
Chapter 3

The Relational Model

CMPT-354-98.2 Lecture Notes May 21, 1998

1. The �rst database systems were based on the network and hierarchicalmodels. These are covered brie
y
in appendices in the text. The relational model was �rst proposed by E.F. Codd in 1970 and the �rst such
systems (notably INGRES and System/R) was developed in 1970s. The relational model is now the dominant
model for commercial data processing applications.

2. Note: Attribute Name Abbreviations

The text uses fairly long attribute names which are abbreviated in the notes as follows.

� customer-name becomes cname

� customer-city becomes ccity

� branch-city becomes bcity

� branch-name becomes bname

� account-number becomes account#

� loan-number becomes loan#

� banker-name becomes banker

3.1 Structure of Relational Database

1. A relational database consists of a collection of tables, each having a unique name.

A row in a table represents a relationship among a set of values.

Thus a table represents a collection of relationships.

2. There is a direct correspondence between the concept of a table and the mathematical concept of a relation.
A substantial theory has been developed for relational databases.

3.1.1 Basic Structure

1. Figure 3.1 shows the deposit and customer tables for our banking example.

� It has four attributes.

� For each attribute there is a permitted set of values, called the domain of that attribute.

19

20 CHAPTER 3. THE RELATIONAL MODEL

bname account# cname balance

Downtown 101 Johnson 500
Lougheed Mall 215 Smith 700

SFU 102 Hayes 400
SFU 304 Adams 1300

cname street ccity

Johnson Pender Vancouver
Smith North Burnaby
Hayes Curtis Burnaby
Adams No.3 Road Richmond
Jones Oak Vancouver

Figure 3.1: The deposit and customer relations.

� E.g. the domain of bname is the set of all branch names.

Let D1 denote the domain of bname, and D2, D3 and D4 the remaining attributes' domains respectively.

Then, any row of deposit consists of a four-tuple (v1; v2; v3; v4) where

v1 2 D1; v2 2 D2; v3 2 D3; v4 2 D4

In general, deposit contains a subset of the set of all possible rows.

That is, deposit is a subset of

D1 �D2 �D3 �D4; or; abbreviated to; �4i=1Di

In general, a table of n columns must be a subset of

�ni=1Di (all possible rows)

2. Mathematicians de�ne a relation to be a subset of a Cartesian product of a list of domains. You can see the
correspondence with our tables.

We will use the terms relation and tuple in place of table and row from now on.

3. Some more formalities:

� let the tuple variable t refer to a tuple of the relation r.

� We say t 2 r to denote that the tuple t is in relation r.

� Then t[bname] = t[1] = the value of t on the bname attribute.

� So t[bname] = t[1] = \Downtown",

� and t[cname] = t[3] = \Johnson".

4. We'll also require that the domains of all attributes be indivisible units.

� A domain is atomic if its elements are indivisible units.

� For example, the set of integers is an atomic domain.

� The set of all sets of integers is not.

� Why? Integers do not have subparts, but sets do | the integers comprising them.

� We could consider integers non-atomic if we thought of them as ordered lists of digits.

3.1. STRUCTURE OF RELATIONAL DATABASE 21

account-
number balance

street

customer

customer-
name

customer-
city deposit

amount

branch

branch-name

branch-city

assets

borrow

loan#

Figure 3.2: E-R diagram for the banking enterprise

3.1.2 Database Schema

1. We distinguish between a database scheme (logical design) and a database instance (data in the database
at a point in time).

2. A relation scheme is a list of attributes and their corresponding domains.

3. The text uses the following conventions:

� italics for all names

� lowercase names for relations and attributes

� names beginning with an uppercase for relation schemes

These notes will do the same.

For example, the relation scheme for the deposit relation:

� Deposit-scheme = (bname, account#, cname, balance)

We may state that deposit is a relation on scheme Deposit-scheme by writing deposit(Deposit-scheme).

If we wish to specify domains, we can write:

� (bname: string, account#: integer, cname: string, balance: integer).

Note that customers are identi�ed by name. In the real world, this would not be allowed, as two or more
customers might share the same name.

Figure 3.2 shows the E-R diagram for a banking enterprise.

4. The relation schemes for the banking example used throughout the text are:

� Branch-scheme = (bname, assets, bcity)

� Customer-scheme = (cname, street, ccity)

� Deposit-scheme = (bname, account#, cname, balance)

� Borrow-scheme = (bname, loan#, cname, amount)

Note: some attributes appear in several relation schemes (e.g. bname, cname). This is legal, and provides
a way of relating tuples of distinct relations.

