
Writing and Adapting Device Drivers for
FreeBSD

John Baldwin

November 5, 2011

2

What is a Device Driver?

● Hardware
● Functionality
● A device driver is the

software that bridges
the two.

Device Driver

3

Focus of This Presentation

● In-kernel drivers for
FreeBSD

● Drivers are built using
various toolkits
● Hardware
● Kernel environment
● Consumers

● ACPI and PCI

Device Driver

Hardware

Consumers

K
ernel

4

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)

Device Discovery and Driver Life Cycle

● New-bus devices
● New-bus drivers
● Device probe and attach
● Device detach

New-bus Devices

● device_t objects
● Represent physical devices or buses
● Populated by bus driver for self-enumerating buses

(e.g. ACPI and PCI)

● Device instance variables (ivars)
● Bus-specific state
● Bus driver provides accessors

– pci_get_vendor(), pci_get_device()
– acpi_get_handle()

New-bus Drivers

● driver_t objects
● Method table
● Parent bus by name
● Size of softc

● softc == driver per-instance state
● Managed by new-bus framework
● Allocated and zeroed at attach
● Freed at detach

New-bus Device Tree

acpi0

sio0pcib0

pci0

igb0 mfi0vgapci0

Device Probe and Attach

● Bus driver initiates device probes
● Device arrival, either at boot or hotplug
● Rescans when new drivers are added via
kldload(2)

● device_probe method called for all drivers
associated with the parent bus

● Winning driver is chosen and its
device_attach method is called

Device Probe Methods

● Usually use ivars
● May poke hardware directly (rarely)
● Return value used to pick winning driver

● Returns errno value on failure (typically ENXIO)
● device_set_desc() on success
● Values <= 0 indicate success

– BUS_PROBE_GENERIC

– BUS_PROBE_DEFAULT

– BUS_PROBE_SPECIFIC
● Special softc behavior!

Device Attach Methods

● Initialize per-device driver state (softc)
● Allocate device resources
● Initialize hardware
● Attach to Consumer Toolkits
● Returns 0 on success, errno value on failure

● Must cleanup any partial state on failure

Device Detach

● Initiated by bus driver
● Removal of hotplug device
● Driver removal via kldunload(2)

● device_detach method called (“attach in
reverse”)
● Should detach from Consumer Toolkits
● Quiesce hardware
● Release device resources

Example 1: ipmi(4)

● ACPI and PCI attachments for ipmi(4)
● Method tables
● Probe routines
● sys/dev/ipmi/ipmi_acpi.c

● sys/dev/ipmi/ipmi_pci.c

14

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)

15

I/O Resources

● Resource Objects
● Allocating and Releasing Resources
● Accessing Device Registers
● Interrupt Handlers

Resource Objects

● Resources represented by struct resource
● Opaque and generally used as a handle
● Can access details via rman(9) API

● rman_get_start()
● rman_get_size()
● rman_get_end()

Allocating Resources

● Parent bus driver provides resources
● bus_alloc_resource() returns pointer to a

resource object
● If bus knows start and size (or can set them), use
bus_alloc_resource_any() instead

● Typically called from device attach routine

● Individual resources identified by bus-specific
resource IDs (rid parameter) and type
● Type is one of SYS_RES_*

Resource IDs

● ACPI
● 0..N based on order in _CRS
● Separate 0..N for each type

● PCI
● Memory and I/O port use PCIR_BAR(x)
● INTx IRQ uses rid 0
● MSI/MSI-X IRQs use rids 1..N

Releasing Resources

● Resources released via
bus_release_resource()

● Typically called from device detach routine
● Driver responsible for freeing all resources

during detach!

