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What is a Device Driver?

● Hardware
● Functionality
● A device driver is the 

software that bridges 
the two.

Device Driver
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Focus of This Presentation

● In-kernel drivers for 
FreeBSD

● Drivers are built using 
various toolkits
● Hardware
● Kernel environment
● Consumers

● ACPI and PCI

Device Driver

Hardware

Consumers

K
ernel
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Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)



  

Device Discovery and Driver Life Cycle

● New-bus devices
● New-bus drivers
● Device probe and attach
● Device detach



  

New-bus Devices

● device_t objects
● Represent physical devices or buses
● Populated by bus driver for self-enumerating buses 

(e.g. ACPI and PCI)

● Device instance variables (ivars)
● Bus-specific state
● Bus driver provides accessors

– pci_get_vendor(), pci_get_device()
– acpi_get_handle()



  

New-bus Drivers

● driver_t objects
● Method table
● Parent bus by name
● Size of softc

● softc == driver per-instance state
● Managed by new-bus framework
● Allocated and zeroed at attach
● Freed at detach



  

New-bus Device Tree

acpi0

sio0pcib0

pci0

igb0 mfi0vgapci0



  

Device Probe and Attach

● Bus driver initiates device probes
● Device arrival, either at boot or hotplug
● Rescans when new drivers are added via 
kldload(2)

● device_probe method called for all drivers 
associated with the parent bus

● Winning driver is chosen and its 
device_attach method is called



  

Device Probe Methods

● Usually use ivars
● May poke hardware directly (rarely)
● Return value used to pick winning driver

● Returns errno value on failure (typically ENXIO)
● device_set_desc() on success
● Values <= 0 indicate success

– BUS_PROBE_GENERIC

– BUS_PROBE_DEFAULT

– BUS_PROBE_SPECIFIC
● Special softc behavior!



  

Device Attach Methods

● Initialize per-device driver state (softc)
● Allocate device resources
● Initialize hardware
● Attach to Consumer Toolkits
● Returns 0 on success, errno value on failure

● Must cleanup any partial state on failure



  

Device Detach

● Initiated by bus driver
● Removal of hotplug device
● Driver removal via  kldunload(2)

● device_detach method called (“attach in 
reverse”)
● Should detach from Consumer Toolkits
● Quiesce hardware
● Release device resources



  

Example 1: ipmi(4)

● ACPI and PCI attachments for ipmi(4)
● Method tables
● Probe routines
● sys/dev/ipmi/ipmi_acpi.c

● sys/dev/ipmi/ipmi_pci.c
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Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)
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I/O Resources

● Resource Objects
● Allocating and Releasing Resources
● Accessing Device Registers
● Interrupt Handlers



  

Resource Objects

● Resources represented by struct resource
● Opaque and generally used as a handle
● Can access details via rman(9) API

● rman_get_start()
● rman_get_size()
● rman_get_end()



  

Allocating Resources

● Parent bus driver provides resources
● bus_alloc_resource() returns pointer to a 

resource object
● If bus knows start and size (or can set them), use 
bus_alloc_resource_any() instead

● Typically called from device attach routine

● Individual resources identified by bus-specific 
resource IDs (rid parameter) and type
● Type is one of SYS_RES_*



  

Resource IDs

● ACPI
● 0..N based on order in _CRS
● Separate 0..N for each type

● PCI
● Memory and I/O port use PCIR_BAR(x)
● INTx IRQ uses rid 0
● MSI/MSI-X IRQs use rids 1..N



  

Releasing Resources

● Resources released via 
bus_release_resource()

● Typically called from device detach routine
● Driver responsible for freeing all resources 

during detach!