5. Why not put all attributes in one relation?

22 CHAPTER 3. THE RELATIONAL MODEL

Suppose we use one large relation instead of customer and deposit:

� Account-scheme = (bname, account#, cname, balance, street, ccity)

� If a customer has several accounts, we must duplicate her or his address for each account.

� If a customer has an account but no current address, we cannot build a tuple, as we have no values for
the address.

� We would have to use null values for these �elds.

� Null values cause di�culties in the database.

� By using two separate relations, we can do this without using null values

3.1.3 Keys

1. The notions of superkey, candidate key and primary key all apply to the relational model.

2. For example, in Branch-scheme,

� fbnameg is a superkey.

� fbname, bcityg is a superkey.

� fbname, bcityg is not a candidate key, as the superkey fbnameg is contained in it.

� fbnameg is a candidate key.

� fbcityg is not a superkey, as branches may be in the same city.

� We will use fbnameg as our primary key.

3. The primary key for Customer-scheme is fcnameg.

4. More formally, if we say that a subset K of R is a superkey for R, we are restricting consideration to relations
r(R) in which no two distinct tuples have the same values on all attributes in K. In other words,

� If t1 and t2 are in r, and

� t1 6= t2,

� then t1[K] 6= t2[K].

3.1.4 Query Languages

1. A query language is a language in which a user requests information from a database. These are typically
higher-level than programming languages.

They may be one of:

� Procedural, where the user instructs the system to perform a sequence of operations on the database.
This will compute the desired information.

� Nonprocedural, where the user speci�es the information desired without giving a procedure for ob-
taining the information.

2. A complete query language also contains facilities to insert and delete tuples as well as to modify parts of
existing tuples.

3.2. THE RELATIONAL ALGEBRA 23

bname loan# cname amount

Downtown 17 Jones 1000
Lougheed Mall 23 Smith 2000

SFU 15 Hayes 1500

bname assets bcity

Downtown 9,000,000 Vancouver
Lougheed Mall 21,000,000 Burnaby

SFU 17,000,000 Burnaby

Figure 3.3: The borrow and branch relations.

3.2 The Relational Algebra

1. The relational algebra is a procedural query language.

� Six fundamental operations:

{ select (unary)

{ project (unary)

{ rename (unary)

{ cartesian product (binary)

{ union (binary)

{ set-di�erence (binary)

� Several other operations, de�ned in terms of the fundamental operations:

{ set-intersection

{ natural join

{ division

{ assignment

� Operations produce a new relation as a result.

3.2.1 Fundamental Operations

1. The Select Operation

Select selects tuples that satisfy a given predicate. Select is denoted by a lowercase Greek sigma (�), with
the predicate appearing as a subscript. The argument relation is given in parentheses following the �.

For example, to select tuples (rows) of the borrow relation where the branch is \SFU", we would write

�bname=\SFU"(borrow)

Let Figure 3.3 be the borrow and branch relations in the banking example.

The new relation created as the result of this operation consists of one tuple: (SFU; 15;Hayes; 1500).

We allow comparisons using =, 6=, h, �, > and � in the selection predicate.

We also allow the logical connectives _ (or) and ^ (and). For example:

�bname=\Downtown"^ amount> 1200(borrow)

Suppose there is one more relation, client, shown in Figure 3.4, with the scheme

Client scheme = (cname; banker)

we might write
�cname=banker(client)

to �nd clients who have the same name as their banker.

2. The Project Operation

Project copies its argument relation for the speci�ed attributes only. Since a relation is a set, duplicate
rows are eliminated. Projection is denoted by the Greek capital letter pi (�). The attributes to be copied

24 CHAPTER 3. THE RELATIONAL MODEL

cname banker

Hayes Jones
Johnson Johnson

Figure 3.4: The client relation.

appear as subscripts.

For example, to obtain a relation showing customers and branches, but ignoring amount and loan#, we write

�bname;cname(borrow)

We can perform these operations on the relations resulting from other operations. To get the names of
customers having the same name as their bankers,

�cname(�cname=banker(client))

Think of select as taking rows of a relation, and project as taking columns of a relation.