Detour: bus_space(9)

● Low-level API to access device registers
● API is MI, implementation is MD

● A block of registers are described by a tag and
handle
● Tag typically describes an address space (e.g.

memory vs I/O ports)
● Handle identifies a specific register block within the

address space

● Lots of access methods

Accessing Device Registers

● Resource object must be activated
● Usually by passing the RF_ACTIVE flag to
bus_alloc_resource()

● Can use bus_activate_resource()

● Activated resource has a valid bus space tag
and handle for the register block it describes

● Wrappers for bus space API
● Pass resource instead of tag and handle
● Remove “_space” from method name

Wrapper API Examples

● bus_read_<size>(resource, offset)
● Reads a single register of size bytes and returns

value
● Offset is relative to start of resource

● bus_write_<size>(resource, offset,
value)
● Writes value to a single register of size bytes
● Offset is relative to start of resource

Interrupt Handlers

● Two types of interrupt handlers: filters and
threaded handlers

● Most devices will just use threaded handlers
● Both routines accept a single shared void

pointer argument. Typically this is a pointer to
the driver's softc.

Interrupt Filters

● Run in “primary interrupt context”
● Use interrupted thread's context
● Interrupts at least partially disabled in CPU

● Limited functionality
● Only spin locks
● “Fast” taskqueues
● swi_sched(), wakeup(), wakeup_one()

Interrupt Filters

● Returns one of three constants
● FILTER_STRAY
● FILTER_HANDLED
● FILTER_SCHEDULE_THREAD

● Primary uses
● UARTs and timers
● Shared interrupts (not common)
● Workaround broken hardware (em(4) vs Intel PCH)

Threaded Handlers

● Run in a dedicated interrupt thread
● Dedicated context enables use of regular mutexes

and rwlocks
● Interrupts are enabled

● Greater functionality
● Anything that doesn't sleep
● Should still defer heavyweight tasks to a taskqueue

● No return value

Attaching Interrupt Handlers

● Attached to SYS_RES_IRQ resources via
bus_setup_intr()

● Can register a filter, threaded handler, or both
● Single void pointer arg passed to both filter and

threaded handler

Attaching Interrupt Handlers

● Flags argument to bus_setup_intr() must
include one of INTR_TYPE_*

● Optional flags
● INTR_ENTROPY
● INTR_MPSAFE

● A void pointer cookie is returned via last
argument

Detaching Interrupt Handlers

● Pass SYS_RES_IRQ resource and cookie to
bus_teardown_intr()

● Ensures interrupt handler is not running and will
not be scheduled before returning

● May sleep

Example 2: ipmi(4)

● ACPI and PCI resource allocation for ipmi(4)
● Attach routines
● sys/dev/ipmi/ipmi_acpi.c

● sys/dev/ipmi/ipmi_pci.c

Example 2: ipmi(4)

● Accessing device registers
● INB() and OUTB() in
sys/dev/ipmi/ipmivars.h

● sys/dev/ipmi/ipmi_kcs.c

● Configuring interrupt handler
● sys/dev/ipmi/ipmi.c

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)

DMA

● Basic concepts
● Static vs dynamic mappings
● Deferred callbacks
● Callback routines
● Buffer synchronization

bus_dma(9) Concepts

● bus_dma_tag_t
● Describes a DMA engine's capabilities and

limitations
● Single engine may require multiple tags

● bus_dmamap_t
● Represents a mapping of a single I/O buffer
● Mapping only active while buffer is “loaded”
● Can be reused, but only one buffer at a time

Static DMA Mappings

● Used for fixed allocations like descriptor rings
● Size specified in tag, so usually have to create

dedicated tags
● Allocated via bus_dmamem_alloc() which

allocates both a buffer and a DMA map
● Buffer and map must be explicitly loaded and

unloaded
● Released via bus_dmamem_free()

36

Dynamic DMA Mappings

● Used for I/O buffers (struct bio, struct
mbuf, struct uio)

● Driver typically preallocates DMA maps (e.g.
one for each entry in a descriptor ring)

● Map is bound to I/O buffer for life of transaction
via bus_dmamap_load*() and
bus_dmamap_unload() and is typically
reused for subsequent transactions