  

Detour: bus_space(9)

● Low-level API to access device registers
● API is MI, implementation is MD

● A block of registers are described by a tag and 
handle
● Tag typically describes an address space (e.g. 

memory vs I/O ports)
● Handle identifies a specific register block within the 

address space

● Lots of access methods



  

Accessing Device Registers

● Resource object must be activated
● Usually by passing the RF_ACTIVE flag to 
bus_alloc_resource()

● Can use bus_activate_resource()

● Activated resource has a valid bus space tag 
and handle for the register block it describes

● Wrappers for bus space API
● Pass resource instead of tag and handle
● Remove “_space” from method name



  

Wrapper API Examples

● bus_read_<size>(resource, offset)
● Reads a single register of size bytes and returns 

value
● Offset is relative to start of resource

● bus_write_<size>(resource, offset, 
value)
● Writes value to a single register of size bytes
● Offset is relative to start of resource



  

Interrupt Handlers

● Two types of interrupt handlers: filters and 
threaded handlers

● Most devices will just use threaded handlers
● Both routines accept a single shared void 

pointer argument.  Typically this is a pointer to 
the driver's softc.



  

Interrupt Filters

● Run in “primary interrupt context”
● Use interrupted thread's context
● Interrupts at least partially disabled in CPU

● Limited functionality
● Only spin locks
● “Fast” taskqueues
● swi_sched(), wakeup(), wakeup_one()



  

Interrupt Filters

● Returns one of three constants
● FILTER_STRAY
● FILTER_HANDLED
● FILTER_SCHEDULE_THREAD

● Primary uses
● UARTs and timers
● Shared interrupts (not common)
● Workaround broken hardware (em(4) vs Intel PCH)



  

Threaded Handlers

● Run in a dedicated interrupt thread
● Dedicated context enables use of  regular mutexes 

and rwlocks
● Interrupts are enabled

● Greater functionality
● Anything that doesn't sleep
● Should still defer heavyweight tasks to a taskqueue

● No return value



  

Attaching Interrupt Handlers

● Attached to SYS_RES_IRQ resources via 
bus_setup_intr()

● Can register a filter, threaded handler, or both
● Single void pointer arg passed to both filter and 

threaded handler



  

Attaching Interrupt Handlers

● Flags argument to bus_setup_intr() must 
include one of INTR_TYPE_*

● Optional flags
● INTR_ENTROPY
● INTR_MPSAFE

● A void pointer cookie is returned via last 
argument



  

Detaching Interrupt Handlers

● Pass SYS_RES_IRQ resource and cookie to 
bus_teardown_intr()

● Ensures interrupt handler is not running and will 
not be scheduled before returning

● May sleep



  

Example 2: ipmi(4)

● ACPI and PCI resource allocation for ipmi(4)
● Attach routines
● sys/dev/ipmi/ipmi_acpi.c

● sys/dev/ipmi/ipmi_pci.c



  

Example 2: ipmi(4)

● Accessing device registers
● INB() and OUTB() in 
sys/dev/ipmi/ipmivars.h

● sys/dev/ipmi/ipmi_kcs.c

● Configuring interrupt handler
● sys/dev/ipmi/ipmi.c



  

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)



  

DMA

● Basic concepts
● Static vs dynamic mappings
● Deferred callbacks
● Callback routines
● Buffer synchronization



  

bus_dma(9) Concepts

● bus_dma_tag_t
● Describes a DMA engine's capabilities and 

limitations
● Single engine may require multiple tags

● bus_dmamap_t
● Represents a mapping of a single I/O buffer
● Mapping only active while buffer is “loaded”
● Can be reused, but only one buffer at a time



  

Static DMA Mappings

● Used for fixed allocations like descriptor rings
● Size specified in tag, so usually have to create 

dedicated tags
● Allocated via bus_dmamem_alloc() which 

allocates both a buffer and a DMA map
● Buffer and map must be explicitly loaded and 

unloaded
● Released via bus_dmamem_free()
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Dynamic DMA Mappings

● Used for I/O buffers (struct bio, struct 
mbuf, struct uio)

● Driver typically preallocates DMA maps (e.g. 
one for each entry in a descriptor ring)

● Map is bound to I/O buffer for life of transaction 
via bus_dmamap_load*() and 
bus_dmamap_unload() and is typically 
reused for subsequent transactions



  