3. The Cartesian Product Operation

The cartesian product of two relations is denoted by a cross (�), written

r1 � r2 for relations r1 and r2

The result of r1 � r2 is a new relation with a tuple for each possible pairing of tuples from r1 and r2. In
order to avoid ambiguity, the attribute names have attached to them the name of the relation from which
they came. If no ambiguity will result, we drop the relation name.

The result client�customer is a very large relation. If r1 has n1 tuples, and r2 has n2 tuples, then r = r1�r2
will have n1n2 tuples.

The resulting scheme is the concatenation of the schemes of r1 and r2, with relation names added as men-
tioned.

To �nd the clients of banker Johnson and the city in which they live, we need information in both client and
customer relations. We can get this by writing

�banker=\Johnson"(client � customer)

However, the customer.cname column contains customers of bankers other than Johnson. (Why?)

We want rows where client.cname = customer.cname. So we can write

�client:cname=customer:cname(�banker=\Johnson"(client � customer))

to get just these tuples. Finally, to get just the customer's name and city, we need a projection:

�client:cname;ccity (�client:cname=customer:cname (�banker=\Johnson"(client � customer)))

4. The Rename Operation

The rename operation solves the problems that occurs with naming when performing the cartesian product
of a relation with itself. Suppose we want to �nd the names of all the customers who live on the same street
and in the same city as Smith. We can get the street and city of Smith by writing

�street;ccity(�cname=\Smith"(customer))

To �nd other customers with the same information, we need to reference the customer relation again:

3.2. THE RELATIONAL ALGEBRA 25

(a)

cname

Hayes
Adams

(b)
cname

Adams

Figure 3.5: The union and set-di�erence operations.

�P (customer � (�street;ccity (�cname=\Smith"(customer))))

where P is a selection predicate requiring street and ccity values to be equal.

Problem: how do we distinguish between the two street values appearing in the Cartesian product, as both
come from a customer relation?
Solution: use the rename operator, denoted by the Greek letter rho (�). We write

�x(r)

to get the relation r under the name of x.

If we use this to rename one of the two customer relations we are using, the ambiguities will disappear.

�customer:cname(�cust2:street=customer:street^ cust2:ccity=customer:ccity

(customer � (�street;ccity(�cname=\Smith"(�cust2(customer))))))

5. The Union Operation

The union operation is denoted [as in set theory. It returns the union (set union) of two compatible
relations. For a union operation r [s to be legal, we require that

� r and s must have the same number of attributes.

� The domains of the corresponding attributes must be the same.

To �nd all customers of the SFU branch, we must �nd everyone who has a loan or an account or both at the
branch. We need both borrow and deposit relations for this:

�cname(�bname=\SFU"(borrow)) [�cname(�bname=\SFU"(deposit))

As in all set operations, duplicates are eliminated, giving the relation of Figure 3.5(a).

6. The Set Di�erence Operation

Set di�erence is denoted by the minus sign (�). It �nds tuples that are in one relation, but not in another.
Thus r � s results in a relation containing tuples that are in r but not in s.

To �nd customers of the SFU branch who have an account there but no loan, we write

�cname(�bname=\SFU"(deposit)) � �cname(�bname=\SFU"(borrow))

The result is shown in Figure 3.5(b).

We can do more with this operation. Suppose we want to �nd the largest account balance in the bank.
Strategy:

� Find a relation r containing the balances not the largest.

� Compute the set di�erence of r and the deposit relation.

26 CHAPTER 3. THE RELATIONAL MODEL

(a)

balance

400
500
700

(b)
balance

1300

Figure 3.6: Find the largest account balance in the bank.

To �nd r, we write

�deposit:balance (�deposit:balance<d:balance (deposit � �d(deposit)))

This resulting relation contains all balances except the largest one. (See Figure 3.6(a)). Now we can �nish
our query by taking the set di�erence:

�balance(deposit) � �deposit:balance (�deposit:balance<d:balance (deposit � �d(deposit)))

Figure 3.6(b) shows the result.

3.2.2 Formal De�nition of Relational Algebra

1. A basic expression consists of either

� A relation in the database.

� A constant relation.

2. General expressions are formed out of smaller subexpressions using

� �p(E1) select (p a predicate)

� �s(E1) project (s a list of attributes)

� �x(E1) rename (x a relation name)

� E1 [E2 union

� E1 �E2 set di�erence

� E1 �E2 cartesian product

3.2.3 Additional Operations

1. Additional operations are de�ned in terms of the fundamental operations. They do not add power to the
algebra, but are useful to simplify common queries.