Deferred Callbacks

● Some mapping requests may need bounce
pages

● Sometimes there will be insufficient bounce
pages available

● Driver is typically running in a context where
sleeping would be bad

● Instead, if caller does not specify
BUS_DMA_NOWAIT, the request is queued and
completed asychronously

Implications of Deferred Callbacks

● Cannot assume load operation has completed
after bus_dmamap_load() returns

● If request is deferred, bus_dmamap_load()
returns EINPROGRESS

● To preserve existing request order, driver is
responsible for “freezing” its own request queue
when a request is deferred
● bus_dma(9) lies, all future requests are not queued

automatically

Non-Deferred Callbacks

● Can pass BUS_DMA_NOWAIT flag in which case
bus_dmamap_load() fails with ENOMEM
instead

● bus_dmamap_load_mbuf(),
bus_dmamap_load_mbuf_sg(), and
bus_dmamap_load_uio() all imply
BUS_DMA_NOWAIT

● Static mappings will not block and should use
BUS_DMA_NOWAIT

Callback Routines

● When a load operation succeeds, the result is
passed to the callback routine

● Callback routine is passed a scatter/gather list
and an error value

● If scatter/gather list would contain too many
elements, EFBIG error is passed to callback
routine (not returned from
bus_dmamap_load*())
● Bounce pages not used to defrag automatically

bus_dmamap_load_mbuf_sg()

● More convenient interface for NIC drivers
● Caller provides S/G list (and must ensure it is

large enough)
● No callback routine, instead it will return EFBIG

directly to the caller
● Typical handling of EFBIG

● m_collapse() first (cheaper)
● m_defrag() as last resort

Buffer Synchronization

● bus_dmamap_sync() is used to ensure CPU
and DMA mappings are in sync
● Memory barriers
● Cache flushes
● Bounce page copies

● Operates on loaded map
● The READ/WRITE field in operations are with

respect to CPU, not device

Buffer Synchronization: READ

BUS_DMASYNC_PREREAD

BUS_DMASYNC_POSTREAD

RAM Device

Buffer Synchronization: WRITE

BUS_DMASYNC_PREWRITE

BUS_DMASYNC_POSTWRITE

RAM Device

Example 3: de(4)

● sys/dev/de/if_de.c

● Static allocation for descriptor rings
● tulip_busdma_allocring()

● Dynamic allocation for mbufs
● Tag and maps created in
tulip_busdma_allocring()

● Mapping TX packet in tulip_txput()

Example 4: mfi(4)

● sys/dev/mfi/mfi.c

● mfi_mapcmd() and mfi_data_cb() queue
DMA requests to controller

● mfi_intr() unfreezes queue when pending
requests complete

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)

Character Devices

● Data structures
● Construction and destruction
● Open and close
● Basic I/O
● Event notification
● Memory mapping
● Per-open file descriptor data

Data Structures

● struct cdevsw
● Method table
● Flags
● Set version to D_VERSION

● struct cdev
● Per-instance data
● Driver fields

– si_drv1 (typically softc)
– si_drv2

Construction and Destruction

● make_dev()
● Creates cdev or returns existing cdev
● Uses passed in cdevsw when creating cdev
● Drivers typically set si_drv1 in the returned cdev

after construction
● destroy_dev()

● Removes cdev
● Blocks until all threads drain

– d_purge() cdevsw method

Open and Close

● The d_open() method is called on every
open() call
● Permission checks
● Enforce exclusive access

● The d_close() method is called only on the
last close() by default

● The D_TRACKCLOSE flag causes d_close()
for each close()

Caveats of Close

● d_close() may be invoked from a different
thread or process than d_open()

● D_TRACKCLOSE can miss closes if a devfs
mount is force-unmounted
● cdevpriv(9) is a more robust alternative

(more on that later)

Basic I/O

● d_read() and d_write()
● struct uio provides request details

– uio_offset is desired offset

– uio_resid is total length

● uiomove(9) copies data between KVM and uio
● ioflag holds flags from <sys/vnode.h>