Deferred Callbacks

● Some mapping requests may need bounce 
pages

● Sometimes there will be insufficient bounce 
pages available

● Driver is typically running in a context where 
sleeping would be bad

● Instead, if caller does not specify 
BUS_DMA_NOWAIT, the request is queued and 
completed asychronously



  

Implications of Deferred Callbacks

● Cannot assume load operation has completed 
after bus_dmamap_load() returns

● If request is deferred, bus_dmamap_load() 
returns EINPROGRESS

● To preserve existing request order, driver is 
responsible for “freezing” its own request queue 
when a request is deferred
● bus_dma(9) lies, all future requests are not queued 

automatically



  

Non-Deferred Callbacks

● Can pass BUS_DMA_NOWAIT flag in which case 
bus_dmamap_load() fails with ENOMEM 
instead

● bus_dmamap_load_mbuf(), 
bus_dmamap_load_mbuf_sg(), and 
bus_dmamap_load_uio() all imply 
BUS_DMA_NOWAIT

● Static mappings will not block and should use 
BUS_DMA_NOWAIT



  

Callback Routines

● When a load operation succeeds, the result is 
passed to the callback routine

● Callback routine is passed a scatter/gather list 
and an error value

● If scatter/gather list would contain too many 
elements, EFBIG error is passed to callback 
routine (not returned from 
bus_dmamap_load*())
● Bounce pages not used to defrag automatically



  

bus_dmamap_load_mbuf_sg()

● More convenient interface for NIC drivers
● Caller provides S/G list (and must ensure it is 

large enough)
● No callback routine, instead it will return EFBIG 

directly to the caller
● Typical handling of EFBIG

● m_collapse() first (cheaper)
● m_defrag() as last resort



  

Buffer Synchronization

● bus_dmamap_sync() is used to ensure CPU 
and DMA mappings are in sync
● Memory barriers
● Cache flushes
● Bounce page copies

● Operates on loaded map
● The READ/WRITE field in operations are with 

respect to CPU, not device



  

Buffer Synchronization: READ

BUS_DMASYNC_PREREAD

BUS_DMASYNC_POSTREAD

RAM Device



  

Buffer Synchronization: WRITE

BUS_DMASYNC_PREWRITE

BUS_DMASYNC_POSTWRITE

RAM Device



  

Example 3: de(4)

● sys/dev/de/if_de.c

● Static allocation for descriptor rings
● tulip_busdma_allocring()

● Dynamic allocation for mbufs
● Tag and maps created in 
tulip_busdma_allocring()

● Mapping TX packet in tulip_txput()



  

Example 4: mfi(4)

● sys/dev/mfi/mfi.c

● mfi_mapcmd() and mfi_data_cb() queue 
DMA requests to controller

● mfi_intr() unfreezes queue when pending 
requests complete



  

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)



  

Character Devices

● Data structures
● Construction and destruction
● Open and close
● Basic I/O
● Event notification
● Memory mapping
● Per-open file descriptor data



  

Data Structures

● struct cdevsw
● Method table
● Flags
● Set version to D_VERSION

● struct cdev
● Per-instance data
● Driver fields

– si_drv1 (typically softc)
– si_drv2



  

Construction and Destruction

● make_dev()
● Creates cdev or returns existing cdev
● Uses passed in cdevsw when creating cdev
● Drivers typically set si_drv1 in the returned cdev 

after construction
● destroy_dev()

● Removes cdev
● Blocks until all threads drain

– d_purge() cdevsw method



  

Open and Close

● The d_open() method is called on every 
open() call
● Permission checks
● Enforce exclusive access

● The d_close() method is called only on the 
last close() by default

● The D_TRACKCLOSE flag causes d_close() 
for each close()



  

Caveats of Close

● d_close() may be invoked from a different 
thread or process than d_open()

● D_TRACKCLOSE can miss closes if a devfs 
mount is force-unmounted
● cdevpriv(9) is a more robust alternative

(more on that later)



  