2. The Set Intersection Operation

Set intersection is denoted by \, and returns a relation that contains tuples that are in both of its argument
relations. It does not add any power as

r \ s = r � (r � s)

To �nd all customers having both a loan and an account at the SFU branch, we write

�cname(�bname=\SFU"(borrow)) \ �cname(�bname=\SFU"(deposit))

3. The Natural Join Operation

Often we want to simplify queries on a cartesian product. For example, to �nd all customers having a loan

3.2. THE RELATIONAL ALGEBRA 27

cname ccity

Smith Burnaby
Hayes Burnaby
Jones Vancouver

Figure 3.7: Joining borrow and customer relations.

at the bank and the cities in which they live, we need borrow and customer relations:

�borrow:cname;ccity (�borrow:cname=customer:cname (borrow � customer))

Our selection predicate obtains only those tuples pertaining to only one cname.

This type of operation is very common, so we have the natural join, denoted by a 1 sign. Natural join
combines a cartesian product and a selection into one operation. It performs a selection forcing equality on
those attributes that appear in both relation schemes. Duplicates are removed as in all relation operations.

To illustrate, we can rewrite the previous query as

�cname;ccity(borrow 1 customer)

The resulting relation is shown in Figure 3.7.

We can now make a more formal de�nition of natural join.

� Consider R and S to be sets of attributes.

� We denote attributes appearing in both relations by R \ S.

� We denote attributes in either or both relations by R [S.

� Consider two relations r(R) and s(S).

� The natural join of r and s, denoted by r 1 s is a relation on scheme R [S.

� It is a projection onto R [S of a selection on r � s where the predicate requires r:A = s:A for each
attribute A in R \ S.

Formally,
r 1 s = �R[S (�r:A1=s:A1 ^ r:A2=s:A2 ^ :::^ r:An=s:An(r � s))

where R \ S = fA1; A2; : : : ; Ang.

To �nd the assets and names of all branches which have depositors living in Stamford, we need customer,
deposit and branch relations:

�bname;assets (�ccity=\Stamford" (customer 1 deposit 1 branch))

Note that 1 is associative.

To �nd all customers who have both an account and a loan at the SFU branch:

�cname(�bname=\SFU"(borrow 1 deposit))

This is equivalent to the set intersection version we wrote earlier. We see now that there can be several ways
to write a query in the relational algebra.

If two relations r(R) and s(S) have no attributes in common, then R \ S = ;, and r 1 s = r � s.

4. The Division Operation

Division, denoted �, is suited to queries that include the phrase \for all".

Suppose we want to �nd all the customers who have an account at all branches located in Brooklyn. Strategy:

28 CHAPTER 3. THE RELATIONAL MODEL

think of it as three steps.

We can obtain the names of all branches located in Brooklyn by

r1 = �bname(�bcity=\Brooklyn"(branch))

Figure 3.19 in the textbook shows the result.

We can also �nd all cname, bname pairs for which the customer has an account by

r2 = �cname;bname(deposit)

Figure 3.20 in the textbook shows the result.

Now we need to �nd all customers who appear in r2 with every branch name in r1. The divide operation
provides exactly those customers:

�cname;bname(deposit) � �bname(�bcity=\Brooklyn"(branch))

which is simply r2 � r1.

Formally,

� Let r(R) and s(S) be relations.

� Let S � R.

� The relation r � s is a relation on scheme R� S.

� A tuple t is in r � s if for every tuple ts in s there is a tuple tr in r satisfying both of the following:

tr [S] = ts[S] (3.2.1)

tr[R� S] = t[R� S] (3.2.2)

� These conditions say that the R� S portion of a tuple t is in r � s if and only if there are tuples with
the r � s portion and the S portion in r for every value of the S portion in relation S.

We will look at this explanation in class more closely.

The division operation can be de�ned in terms of the fundamental operations.

r � s = �R�S(r) ��R�S ((�R�S(r) � s) � r)

Read the text for a more detailed explanation.

5. The Assignment Operation

Sometimes it is useful to be able to write a relational algebra expression in parts using a temporary relation
variable (as we did with r1 and r2 in the division example).

The assignment operation, denoted , works like assignment in a programming language. We could rewrite
our division de�nition as

temp1 �R�S(r)

temp2 �R�S((temp1 � s) � r)

result = temp1 � temp2

No extra relation is added to the database, but the relation variable created can be used in subsequent
expressions. Assignment to a permanent relation would constitute a modi�cation to the database.