– IO_NDELAY (O_NONBLOCK)

– IO_DIRECT (O_DIRECT)

– IO_SYNC (O_FSYNC)
● fcntl(F_SETFL) triggers FIONBIO and FIOASYNC ioctls

Basic I/O

● d_ioctl()
● cmd is an ioctl() command (_IO(), _IOR(),
_IOW(), _IOWR())
– Read/write is from requester's perspective

● data is a kernel address
– Kernel manages copyin/copyout of data structure

specified in ioctl command
● fflag

– O_* flags from open() and FREAD and FWRITE
– No implicit read/write permission checks!

Event Notification

● Two frameworks to signal events
● select() / poll()

● Only read() and write()
● kevent()

● Can do read() / write() as well as custom filters

● Driver can support none, one, or both
● select() / poll() will always succeed if not

implemented
● kevent() will fail to attach event

select() and poll()

● Need a struct selinfo to manage sleeping
threads
● seldrain() during device destruction

● d_poll()
● POLL* constants in <sys/poll.h>
● Returns a bitmask of requested events that are true
● If no events to return and requested events includes

relevant events, call selrecord()

● When events become true, call selwakeup()

kevent()

● Need a knote list to track active knotes
● struct selinfo includes a note in si_note
● knlist_init*() during device creation
● knlist_destroy() during device destruction

● Each filter needs a struct filterops
● f_isfd should be 1
● f_attach should be NULL
● Attach done by d_kqfilter() instead

Filter Operations

● d_kqfilter()
● Assign struct filterops to kn_ops
● Set cookie in kn_hook (usually softc)
● Add knote to knote list via knlist_add()

● f_event()
● Set kn_data and kn_fflags
● Return true if event should post

● f_detach()
● Remove knote from list via knlist_remove()

KNOTE()

● Signals that an event should be posted to a list
● f_event() of all knotes on list is called

● Each knote determines if it should post on its own

● hint argument is passed from KNOTE() to
each f_event()

Knote Lists and Locking

● Knote list operations are protected by a global
mutex by default

● Can re-use your own mutex if desired
● Pass as argument to knlist_init_mtx()

● Use *_locked variants of KNOTE() and knlist
operations if lock is already held

● f_event() will always be called with lock
already held

Example 5: echodev(4)

● http://www.freebsd.org/~jhb/papers/drivers/echodev

● /dev/echobuf
● Addressable, variable-sized buffer
● Readable and writable as long as buffer has non-

zero size
● /dev/echostream

● Stream buffer, so ignores uio_offset
● Readable and writable semantics like a TTY or pipe

http://www.freebsd.org/~jhb/papers/drivers/echodev

Memory Mapping

● VM objects (vm_object_t) represent
something that can be mapped and define their
own address space using pager methods
● Files (vnode pager)
● Anonymous objects (default pager)
● Devices (device pager)

● An address space (struct vmspace)
contains a list of VM map entries each of which
maps a portion of an object's address space

Memory Mapping

VM Object VM Map Entry Address Space

Device Pager

● Each character device has exactly one device
pager VM object

● Object's address space is defined by
d_mmap() method

● Object's address space is static, once a
mapping is established for a page it lives
forever

● close() does not revoke mappings
● destroy_dev() does not invalidate object(!)

d_mmap()

● Returns zero on success, error on failure
● Object offset will be page aligned
● Returned *paddr must be page aligned

● Desired protection is mask of PROT_*

● May optionally set *memattr to one of
VM_MEMATTR_*
● Defaults to VM_MEMATTR_DEFAULT

d_mmap() Invocations

● Called for each page to check permissions on
each mmap()
● Uses protection from mmap() call

● Called on first page fault for each object page
● Uses PROT_READ for protection
● Must not fail, results cached forever
● Invoked from arbitrary thread