Basic I/O

● d_read() and d_write()
● struct uio provides request details

– uio_offset is desired offset

– uio_resid is total length

● uiomove(9) copies data between KVM and uio
● ioflag holds flags from <sys/vnode.h>

– IO_NDELAY (O_NONBLOCK)

– IO_DIRECT (O_DIRECT)

– IO_SYNC (O_FSYNC)
● fcntl(F_SETFL) triggers FIONBIO and FIOASYNC ioctls



  

Basic I/O

● d_ioctl()
● cmd is an ioctl() command (_IO(), _IOR(), 
_IOW(), _IOWR())
– Read/write is from requester's perspective

● data is a kernel address
– Kernel manages copyin/copyout of data structure 

specified in ioctl command
● fflag

– O_* flags from open() and FREAD and FWRITE
– No implicit read/write permission checks!



  

Event Notification

● Two frameworks to signal events
● select() / poll()

● Only read() and write()
● kevent()

● Can do read() / write() as well as custom filters

● Driver can support none, one, or both
● select() / poll() will always succeed if not 

implemented
● kevent() will fail to attach event



  

select() and poll()

● Need a struct selinfo to manage sleeping 
threads
● seldrain() during device destruction

● d_poll()
● POLL* constants in <sys/poll.h>
● Returns a bitmask of requested events that are true
● If no events to return and requested events includes 

relevant events, call selrecord()

● When events become true, call selwakeup()



  

kevent()

● Need a knote list to track active knotes
● struct selinfo includes a note in si_note
● knlist_init*() during device creation
● knlist_destroy() during device destruction

● Each filter needs a struct filterops
● f_isfd should be 1
● f_attach should be NULL
● Attach done by d_kqfilter() instead



  

Filter Operations

● d_kqfilter()
● Assign struct filterops to kn_ops
● Set cookie in kn_hook (usually softc)
● Add knote to knote list via knlist_add()

● f_event()
● Set kn_data and kn_fflags
● Return true if event should post

● f_detach()
● Remove knote from list via knlist_remove()



  

KNOTE()

● Signals that an event should be posted to a list
● f_event() of all knotes on list is called

● Each knote determines if it should post on its own

● hint argument is passed from KNOTE() to 
each f_event()



  

Knote Lists and Locking

● Knote list operations are protected by a global 
mutex by default

● Can re-use your own mutex if desired
● Pass as argument to knlist_init_mtx()

● Use *_locked  variants of KNOTE() and knlist 
operations if lock is already held

● f_event() will always be called with lock 
already held



  

Example 5: echodev(4)

● http://www.freebsd.org/~jhb/papers/drivers/echodev

● /dev/echobuf
● Addressable, variable-sized buffer
● Readable and writable as long as buffer has non-

zero size
● /dev/echostream

● Stream buffer, so ignores uio_offset
● Readable and writable semantics like a TTY or pipe

http://www.freebsd.org/~jhb/papers/drivers/echodev


  

Memory Mapping

● VM objects (vm_object_t) represent 
something that can be mapped and define their 
own address space using pager methods
● Files (vnode pager)
● Anonymous objects (default pager)
● Devices (device pager)

● An address space (struct vmspace) 
contains a list of VM map entries each of which 
maps a portion of an object's address space



  

Memory Mapping

VM Object VM Map Entry Address Space



  

Device Pager

● Each character device has exactly one device 
pager VM object

● Object's address space is defined by 
d_mmap() method

● Object's address space is static, once a 
mapping is established for a page it lives 
forever

● close() does not revoke mappings
● destroy_dev() does not invalidate object(!)