3.3 The Tuple Relational Calculus

1. The tuple relational calculus is a nonprocedural language. (The relational algebra was procedural.) We must

3.3. THE TUPLE RELATIONAL CALCULUS 29

provide a formal description of the information desired.

2. A query in the tuple relational calculus is expressed as

ft j P (t)g

i.e. the set of tuples t for which predicate P is true.

3. We also use the notation

� t[a] to indicate the value of tuple t on attribute a.

� t 2 r to show that tuple t is in relation r.

3.3.1 Example Queries

1. For example, to �nd the branch-name, loan number, customer name and amount for loans over $1200:

ft j t 2 borrow ^ t[amount] > 1200g

This gives us all attributes, but suppose we only want the customer names. (We would use project in the
algebra.) We need to write an expression for a relation on scheme (cname).

ft j 9s 2 borrow (t[cname] = s[cname] ^ s[amount] > 1200)g

In English, we may read this equation as \the set of all tuples t such that there exists a tuple s in the relation
borrow for which the values of t and s for the cname attribute are equal, and the value of s for the amount

attribute is greater than 1200."

The notation 9t 2 r(Q(t)) means \there exists a tuple t in relation r such that predicate Q(t) is true".

How did we get the above expression? We needed tuples on scheme cname such that there were tuples in
borrow pertaining to that customer name with amount attribute > 1200.

The tuples t get the scheme cname implicitly as that is the only attribute t is mentioned with.

Let's look at a more complex example.

Find all customers having a loan from the SFU branch, and the the cities in which they live:

ft j 9s 2 borrow(t[cname] = s[cname] ^ s[bname] = \SFU"

^ 9u 2 customer(u[cname] = s[cname] ^ t[ccity] = u[ccity]))g

In English, we might read this as \the set of all (cname,ccity) tuples for which cname is a borrower at the
SFU branch, and ccity is the city of cname".

Tuple variable s ensures that the customer is a borrower at the SFU branch. Tuple variable u is restricted
to pertain to the same customer as s, and also ensures that ccity is the city of the customer.

The logical connectives ^ (AND) and _ (OR) are allowed, as well as : (negation).

We also use the existential quanti�er 9 and the universal quanti�er 8.

Some more examples:

1. Find all customers having a loan, an account, or both at the SFU branch:

ft j 9s 2 borrow(t[cname] = s[cname] ^ s[bname] = \SFU")

_ 9u 2 deposit(t[cname] = u[cname] ^ u[bname] = \SFU")g

Note the use of the _ connective.
As usual, set operations remove all duplicates.

30 CHAPTER 3. THE RELATIONAL MODEL

2. Find all customers who have both a loan and an account at the SFU branch.

Solution: simply change the _ connective in 1 to a ^.

3. Find customers who have an account, but not a loan at the SFU branch.

ft j 9u 2 deposit(t[cname] = u[cname] ^ u[bname] = \SFU")

^ :9s 2 borrow(t[cname] = s[cname] ^ s[bname] = \SFU")g

4. Find all customers who have an account at all branches located in Brooklyn. (We used division in
relational algebra.)

For this example we will use implication, denoted by a pointing �nger in the text, but by) here. The
formula P) Q means P implies Q, or, if P is true, then Q must be true.

ft j 8u 2 branch (u[bcity] = \Brooklyn")

9s 2 deposit(t[cname] = s[cname] ^ u[bname] = s[bname]))g

In English: the set of all cname tuples t such that for all tuples u in the branch relation, if the value of u
on attribute bcity is Brooklyn, then the customer has an account at the branch whose name appears in the
bname attribute of u.

Division is di�cult to understand. Think it through carefully.

3.3.2 Formal De�nitions

1. A tuple relational calculus expression is of the form

ft j P (t)g

where P is a formula. Several tuple variables may appear in a formula.

2. A tuple variable is said to be a free variable unless it is quanti�ed by a 9 or a 8. Then it is said to be a
bound variable.

3. A formula is built of atoms. An atom is one of the following forms:

� s 2 r, where s is a tuple variable, and r is a relation (62 is not allowed).

� s[x] � u[y], where s and u are tuple variables, and x and y are attributes, and � is a comparison
operator (<;�;=; 6=; >;�).

� s[x] � c, where c is a constant in the domain of attribute x.

4. Formulae are built up from atoms using the following rules:

� An atom is a formula.

� If P is a formula, then so are :P and (P).