– No per-open file descriptor data (cdevpriv)

d_mmap_single()

● Called once per mmap() with entire length, not
per-page

● Can return ENODEV to fallback to device pager
● May optionally supply arbitrary VM object to

satisfy request by returning zero
● Can use any of offset, size, and protection as key
● Must obtain reference on returned VM object
● May modify offset (it is relative to returned object)

Per-open File Descriptor Data

● Can associate a void pointer with each open file
descriptor

● A driver-supplied destructor is called when the
file descriptor's reference count drops to zero
● Typically contains logic previously done in close()

● Can be fetched from any cdevsw routine except
for d_mmap() during a page fault

cdevpriv API

● devfs_set_cdevpriv()
● Associates void pointer and destructor with current

file descriptor
● Will fail if descriptor already has associated data

● devfs_get_cdevpriv()
● Current data is returned via *datap
● Will fail if descriptor has no associated data

● devfs_clear_cdevpriv()
● Clears associated data and invokes destructor

Example 6: lapicdev(4) & memfd(4)

● http://www.freebsd.org/~jhb/papers/drivers/lapicdev

● /dev/lapic
● Maps the local APIC uncacheable and read-only

using d_mmap()
● http://www.freebsd.org/~jhb/papers/drivers/memfd

● /dev/memfd
● Creates swap-backed anonymous memory for each

open file descriptor
● Uses cdevpriv and d_mmap_single()

http://www.freebsd.org/~jhb/papers/drivers/lapicdev
http://www.freebsd.org/~jhb/papers/drivers/memfd

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)

Network Interfaces

● struct ifnet

● Construction and Destruction
● Initialization and Control
● Transmit
● Receive

struct ifnet

● if_softc typically used by driver to point at
softc

● Various function pointers, some set by driver
and others by link layer

● if_flags and if_drv_flags hold IFF_*
flags

● Various counters such as if_ierrors,
if_opackets, and if_collisions

Construction

● Allocated via if_alloc(IFT_*) (typically
IFT_ETHER) during device attach

● if_initname() sets interface name, often
reuses device_t name

● Driver should set if_softc, if_flags,
if_capabilities, and function pointers

● ether_ifattach() called at end of device
attach to set link layer properties

Destruction

● ether_ifdetach() called at beginning of
device detach

● Device hardware should be shutdown after
ether_ifdetach() to avoid races with
detach code invoking if_ioctl()

● if_free() called near end of device detach
when all other references are removed

if_init()

● Invoked when an interface is implicitly marked
up (IFF_UP) when an address is assigned

● Commonly reused in if_ioctl() handlers
when IFF_UP is toggled

● Should enable transmit and receive operation
and set IFF_DRV_RUNNING on success

● Sole argument is value of if_softc
● Drivers typically include a “stop” routine as well

if_ioctl()

● Used for various control operations
● SIOCSIFMTU (if jumbo frames supported)
● SIOCSIFFLAGS

– IFF_UP

– IFF_ALLMULTI and IFF_PROMISC

● SIOCADDMULTI / SIOCDELMULTI
● SIOCIFCAP (IFCAP_* flags)

● Should use ether_ioctl() for the default
case

Transmit

● Network stack provides Ethernet packets via
struct mbuf pointers

● Driver responsible for free'ing mbufs after
transmit via m_freem()

● Driver passes mbuf to BPF_MTAP()
● Two transmit interfaces

● Traditional interface uses stack-provided queue
● Newer interface dispatches each packet directly to

driver

IFQUEUE and if_start()

● Network stack queues outbound packets to an
interface queue (initialized during attach)

● Stack invokes if_start() method if
IFF_DRV_OACTIVE is clear

● if_start() method drains packets from
queue using IFQ_DRV_DEQUEUE(), sets
IFF_DRV_OACTIVE if out of descriptors

● Interrupt handler clears IFF_DRV_OACTIVE
and invokes if_start() after TX completions

if_transmit() and if_qflush()

