooks only exist whan connected to another
hook.

● Hooks can connect to only one other hook.



The basic idea.

● A node may have a LOT of hooks.
● A node can have its own way of looking up
hooks, and can associate private data with
each hook.

● In 5.x(+) a node may associate an over-
ride data handler method with a hook.

● A hook is always either connected to another
hook or it is destroyed. (* “dead” node).

● A second data type called a “control
message” canbe routed between nodes.



The basic idea.

● Control messages are routed to an endpoint.
● An endpoint may be specified absolutly or
relatively.
– Similar to 'bang” routing in uucp, e.g. Specify a
sequence of hooks ro follow to get to the
destination.

– A node could send a message to a neighbour
without knowing its name but only how to get
there.

● Control messages can be sent from
Userland. Allows user utilities to configure
nodes.



The basic idea.

● Each node type can specify message
formats.

● Standard message headers allow extensible
formats.

● Brilliant work by archie@ allows ascii control
messages, giving the ability to configure any
node with a single simple utility (ngctl).
– Could probably do with work after 9 years but
still very unique.

● Each type has its own 'cookie' that makes its
own API uniquely distinguishable.



The basic idea.

● Nodes are permitted to implement a
message ABI defined in the include files of
another type. It just needs to check the
cookie.

● Generic operations are implemented as
messages with a “generic” cookie, that are
handled by the framework immediately
before they would be handed to the node.
Sometimes this results in methods for the
node being called instead. e.g. Shutdown.



Growth.

● Many node type now exist:
● PPP, Frame relay, tee, ether, socket, ksocket,
pppoe, bpf-filter*, bridging, ipfw-tie-in, hdlc,
tty-protocol, an entire bluetooth stack, an
entire atm stack, cisco netflow accounting
hooks, etc. etc.

● See
http://www.freebsd.org/cgi/cvsweb.cgi/src/sys/netgraph/

* filter using a bpf/tcpdump compiled 'filter'.



Why change in 5.x (+)?

● Basically, SMP.
● Any node may call any node at the same
time as another cpu is also in that node.

● Blocking all of netgraph for the time it takes
to process a packet would be to clunky.

● splx/splimp/splnet going right away.



Aims for the changes

● Clean up stuff I was embarrased over.
● Add per node locking.
● Make the locking as cheap as possible for
common operations.

● Integrate locking and queueing.
● Provide a way for timeouts and external
callers to participate in locking.

● Switch to using system provoded metadata
facilities (mbuf tags).



Locking

● Divide locking into reader and writer locks.
– Data traversing a node is a reader if it doesn't
change the state of the node. Many readers may
be in a node at one time.

– Control messages are by default writers. They
are expected to do something with the state of
the node. (even if just look at it) and are
expected to want exclusive access.

– Existence of a writer forces incoming readers to
be queued.

– Existence of one or more readers or writers
forces an incoming writer to be queued.

– Queued items are always serviced FIFO.



Locking (cont)

● A node may declare that all incoming data
should obtain writer locks if it knows that it
will change node state with plain data.

● A node may set up a single hook on which
data enterring must obtain a writer lock.

● A node may set the force-writer bit on a
PEER node. This is useful for devices who
want to ensure that the outgoing data is
quickly queued and that ongoing processing
will be done at another time.



Locking (cont)

● Failure to get a lock will result in the
operation being queued, therefore ALL
operations must be queueable.

● Obvious cases:
– Data can be queued instead of being processed.
– Controll messages can beb queue

● Less obvious cases:
– Queuing function calls

● Requires 'void' type.. mno return value
– Timeout functions queue their actions when they
'expire'



Reference counting

● All queued operations hold references on the
node and if they reference a hook, they hold
a reference on that too.
– The netgraph framework tries to be obsesive
about reference counting. Almost any pointer to
a node or hook is reference counted. Even
internal references between nodes and hooks.

● As a result a queued ore deferred operation
should not be able to run and find that its
target node has gone away. It may be labled
Invalid, but it will still exist until the last
reference has gone away.



MACROS

● MACROs are extensively used in netgraph.
● They are generally defined in netgraph.h and
are used to hide extensive debugging code.

● Also used to provide compatibility (or at least
assist) between 4.x netgraph and 5.x
netgraph.



Ok, details

● Netgraph node methods are largly
unchanged. Exceptions are the methods for
receiving data and control messages.

● There used to be 2 data reception methods
– One for directly applied data
– One for data that could be queued.

● There is now just one. The queuing
functionality is now achieved using a flag on
either the node or the hook.



Ok, details

● Methods for data and message reception
have simplified arguments.
– The “Item” structure that was occasionally used
to queue items has been made more ubiquitous
and is used throughout. The “Item” is preloaded
with pointers to

● Data (including metadata)
● Control message.
● Function to call and arguments.
● Pointers to node and hook (if relevent).
● Return address if a message.

– Thus any of these can be queued at any time
because the “Item” is a queue item.

– Holds a lot of what were arguments.



dunno