� If P1 and P2 are formulae, then so are P1 _ P2, P1 ^P2 and P1) P2.

� If P (s) is a formula containing a free tuple variable s, then

9s 2 r(P (s)) and 8s 2 r(P (s))

are formulae also.

5. Note some equivalences:

� P1 ^P2 = :(:P1 _ :P2)

� 8t 2 r(P (t)) = :9t 2 r(:P (t))

� P1) P2 = :P1 _ P2

3.4. THE DOMAIN RELATIONAL CALCULUS 31

3.3.3 Safety of Expressions

1. A tuple relational calculus expression may generate an in�nite expression, e.g.

ft j :(t 2 borrow)g

2. There are an in�nite number of tuples that are not in borrow! Most of these tuples contain values that do
not appear in the database.

3. Safe Tuple Expressions

We need to restrict the relational calculus a bit.

� The domain of a formula P , denoted dom(P), is the set of all values referenced in P .

� These include values mentioned in P as well as values that appear in a tuple of a relation mentioned in
P .

� So, the domain of P is the set of all values explicitly appearing in P or that appear in relations mentioned
in P .

� dom(t 2 borrow ^ t[amount] < 1200) is the set of all values appearing in borrow.

� dom(t j :(t 2 borrow)) is the set of all values appearing in borrow.

We may say an expression ft j P (t)g is safe if all values that appear in the result are values from dom(P).

4. A safe expression yields a �nite number of tuples as its result. Otherwise, it is called unsafe.

3.3.4 Expressive Power of Languages

1. The tuple relational calculus restricted to safe expressions is equivalent in expressive power to the relational
algebra.

3.4 The Domain Relational Calculus

1. Domain variables take on values from an attribute's domain, rather than values for an entire tuple.

3.4.1 Formal De�nitions

1. An expression is of the form
fhx1; x2; : : : ; xni j P (x1; x2; : : : ; xn)g

where the xi; 1 � i � n; represent domain variables, and P is a formula.

2. An atom in the domain relational calculus is of the following forms

� hx1; : : : ; xni 2 r where r is a relation on n attributes, and xi; 1 � i � n, are domain variables or
constants.

� x � y, where x and y are domain variables, and � is a comparison operator.

� x � c, where c is a constant.

3. Formulae are built up from atoms using the following rules:

� An atom is a formula.

� If P is a formula, then so are :P and (P).

� If P1 and P2 are formulae, then so are P1 _ P2, P1 ^P2 and P1) P2.

� If P (x) is a formula where x is a domain variable, then so are 9x(P (x)) and 8x(P (x)).

32 CHAPTER 3. THE RELATIONAL MODEL

3.4.2 Example Queries

1. Find branch name, loan number, customer name and amount for loans of over $1200.

fhb; l; c; aijhb; l; c; ai 2 borrow ^ a > 1200g

2. Find all customers who have a loan for an amount > than $1200.

fhcij9b; l; a(hb; l; c; ai 2 borrow ^ a > 1200)g

3. Find all customers having a loan from the SFU branch, and the city in which they live.

fhc; xij 9b; l; a(hb; l; c; ai 2 borrow

^ b = \SFU" ^ 9y(hc; y; xi 2 customer))g

4. Find all customers having a loan, an account or both at the SFU branch.

fhci j 9b; l; a(hb; l; c; ai 2 borrow ^ b = \SFU")

_9b; a; n(hb; a; c; ni 2 deposit ^ b = \SFU")g

5. Find all customers who have an account at all branches located in Brooklyn.

fhci j 8x; y; z(:(hx; y; zi 2 branch)

_ z 6= \Brooklyn" _ (9a; n(hx; a; c; ni 2 deposit)))g

If you �nd this example di�cult to understand, try rewriting this expression using implication, as in the
tuple relational calculus example. Here's my attempt:

fhcni j 8bn; as; bc

((hbn; as; bci 2 branch ^ bc = \Brooklyn")) 9acct; bal(hbn; acct; cn; bali 2 deposit))g

I've used two letter variable names to get away from the problem of having to remember what x stands for.

3.4.3 Safety of Expressions

1. As in the tuple relational calculus, it is possible to generate in�nite expressions. The solution is similar
for domain relational calculus|restrict the form to safe expressions involving values in the domain of the
formula.

Read the text for a complete explanation.

3.4.4 Expressive Power of Languages

1. All three of the following are equivalent:

� The relational algebra.

� The tuple relational calculus restricted to safe expressions.