● Driver maintains its own queue(s)
● Network stack always passes each packet to
if_transmit() routine

● if_transmit() routine queues packet if no
room

● Interrupt handler should transmit queued
packets after handling TX completions

● Network stack invokes if_qflush() to free
queued packets when downing interface

Receive

● Driver pre-allocates mbufs to receive packets
● Interrupt handler passes mbufs for completed

packets up stack via if_input()
● Must set lengths and received interface
● Can also set flow id (RSS), VLAN, checksum flags
● Cannot hold any locks used in transmit across
if_input() call

● Should replenish mbufs on receive

Example 7: xl(4)

● sys/dev/xl/if_xl.c

● struct ifnet allocation and IFQ setup in
xl_attach()

● Control request handling in xl_ioctl()

● Transmitting IFQ in xl_start_locked()

● Received packet handling in xl_rxeof()

● Transmit completions in xl_txeof() and
xl_intr()

83

Roadmap

● Hardware Toolkits
● Device discovery and driver life cycle
● I/O Resources
● DMA

● Consumer Toolkits
● Character devices
● ifnet(9)
● disk(9)

84

Disk Devices

● I/O operations – struct bio
● struct disk

● Construction and Destruction
● Optional Methods
● Servicing I/O requests
● Crash dumps

struct bio

● Describes an I/O operation
● bio_cmd is operation type

● BIO_READ / BIO_WRITE
● BIO_FLUSH – barrier to order operations
● BIO_DELETE – maps to TRIM operations

● bio_data and bio_bcount describe buffer

● bio_driver1 and bio_driver2 are
available for driver use

bio Queues

● Helper API to manage pending I/O requests
● bioq_takefirst() removes next request

and returns it
● bioq_disksort() inserts requests in the

traditional elevator order
● bioq_insert_tail() inserts at tail

● More details in sys/kern/subr_disk.c

struct disk

● Various attributes set by driver
● d_maxsize (maximum I/O size)
● d_mediasize, d_sectorsize (bytes)
● d_fwheads, d_fwsectors
● d_name, d_unit

● Function pointers
● Driver fields

● d_drv1 (typically softc)

Construction and Destruction

● disk_alloc() creates a struct disk
● Set attributes, function pointers, and driver

fields
● Register disk by calling disk_create(),
DISK_VERSION passed as second argument

● Call disk_destroy() to destroy a disk
● All future I/O requests will fail with EIO
● Driver responsible for failing queued requests

Optional Disk Methods

● d_open() is called on first open

● d_close() is called on last close
● d_ioctl() can provide driver-specific ioctls
● d_getattr() can provide custom GEOM

attributes
● Return -1 for unknown attribute requests

Servicing I/O Requests

● bio structures passed to d_strategy()
● Driver typically adds request to queue and

invokes a start routine
● Start routine passes pending requests to the

controller
● Does nothing if using DMA and queue is frozen

● Driver calls biodone() to complete request
● bio_resid updated on success
● bio_error and BIO_ERROR flag set on failure

Crash Dumps

● Support enabled by providing d_dump()

● d_dump() is called for each block to write
during a crash dump, must use polling

● First argument is a pointer to struct disk

● Memory to write described by _virtual,
_physical, and _length

● Location on disk described by _offset and
_length (both in bytes)

Example 8: mfi(4)

● sys/dev/mfi/mfi.c and
sys/dev/mfi/mfi_disk.c

● mfi_disk_attach() creates a disk

● mfi_disk_open() and mfi_disk_close()

● mfi_disk_strategy(), mfi_startio(),
and mfi_disk_complete() handle I/O
requests

● mfi_disk_dump()

Conclusion

● Slides and examples available at
http://www.FreeBSD.org/~jhb/papers/drivers/

● Mailing list for device driver development is
drivers@FreeBSD.org

● Questions?

http://www.FreeBSD.org/~jhb/papers/drivers/
mailto:drivers@FreeBSD.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93

