
bhyve graphics
Peter Grehan 

grehan@freebsd.org 
BSD-TW 2017

mailto:grehan@freebsd.org


What is bhyve ?
• A “minimally viable x86 hypervisor” 

• serial console, PCI virtio block/net, 64-bit host, 
64/32-bit guests and extra dev emulations 

• Requires Intel VT-x/EPT or AMD SVM/RVI CPU 
support 

• In base-system FreeBSD as of 10.0

(from EuroBSDCon 2013, with additions)



What is “bhyve graphics” ?

• The code bhyve that emulates a mouse, keyboard 
and a display 

• Provides a workstation-style user experience



Hey, wasn’t serial good 
enough ?

• A serial port emulation will support almost all guest 
o/s’s 

• However, the user-experience leaves a lot to be 
desired 

• A point re-iterated many, many times by users 

• Very different than existing hypervisor 
experiences



ubuntu 17.10 server install



ubuntu 17.10 server login



ubuntu 17.10 desktop ???



What about Windows ?
• All 64-bit versions of Windows starting with Vista don’t require a graphics adapter 

• Server versions support “System Administrator Console” aka SAC; a tmux-like 
interface on the serial port. 

• If an ACPI SPCR table is present, WinPE (1st phase install) will output to the serial 
port, and Windows server will instantiate SAC on this with VT100 emulation. 

• Unattended install required 

• XML script, extremely version sensitive 

• Requires re-pack of UDF-formatted DVD, with virtio net driver “slipstreamed” in 
to allow RDP access post-install 

• A daunting install experience; black screen of death for desktop versions. 

• This is how bhyve first booted Win 2k12 (UEFI already existed.



w2k12r2 install experience



w2k12r2 install error



w2k12r2 SAC



The UEFI frame buffer
• The OVMF build of UEFI supported the “Graphics Output Protocol” 

interface 

• Qemu had a number of SVGA+ emulations; S3, etc 

• However, UEFI only requires a linear frame buffer 

• A random experiment in providing this at a fixed address 
showed Windows writing to this, even with no PCI adapter for it. 

• Could this be the solution for installation ? 

• Would it work with other o/s’s ? 

• Yes, it totally did.



Getting bits to users
• bhyve is a FreeBSD base-system component 

• so, can’t link against Xorg/SDL libs 

• VNC looked the obvious next choice 

• IETF spec 

• Many free clients available 

• Protocol didn’t appear too onerous 

• Also provided keyboard/mouse input



Prototyping VNC
• Started out writing a simple program using Cairo rendering 

chars to a bitmap on keyboard input 

• Used the GPL’d libvnc to get something going. 

• Very useful to tcpdump to see what really goes on 

• Then, started implementing a from-scratch BSD-licensed 
version 

• Harmed many VNC viewers in the process 

• This gave the skeleton of a VNC server



The “fbuf” device emulation
• bhyve implements a proprietary PCI frame buffer emulation 

• The opposite of the bhyve only-emulate-well-supported-
devices philosophy 

• But, with UEFI, guests accept what the GOP protocol reports 

• and since bhyve provides UEFI, a custom driver is 
provided for this 

• 8MB of frame buffer memory provided with 32-bit pixels. 
Resolution can be changed on the fly (though usually only in 
UEFI on a GOP requests)



“fbuf” #2
• Guest frame buffers accesses are NOT emulated, but passed 

through 

• No instruction emulation required (most likely exotic instr’s) 

• Host memory is inserted into the guest EPT map to create the frame 
buffer 

• Marked as non-executable 

• Guest rendering runs at memory bandwidth 

• Not through slow vesa/scfb bus-attached mem 

• But, non-accelerated



fbuf: meet VNC
• fbuf memory has to be passed to a user 

• The age-old technique of “screen scraping” is used 

• The screen is sampled every 1/30 seconds 

• Sending the entire frame buffer in this interval requires a lot of b/w 

• So, run a CRC over each 32x32 pixel “tile”, and don’t send the region if the CRC of the 
current screen is equal to the previous. 

• If more than XXX % of cells have changed, give up and send the whole thing instead of 
tiny rectangles 

• A simple compression technique that works very well, and doesn’t use a lot of CPU when 
idle. 

• Some older VNC clients really don’t like it. 

• Also: use zlib compression if the client supports it. 

• No CPU used when VNC not connected



The mouse
• VNC provides absolute mouse coordinates 

• bhyve emulates a PS2 keyboard/mouse controller which hooks 
up to the VNC server 

• Unfortunately, the PS2 mouse only supplies relative coordinates. 

• Most guests implement s/w mouse acceleration 

• fbuf provides no h/w cursor rendering (avoiding guest 
drivers), so guests will s/w render 

• This results in the mouse “running away” from the VNC cursor



Fixing the mouse
• Tablet devices provide absolute coordinates 

• Good match for VNC 

• Hard to find a generic tablet device 

• Solution was to implement a USB XHCI controller 

• XHCI supports MSI, and much friendlier on the system than an EHCI 
controller emulation (legacy intr’s only, polling required) 

• Provides a future path for USB emulations/passthru/etc 

• Tablet device attachment hooked up to VNC to provide absolute coords 

• Downside: XHCI not supported in older guests (Win7) 

• Bigger downside: still not supported by FreeBSD :(



The keyboard
• The bhyve ps2 keyboard emulation was hooked up to VNC 

• Every single x86 guest in existence supports this h/w 

• A USB keyboard attached to XHCI doesn’t add much value 

• VNC provides Xorg scan-codes 

• A very reasonable and proven format 

• Unfortunately, the mix of VNC clients and non-US keyboards 
creates a torrid mix 

• A large percent of bhyve graphics issues relate to this issue



w10-ct install



w10-ct setup



ubuntu 17.10 desktop



What about VGA ?
• VGA (more likely SVGA+) emulation was considered early on 

• However, it is extremely complicated to support all the various modes 

• Only supports a limited resolution. 

• An emulation has been written, though not fully enabled 

• Renders the various modes into the linear frame-buffer to allow export 
with VNC 

• Requires trapping all accesses for fidelity e.g. planar modes: extremely 
slow 

• UEFI CSM has a BIOS INT10 interface to support this 

• Existing keyboard/mouse



The collision of VGA and 
UEFI

• Windows Vista, 7, and Server 2k8 require both UEFI GOP and BIOS INT10h 

• VGA registers are accessed 

• Fixed by: 

• an INT10h 16-bit asm stub in non-CSM UEFI that reports the required 
VESA BIOS info 

• partial VGA register implementation 

• Unfortunately this breaks OpenBSD UEFI since it thinks the system is VGA, 
so yet another option required to allow that (“vga=off”) 

• Currently forces resolution to 1024x768 regardless of config, though that is 
fixable



Futures
• PCI passthru of graphics adapters 

• Allows full-speed 3D rendering 

• USB keyboard support 

• Expand VNC client support 

• Fix language keyboard issues 

• External API for non-VNC viewers (FreeRDP, Spice) 

• Worth supporting virtio graphics emulation ?



Thanks to

• Leon Dang for most of this work 

• tychon@freebsd.org for VGA/VNC/ps2 work 

• neel@freebsd.org for guest EPT mem support 

• peter.fang@tidalscale.com for Win10/CT support

mailto:tychon@freebsd.org
mailto:neel@freebsd.org
mailto:peter.fang@tidalscale.com


w10-ct


