

I/O Performance and Concurrency

Jeff Roberson
jeff@freebsd.org

BSDCan 2008
Developers Summit

Introduction

● What is this about?
● Outline

– Current Organization

– Problems

– Proposed Solutions

– Fallout

Buffer Cache Responsibilities

● Provide KVA mappings and cache
● IO initiation
● Async IO
● Delayed IO
● Throttling write pressure
● malloc backed and VM coherent IO
● LRU buffer replacement
● Filesystem swiss army knife

Buffer Cache Bolt-ons

● Clustering
● File defragmentation via clustered writes
● Invalidation and truncation
● Metadata dependencies
● Sync support via dirty vnode list
● File level cache fairness for snapshots
● Background writes

VM I/O
 Responsibilities

● Maintain global page targets
● Read on page-fault, write on page-out
● LRU global page replacement
● Default GETPAGES/PUTPAGES

implementations
● Cluster write in vm_pageout_clean,

vm_object_page_flush
● Cluster read in vm_fault_additional_pages
● Page mapping facilities (sfbufs, pmap_qenter)

syncer
 Responsibilities

● Enforces the upper bound on delayed IO time
● Syncs inode times
● msyncs whole filesystems
● One of 4 daemons pushing IO out with differing

goals
– pageout: global memory pressure

– buf: available buf space

– syncer: maximum time interval

– softupdate: limits dependencies

Performance Problems

● Global mapping is expensive
● Requiring KVA wastes address space
● KVA requires complex defrag/allocation

operations
● Splays are slow for large objects
● Multiple splays per object requires multiple

lookups
● Syncer sabotages delayed I/O

Concurrency Problems

● Reads/writes serialized by f_offset
● Non-overlapping io serialized by exclusive

vnode lock
● Simultaneous readers serialized by exclusive

buffer lock
● vm object and bufobj use exclusive mtx lock for

lists

Structural Problems

● Syncer syncs whole filesystems and individual
vnodes

● vfs_cluster is cumbersome and too intimate
with the filesystem

● Direct i/o private to ffs
● Poor layering
● bufs are overly complex

VM I/O Problems

● Unaware of block boundaries for replacement
decisions

● Less developed/redundant clustering
● Requires mapped pbufs despite not touching

the data
● putpages requires buffer cache
● Competes with buffer cache and syncer for

global memory replacement and I/O decisions.

Consequences

● We have less than 1/3rd the performance of
Linux on an 8core system running mysql with
the MyISAM engine

● We are needlessly KVA starved on 32bit
systems

● Other I/O intense applications suffer excessive
CPU overhead due to poor structure

● I/O is provably less efficient and predictable
● Organic growth has left the code complex and

difficult to understand

Proposed Solution

● Relax f_offset on reads
● read/write/append byte range vnode I/O lock
● Buffer cache stays for metadata and slow

filesystems
● VM based read/write & clustering routines
● Unmapped i/o
● Replace the splays with radix trees
● Change the syncer responsibilities

f_offset locking

● POSIX does not mandate any synchronization
for non-device files

● POLA mandates synchronization of writers
● BSD Synchronizes everything
● Only synchronize writes, allow reads to proceed

concurrently
● Fix 64bit on 32bit issues

Byte range locks

● Conceptually similar to posix ranged locking
● Reads may proceed against overlapping reads
● Writes may proceed against non-overlapping

writes
● Reads and writes may not proceed concurrently
● One appender at a time
● Shared vnode lock
● Allocation protected by buf locks

VM Based VREG IO

● Do regular i/o directly against pages without the
buf detour

● Unify the clustering mechanism with the VM
● Buf cache becomes meta-data only
● Filesystem independent
● Must track outstanding writes for sync
● Must limit total outstanding writes
● New delayed i/o mechanism

Unmapped bios

● Remove b_data add an array of pages and an
offset

● Provide routines to temporarily map whole bios
for middle layers (raid, encryption, etc)

● VM already provides faster page by page
mapping

● New busdma_map_bio function for drivers
● Requires lots of plumbing but simple changes

Radix trees

● Splays reorder on insert, lots of writes, no
shared locking

● Splays are order 2 trees, lots of cache lines
● Radix provides a maximum depth which

bounds cache misses
● Radix are compatible with shared locking
● In progress for 2008 SoC

Syncer

● Move maximum delayed IO bound into vm/buf
cache

● Remove the syncer hooks in the buffer cache
● per-filesystem sync rather than per-vnode and

per-filesystem
● Periodic sync only flushes metadata and

updates inode times, let the file data flush lazily.

Fallout

● All of the io throttling and delaying needs to be
reconsidered and re-tested

● Buffer cache contains only metadata
– Must size accordingly

● What about filesystems that don't use the new method?

– Metadata no longer competing with data for buf
space may be better

● More mapping overhead on 32bit systems
– Negligent for page-by-page anyway

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