� The domain relational calculus restricted to safe expressions.

3.5. EXTENDED RELATIONAL-ALGEBRA OPERATIONS 33

ename street city

Coyote Toon Hollywood
Rabbit Tunnel Carrotville
Smith Revolver Death Valley

Williams Seaview Seattle

ename bname salary

Coyote Mesa 1500
Rabbit Mesa 1300
Gates Redmond 5300

Williams Redmond 1500

Figure 3.8: The employee and ft work relations.

ename street city bname salary

Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500

Figure 3.9: Results of employee 1 ft work

3.5 Extended Relational-Algebra Operations

3.5.1 Generalized Projection

1. Generalized projection extends the projection operation by allowing arithmetic functions to be used in the
projection list.

�F1;F2;:::;Fn(E):

where each of Fi is arithmetic expressions involving constants and attributes in the schema of the relational-
algebra expression E.

2. Example. Given a relation credit info(cname; limit; credit balance), to �nd how much more each person
may spend, we have

�cname;limit�credit balance(credit info):

3.5.2 Outer join

1. Outer join: An extension of join to deal with missing information.

2. Two relations in Fig. 3.8, with the relation schemas,

� employee (ename, stree, city)

� ft works (ename, bname, salary)

3. A join may miss some informaiton on the non-joinable attributes.

4. Three outer-joins: left outer-join, right outer-join, and full outer-join.

5. left outer-join: takes all tuples in the left relation that did not match with any tuple in the right relation,
pads the tuples with null values for all other attributes from the right relation, and adds them to the result
of the natural join.

6. Similarly, we de�ne right outer-join and full outer-join.

34 CHAPTER 3. THE RELATIONAL MODEL

ename street city bname salary

Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview Seattle Redmond 1500
Smith Revolver Death Valley null null

Figure 3.10: Results of employee leftjoin ft work.

3.5.3 Aggregate functions

1. Aggregate functions: sum, avg, count, min, max.

2. The collections on which aggregate functions are applied can have multiple occurrences of a value: the order
in which the value appears is irrelevant. Such collections are called multisets. For example,

sumsalary(pt works):

3. To eliminate multiple occurrences of a value prior to computing an aggregate function, with the addition of
the hyphenated string disinct appended to the end of the function name. For example,

count-distinctbname(pt works):

4. Grouping and then aggregating: To �nd the total salary sum of all part-time employees at each branch (not
the entire bank!),

bnamecount-distinctsalary(pt works):

5. The general form of the aggregation operation G is as follows.

G1;G2;:::;GnGF1A1;F2A2;:::;FmAm(E)

where E is any relational-algebra expression, G1; G2; : : : ; Gn constitute a list of attributes on which to group,
each Fi is an aggregate functions, and each Ai is an attribute name.

The meaning of the operation:

� The tuples in result of expression E is partitioned into groups. All tuples in a group has the same values
for G1; G2; : : : ; Gn, and tuples in di�erent group have di�erent values.

� For each group (g1; g2; : : : ; gn), the result has a tuple (g1; g2; : : : ; gn; a1; a2; : : : ; am) where, for each i,
ai is the result of applying the aggregate function Fi on the multiset of values for attribute Ai in the
group.

6. Example. Find sum and max of salary for part-time employees at each branch.

bnameGsumsalary;maxsalary(pt works):

3.6 Modi�cation of the Database

1. Up until now, we have looked at extracting information from the database. We also need to add, remove and
change information. Modi�cations are expressed using the assignment operator.

3.6. MODIFICATION OF THE DATABASE 35

3.6.1 Deletion

1. Deletion is expressed in much the same way as a query. Instead of displaying, the selected tuples are
removed from the database. We can only delete whole tuples.

In relational algebra, a deletion is of the form

r r �E

where r is a relation and E is a relational algebra query. Tuples in r for which E is true are deleted.

2. Some examples:

1. Delete all of Smith's account records.

deposit deposit � �cname=\Smith"(deposit)

2. Delete all loans with loan numbers between 1300 and 1500.

deposit deposit� �loan#�1300 ^ loan#�1500(deposit)

3. Delete all accounts at Branches located in Needham.

r1 �bcity=\Needham"(deposit 1 branch)

r2 �bname;account#;cname;balance(r1)

deposit deposit � r2

3.6.2 Insertion

1. To insert data into a relation, we either specify a tuple, or write a query whose result is the set of tuples to
be inserted. Attribute values for inserted tuples must be members of the attribute's domain.

