
 1

Calloutng: a new infrastructure for timer facilities in the
FreeBSD kernel

Alexander Motin <mav@FreeBSD.org>
Davide Italiano <davide@FreeBSD.org>

mailto:mav@FreeBSD.org
mailto:davide@FreeBSD

 2

What's callout?

● Kernel interface that allows a function (with argument) to be
called in the future

● Widely used in FreeBSD (and *BSD in general):
– TCP retransmission

– Network card drivers

– System calls dealing with time

 3

Callout clients (some of them)

select(2)nanosleep(2) poll(2)

condvar(9)sleep(9)

sleepqueue(9)

callout(9)

KERNEL

USERLAND

 4

Current API (userland)

● int nanosleep(const struct timespec *req, struct timespec
*rem);

● int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

● int pthread_cond_timedwait(pthread_cond_t *restrict cond,
pthread_mutex_t *restrict mutex, const struct timespec *restrict
abstime);

 5

Current KPI (1)

● void sleepq_set_timeout(void *wchan, int timo);
● int cv_timedwait(struct cv *cvp, lock, int timo);
● int msleep(void *chan, struct mtx *mtx, int priority, const char

*wmesg, int timo);
● int tsleep(void *chan, int priority, const char *wmesg, int timo);

 6

Current KPI (2)

● void callout_init(struct callout *c, int mpsafe);
● int callout_stop(struct callout *c);
● int callout_reset(struct callout *c, int ticks, timeout_t *func,

void *arg);
● int callout_schedule(struct callout *c, int ticks);

 7

Granularity of tick

● int ticks is a global kernel variable which keeps track of time
elapsed since boot

● Historically timers generated interrupts hz times per second
(tunable, generally equals to 1000 on most systems)

● On every interrupt hardclock() is called and ticks updated by
one unit

 8

Callwheel data structure

● Array of n unsorted lists
● O(1) average time for most

of the operations
● Every tick the bucket pointed

by ticks mod n is scanned for
expired callouts

● SWI scheduled to execute
callback function

0

...

ticks % i - 1

ticks % i

ticks % i + 1

...

n-1

ticks
event

event

 9

Recent'ish changes

● Single callwheel replaced by a per-CPU callwheel to improve
scalability and performances

● Migration system introduced
● KPI extended:

– int callout_reset_on(struct callout *c, int ticks, timeout_t *func, void
*arg, int cpu)

 10

Current design analysis

● Goodies
– No hardware assumptions

– Reading a global variable is cheap

● Drawbacks
– Intervals rounded to the next tick

– CPU woken up on every interrupt

– No way to defer/coalesce callouts

– All callouts running in SWI context

 11

Calloutng goals

● Improve the accuracy of events removing the concept of
periods

● Avoid periodic CPU wakeups in order to reduce energy
consumption

● Group close events to reduce the number of interrupts and
respectively processor wakeups

● Keep compatibility with the existing KPIs
● Don’t introduce performance penalties

 12

New API/KPI

● Userland services provide a fair enough level of precision
(microseconds)
– They can't be touched at all due to POSIX

● Kernel API built around the concept of tick:
– Hz = 1000 means 1 millisecond granularity

– 32-bit tick can't represent microseconds without quickly overflowing

– Need some re-thinking

 13

New API/KPI

● There are three data-types in FreeBSD to represent time:
– struct timespec (time_t + long, 64-128 bits, decimal)

– struct timeval (time_t + long, 64-128 bits, decimal)

– struct bintime (time_t + uint64_t, 96-128 bits, fixed point)

● Math with bintime is easier, but ...
● 128 bits are overkill

– Hardware clocks have short term stabilities approaching 1e-8, but
likely as bad as 1e-6.

– Compilers don’t provide a native int128_t or int96_t type.

 14

sbintime_t type

● Think of it as a 'shrinked bintime'
– 32 bit integer part

– 32 bit fractional part

● Easily fit in int64_t (readily available in the C language)
● Math/comparisons are trivial

– SBT_1S ((sbintime_t)1 << 32)

– SBT_1M (SBT_1S * 60)

– SBT_1MS (SBT_1S / 1000)

– if (time1 <= time2)

 15

KPI changes

● Try to avoid breakages
– int callout_reset_sbt_on (..., sbintime_t sbt, sbintime_t precision,

int flags);

– int callout_reset_flags_on (..., int ticks, ..., int flags);

● Also kernel consumers KPI need to be extended:
– int cv_timedwait_sbt (..., sbintime_t sbt, sbintime_t precision);

– int msleep_sbt (..., sbintime_t sbt, sbintime_t precision);

– int sleepq_set_timeout_sbt (..., sbintime_t sbt, sbintime_t precision);

 16

KBI: struct callout (before and after)

struct callout {

...

int c_time;

void *c_arg;

void (*c_func)(void *);

struct lock_object *c_lock;

int c_flags;

volatile int c_cpu;

};

struct callout {

...

sbintime_t c_time;

sbintime_t c_prec;

void *c_arg;

void (*c_func)(void *);

struct lock_object *c_lock;

int c_flags;

volatile int c_cpu;

};

 17

Changes to the backend (1)

● Initially considered a switch to a tree-based structure
– O(lg n) insert/removal impact on overall performances

– Lots of timeouts frequently rearmed but never fire (e.g. ahci(4))

– Reallocation during insert difficult/impossible with callout locking
policy

● Maintained the wheel and refreshed the code

 18

Changes to the backend (2)

● Hash function revisited to take a subset of bits from integer part
of sbintime_t and the others from fractional part

● Designed in a way key changes approximately every 4ms
● Rationale behind this choice:

– The callwheel bucket should not be too big to not rescan events in
current bucket several times if several events are scheduled close to
each other.

– The callwheel bucket should not be too small to minimize number of
sequentially scanned empty buckets during events processing.

 19

Obtaining current time

● Time passed to callout is not anymore relative but absolute
● Need to know current time
● Two ways to obtain it:

– binuptime(): goes directly to the hardware

– getbinuptime(): read a cached variable updated from time to time

● sbinuptime() and getsbinuptime() implemented as wrappers to
these two functions

 20

Accuracy

● Callout structure augmented
● New KPI specifies a precision argument
● Default level of accuracy for kernel services: extimation based

on timeout value passed and other global parameters (hz)
● Tunable using the SYSCTL interface
● Aggregation checked when the wheel is processed:

– Precision + time fields of callout used to find a set of events which
allowed times overlap

 21

CPU-affinity/cache effects

● SWI complicates the job of the scheduler
– Possibility to wake up another CPU (it may be expensive from deep

sleep state)

– Useless context switch

– Other CPU caches unlikely contains useful data

● Allow to run from hw interrupt context specifying C_DIRECT
flag
– Eliminates the above problem

– Enforces additional constraints in locking

 22

CPU-affinity: an example

SWI context:

CPU0 PROCESS IDLE IRQ PROCESS PROCESS

CPU1 IDLE IDLE IDLE IDLE IDLE

CPU0 PROCESS IDLE IRQ SWI IDLE

CPU1 IDLE IDLE IDLE PROCESS PROCESS

HWI context:

 23

Experimental results (amd64)

 24

Experimental results (arm)

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24