  

d_mmap()

● Returns zero on success, error on failure
● Object offset will be page aligned
● Returned *paddr must be page aligned

● Desired protection is mask of PROT_*

● May optionally set *memattr to one of 
VM_MEMATTR_*
● Defaults to VM_MEMATTR_DEFAULT



  

d_mmap() Invocations

● Called for each page to check permissions on 
each mmap()
● Uses protection from mmap() call

● Called on first page fault for each object page
● Uses PROT_READ for protection
● Must not fail, results cached forever
● Invoked from arbitrary thread

– No per-open file descriptor data (cdevpriv)



  

d_mmap_single()

● Called once per mmap() with entire length, not 
per-page

● Can return ENODEV to fallback to device pager
● May optionally supply arbitrary VM object to 

satisfy request by returning zero
● Can use any of offset, size, and protection as key
● Must obtain reference on returned VM object
● May modify offset (it is relative to returned object)



  

Per-open File Descriptor Data

● Can associate a void pointer with each open file 
descriptor

● A driver-supplied destructor is called when the 
file descriptor's reference count drops to zero
● Typically contains logic previously done in close()

● Can be fetched from any cdevsw routine except 
for d_mmap() during a page fault



  

cdevpriv API

● devfs_set_cdevpriv()
● Associates void pointer and destructor with current 

file descriptor
● Will fail if descriptor already has associated data

● devfs_get_cdevpriv()
● Current data is returned via *datap
● Will fail if descriptor has no associated data

● devfs_clear_cdevpriv()
● Clears associated data and invokes destructor



  

Example 6: lapicdev(4) & memfd(4)

● http://www.freebsd.org/~jhb/papers/drivers/lapicdev

● /dev/lapic
● Maps the local APIC uncacheable and read-only 

using d_mmap()
● http://www.freebsd.org/~jhb/papers/drivers/memfd

● /dev/memfd
● Creates swap-backed anonymous memory for each 

open file descriptor
● Uses cdevpriv and d_mmap_single()

http://www.freebsd.org/~jhb/papers/drivers/lapicdev
http://www.freebsd.org/~jhb/papers/drivers/memfd


  

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)



  

Network Interfaces

● struct ifnet

● Construction and Destruction
● Initialization and Control
● Transmit
● Receive



  

struct ifnet

● if_softc typically used by driver to point at 
softc

● Various function pointers, some set by driver 
and others by link layer

● if_flags and if_drv_flags hold IFF_* 
flags

● Various counters such as if_ierrors, 
if_opackets, and if_collisions



  

Construction

● Allocated via if_alloc(IFT_*) (typically 
IFT_ETHER) during device attach

● if_initname() sets interface name, often 
reuses device_t name

● Driver should set if_softc, if_flags, 
if_capabilities, and function pointers

● ether_ifattach() called at end of device 
attach to set link layer properties



  

Destruction

● ether_ifdetach() called at beginning of 
device detach

● Device hardware should be shutdown after 
ether_ifdetach() to avoid races with 
detach code invoking if_ioctl()

● if_free() called near end of device detach 
when all other references are removed



  

if_init()

● Invoked when an interface is implicitly marked 
up (IFF_UP) when an address is assigned

● Commonly reused in if_ioctl() handlers 
when IFF_UP is toggled

● Should enable transmit and receive operation 
and set IFF_DRV_RUNNING on success

● Sole argument is value of if_softc
● Drivers typically include a “stop” routine as well



  

if_ioctl()

● Used for various control operations
● SIOCSIFMTU (if jumbo frames supported)
● SIOCSIFFLAGS

– IFF_UP

– IFF_ALLMULTI and IFF_PROMISC

● SIOCADDMULTI / SIOCDELMULTI
● SIOCIFCAP (IFCAP_* flags)

● Should use ether_ioctl() for the default 
case



  

Transmit

● Network stack provides Ethernet packets via 
struct mbuf pointers

● Driver responsible for free'ing mbufs after 
transmit via m_freem()

● Driver passes mbuf to BPF_MTAP()
● Two transmit interfaces

● Traditional interface uses stack-provided queue
● Newer interface dispatches each packet directly to 

driver



  

IFQUEUE and if_start()

● Network stack queues outbound packets to an 
interface queue (initialized during attach)

● Stack invokes if_start() method if 
IFF_DRV_OACTIVE is clear

● if_start() method drains packets from 
queue using IFQ_DRV_DEQUEUE(), sets 
IFF_DRV_OACTIVE if out of descriptors

