/O Performance and Concurrency

BSDCan 2008
Developers Summit

Jeff Roberson
jeff@freebsd.org



Introduction

 What is this about?
e Qutline

— Current Organization
- Problems

- Proposed Solutions
- Fallout



Buffer Cache Responsibllities

Provide KVA mappings and cache
1O Initiation

Async 10

Delayed 10

Throttling write pressure

malloc backed and VM coherent 1O

_RU buffer replacement

—llesystem swiss army knife



Buffer Cache Bolt-ons

Clustering

File defragmentation via clustered writes
Invalidation and truncation

Metadata dependencies

Sync support via dirty vnode list

File level cache fairness for snapshots
Background writes



VM I/O
Responsibilities
Maintain global page targets
Read on page-fault, write on page-out
_RU global page replacement

Default GETPAGES/PUTPAGES
Implementations

Cluster write in vm_pageout_clean,
vm_object _page flush

Cluster read in vm_fault_additional pages
Page mapping faclilities (sfbufs, pmap qgenter)



Syncer
Responsibilities
Enforces the upper bound on delayed 10 time

Syncs inode times
msyncs whole filesystems

One of 4 daemons pushing 10 out with differing
goals

- pageout: global memory pressure
- buf: available buf space

- syncer. maximum time interval

- softupdate: limits dependencies



Performance Problems

Global mapping is expensive
Requiring KVA wastes address space

KVA requires complex defrag/allocation
operations

Splays are slow for large objects

Multiple splays per object requires multiple
lookups

Syncer sabotages delayed 1/0



Concurrency Problems

Reads/writes serialized by f offset

Non-overlapping 1o serialized by exclusive
vhode lock

Simultaneous readers serialized by exclusive
buffer lock

vm object and bufobj use exclusive mtx lock for
lists



Structural Problems

Syncer syncs whole filesystems and individual
vnodes

vfs_cluster Is cumbersome and too intimate
with the filesystem

Direct 1/o private to ffs
Poor layering

oufs are overly complex



VM 1I/O Problems

 Unaware of block boundaries for replacement

decisions
* Less developed/redundant c

 Requires mapped pbufs des
the data

ustering

nite not touching

* putpages requires buffer cache

 Competes with buffer cache

and syncer for

global memory replacement and I/O decisions.



Consequences

* We have less than 1/3" the performance of
Linux on an 8core system running mysgl with
the MylISAM engine

* We are needlessly KVA starved on 32Dbit
systems

e Other I/O intense applications suffer excessive
CPU overhead due to poor structure

* 1/O Is provably less efficient and predictable

* Organic growth has left the code complex and
difficult to understand



Proposed Solution

 Relax f offset on reads
* read/write/append byte range vnode /O lock

» Buffer cache stays for metadata and slow
filesystems

VM based read/write & clustering routines
 Unmapped i/o

* Replace the splays with radix trees

* Change the syncer responsibilities



f offset locking

 POSIX does not mandate any synchronization
for non-device files

 POLA mandates synchronization of writers
« BSD Synchronizes everything

* Only synchronize writes, allow reads to proceed
concurrently

 Fix 64bit on 32bit Issues



Byte range locks

Conceptually similar to posix ranged locking
Reads may proceed against overlapping reads

Writes may proceed against non-overlapping
writes

Reads and writes may not proceed concurrently
One appender at a time

Shared vnode lock

Allocation protected by buf locks



VM Based VREG IO

DO regular
ouf detour

Unify the c
Buf cache

I/0 directly against pages without the

ustering mechanism with the VM

pecomes meta-data only

Filesystem independent

Must track

outstanding writes for sync

Must limit total outstanding writes

New delayed I/o mechanism



Unmapped bios

« Remove b _data add an array of pages and an
offset

* Provide routines to temporarily map whole bios
for middle layers (raid, encryption, etc)

VM already provides faster page by page
mapping
 New busdma_map_bio function for drivers

* Requires lots of plumbing but simple changes



Radix trees

» Splays reorder on insert, lots of writes, no
shared locking

e Splays are order 2 trees, lots of cache lines

* Radix provides a maximum depth which
pounds cache misses

* Radix are compatible with shared locking
* |n progress for 2008 SoC



Syncer

Move maximum delayed 10 bound into vm/buf
cache

Remove the syncer hooks in the buffer cache

ner-filesystem sync rather than per-vnode and
ner-filesystem

Periodic sync only flushes metadata and
updates inode times, let the file data flush lazily.



Fallout

» All of the 10 throttling and delaying needs to be
reconsidered and re-tested

» Buffer cache contains only metadata

— Must size accordingly
* What about filesystems that don't use the new method?

- Metadata no longer competing with data for buf
space may be better

 More mapping overhead on 32bit systems
- Negligent for page-by-page anyway



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