2. An insertion is expressed by
r r [E

where r is a relation and E is a relational algebra expression.

3. Some examples:

1. To insert a tuple for Smith who has $1200 in account 9372 at the SFU branch.

deposit deposit [f(\SFU"; 9372; \Smith"; 1200)g

2. To provide all loan customers in the SFU branch with a $200 savings account.

r1 (�bname=\SFU"(borrow))

r2 �bname;loan#;cname(r1)

deposit deposit [(r2 � f(200)g)

3.6.3 Updating

1. Updating allows us to change some values in a tuple without necessarily changing all.

We use the update operator, �, with the form

�A E(r)

36 CHAPTER 3. THE RELATIONAL MODEL

where r is a relation with attribute A, which is assigned the value of expression E.

The expression E is any arithmetic expression involving constants and attributes in relation r.

Some examples:

1. To increase all balances by 5 percent.

�balance balance�1:05(deposit)

This statement is applied to every tuple in deposit.

2. To make two di�erent rates of interest payment, depending on balance amount:

�balance balance�1:06(�balance > 10000(deposit))

�balance balance�1:05(�balance � 10000(deposit))

Note: in this example the order of the two operations is important. (Why?)

3.7 Views

1. We have assumed up to now that the relations we are given are the actual relations stored in the database.

2. For security and convenience reasons, we may wish to create a personalized collection of relations for a user.

3. We use the term view to refer to any relation, not part of the conceptual model, that is made visible to the
user as a \virtual relation".

4. As relations may be modi�ed by deletions, insertions and updates, it is generally not possible to store views.
(Why?) Views must then be recomputed for each query referring to them.

3.7.1 View De�nition

1. A view is de�ned using the create view command:

create view v as hquery expression>

where hquery expressioni is any legal query expression. The view created is given the name v.

2. To create a view all customer of all branches and their customers:

create view all customer as

�bname;cname(deposit) [�bname;cname(borrow)

3. Having de�ned a view, we can now use it to refer to the virtual relation it creates. View names can appear
anywhere a relation name can.

4. We can now �nd all customers of the SFU branch by writing

�cname(�bname=\SFU"(all customer))

3.7.2 Updates Through Views and Null Values

1. Updates, insertions and deletions using views can cause problems. The modi�cations on a view must be
transformed to modi�cations of the actual relations in the conceptual model of the database.

2. An example will illustrate: consider a clerk who needs to see all information in the borrow relation except
amount. Let the view loan-info be given to the clerk:

3.7. VIEWS 37

create view loan-info as

�bname;loan#;cname(borrow)

3. Since SQL allows a view name to appear anywhere a relation name may appear, the clerk can write:

loan-info loan-info [f(\SFU",3,\Ruth")g

This insertion is represented by an insertion into the actual relation borrow, from which the view is con-
structed.

However, we have no value for amount. A suitable response would be

� Reject the insertion and inform the user.

� Insert (\SFU",3,\Ruth",null) into the relation.

The symbol null represents a null or place-holder value. It says the value is unknown or does not exist.

4. Another problem with modi�cation through views: consider the view

create view branch-city as

�bname;ccity(borrow 1 customer)

This view lists the cities in which the borrowers of each branch live. Now consider the insertion

branch-city branch-city [f(\Brighton",\Woodside")g

Using nulls is the only possible way to do this (see Figure 3.22 in the textbook).

If we do this insertion with nulls, now consider the expression the view actually corresponds to:

�bname;ccity(borrow 1 customer)

As comparisons involving nulls are always false, this query misses the inserted tuple.

To understand why, think about the tuples that got inserted into borrow and customer. Then think about
how the view is recomputed for the above query.

3.7.3 Views De�ned Using Other Views

1. Views can be de�ned using other views. E.g.,

create view sfu-customer as

�cname(�banme=\SFU"(all customer))

where all customer itself is a view.

2. Dependency relationship of views:

� A view v1 is said to depend directly on v2 if v2 is used in the expression de�ning v1.

� A view v1 is said to depend on v2 if and only if there is a path in the dependency graph from v2 to v1.

� A view relation v is said to be recursive it depends on itself.

3. View expansion: a way to de�ne the meaning of views in terms of other views.

repeat

Find any view relation vi in e1
Replace any view relation vi by the expression de�ning vi

until no more view relations are present in e1

As long as the view de�nition are not recursive, this loop will terminate.