● Interrupt handler clears IFF_DRV_OACTIVE 
and invokes if_start() after TX completions



  

if_transmit() and if_qflush()

● Driver maintains its own queue(s)
● Network stack always passes each packet to 
if_transmit() routine

● if_transmit() routine queues packet if no 
room

● Interrupt handler should transmit queued 
packets after handling TX completions

● Network stack invokes if_qflush() to free 
queued packets when downing interface



  

Receive

● Driver pre-allocates mbufs to receive packets
● Interrupt handler passes mbufs for completed 

packets up stack via if_input()
● Must set lengths and received interface
● Can also set flow id (RSS), VLAN, checksum flags
● Cannot hold any locks used in transmit across 
if_input() call

● Should replenish mbufs on receive



  

Example 7: xl(4)

● sys/dev/xl/if_xl.c

● struct ifnet allocation and IFQ setup in 
xl_attach()

● Control request handling in xl_ioctl()

● Transmitting IFQ in xl_start_locked()

● Received packet handling in xl_rxeof()

● Transmit completions in xl_txeof() and 
xl_intr()
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Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)
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Disk Devices

● I/O operations – struct bio
● struct disk

● Construction and Destruction
● Optional Methods
● Servicing I/O requests
● Crash dumps



  

struct bio

● Describes an I/O operation
● bio_cmd is operation type

● BIO_READ / BIO_WRITE
● BIO_FLUSH – barrier to order operations
● BIO_DELETE – maps to TRIM operations

● bio_data and bio_bcount describe buffer

● bio_driver1 and bio_driver2 are 
available for driver use



  

bio Queues

● Helper API to manage pending I/O requests
● bioq_takefirst() removes next request 

and returns it
● bioq_disksort() inserts requests in the 

traditional elevator order
● bioq_insert_tail() inserts at tail

● More details in sys/kern/subr_disk.c



  

struct disk

● Various attributes set by driver
● d_maxsize (maximum I/O size)
● d_mediasize, d_sectorsize (bytes)
● d_fwheads, d_fwsectors
● d_name, d_unit

● Function pointers
● Driver fields

● d_drv1 (typically softc)



  

Construction and Destruction

● disk_alloc() creates a struct disk
● Set attributes, function pointers, and driver 

fields
● Register disk by calling disk_create(), 
DISK_VERSION passed as second argument

● Call disk_destroy() to destroy a disk
● All future I/O requests will fail with EIO
● Driver responsible for failing queued requests



  

Optional Disk Methods

● d_open() is called on first open

● d_close() is called on last close
● d_ioctl() can provide driver-specific ioctls
● d_getattr() can provide custom GEOM 

attributes
● Return -1 for unknown attribute requests



  

Servicing I/O Requests

● bio structures passed to d_strategy()
● Driver typically adds request to queue and 

invokes a start routine
● Start routine passes pending requests to the 

controller
● Does nothing if using DMA and queue is frozen

● Driver calls biodone() to complete request
● bio_resid updated on success
● bio_error and BIO_ERROR flag set on failure



  

Crash Dumps

● Support enabled by providing d_dump()

● d_dump() is called for each block to write 
during a crash dump, must use polling

● First argument is a pointer to struct disk

● Memory to write described by _virtual, 
_physical, and _length

● Location on disk described by _offset and 
_length (both in bytes)



  

Example 8: mfi(4)

● sys/dev/mfi/mfi.c and 
sys/dev/mfi/mfi_disk.c

● mfi_disk_attach() creates a disk

● mfi_disk_open() and mfi_disk_close()

● mfi_disk_strategy(), mfi_startio(), 
and mfi_disk_complete() handle I/O 
requests

● mfi_disk_dump()



  

Conclusion

● Slides and examples available at 
http://www.FreeBSD.org/~jhb/papers/drivers/

● Mailing list for device driver development is 
drivers@FreeBSD.org

● Questions?

http://www.FreeBSD.org/~jhb/papers/drivers/
mailto:drivers@FreeBSD.org
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