Calloutng: a new infrastructure for timer facilities in the
FreeBSD kernel

Alexander Motin <mav@FreeBSD.org>
Davide ltaliano <davide@FreeBSD.org>

e

mailto:mav@FreeBSD.org
mailto:davide@FreeBSD

What's callout?

» Kernel interface that allows a function (with argument) to be
called in the future

* Widely used in FreeBSD (and *BSD In general):

- TCP retransmission
- Network card drivers
- System calls dealing with time

e.

Callout clients (some of them)

nanosleep(2) select(2) poll(2)

sleep(9) condvar(9)

sleepqueue(9)

callout(9)

e.

Current API (userland)

* Int nanosleep(const *req, struct timespec
*rem);

 Int select(int nfds, fd_set *readfds, fd set *writefds,
fd_set *exceptfds, *tfimeout);

 int pthread cond_timedwait(pthread cond t *restrict cond,
pthread mutex _t *restrict mutex, const *restrict
abstime);

e.

Current KPI (1)

void sleepq_set_timeout(void *wchan,);
int cv_timedwait(struct cv *cvp, lock,);

Int msleep(void *chan, struct mtx *mtx, int priority, const char
*wmesg,);

int tsleep(void *chan, int priority, const char *wmesg,);

e.

Current KPI (2)

void callout_init(struct callout *c, int mpsafe);
Int callout_stop(struct callout *c);

Int callout_reset(struct callout *c, , timeout_t *func,
void *arg);
Int callout_schedule(struct callout *c,);

e.

Granularity of tick

* Int ticks is a global kernel variable which keeps track of time
elapsed since boot

» Historically timers generated interrupts hz times per second
(tunable, generally equals to 1000 on most systems)

* On every interrupt hardclock() is called and ticks updated by
one unit

e.

Callwheel data structure

Array of n unsorted lists

O(1) average time for most
of the operations
ticks % i -1

ticks % |

Every tick the bucket pointed —n
by ticks mod n is scanned for
expired callouts

ticks %1+ 1

SWI scheduled to execute n-1
callback function

event
event

.

Recent'ish changes

» Single callwheel replaced by a per-CPU callwheel to improve
scalablility and performances

* Migration system introduced
* KPI extended:

- Int callout_reset_on(struct callout *c, int ticks, timeout_t *func, void
*arg,)

e.

Current design analysis

e Goodies

- No hardware assumptions
- Reading a global variable is cheap

e Drawbacks

- Intervals rounded to the next tick
- CPU woken up on every interrupt
- No way to defer/coalesce callouts
- All callouts running in SWI context

e.

Calloutng goals

Improve the accuracy of events removing the concept of
periods

Avoid periodic CPU wakeups In order to reduce energy
consumption

Group close events to reduce the number of interrupts and
respectively processor wakeups

Keep compatibility with the existing KPIs
Don’t introduce performance penalties

e.

New API/KPI

» Userland services provide a fair enough level of precision
(microseconds)

- They can't be touched at all due to POSIX
» Kernel API built around the concept of tick:

- Hz = 1000 means 1 millisecond granularity
- 32-bit tick can't represent microseconds without quickly overflowing
- Need some re-thinking

e.

New API/KPI

* There are three data-types in FreeBSD to represent time:
- struct timespec (time_t + long, 64-128 bits, decimal)
- struct timeval (time_t + long, 64-128 bits, decimal)
- struct bintime (time_t + uint64 _t, 96-128 bits, fixed point)

* Math with bintime Is easier, but ...

e 128 bits are overkill

- Hardware clocks have short term stabilities approaching 1e-8, but
likely as bad as le-6.

- Compilers don’t provide a native int128 t or int96 t type. U
13

sbintime _t type

* Think of it as a 'shrinked bintime'
- 32 bit integer part
- 32 hit fractional part
« Easily fit in Int64 t (readily available in the C language)

* Math/comparisons are trivial
- SBT_1S ((sbintime_t)1 << 32)
- SBT_1M (SBT_1S * 60)
- SBT_1MS (SBT_1S/1000)
- if (timel <= time2)

e.

KPI changes

* Try to avoid breakages
- Int callout_reset_sbt on (..., :

);
- Int callout_reset_flags on (..., int ticks, ...,);
» Also kernel consumers KPI need to be extended:
- Int cv_timedwait_sbt (..., ,
- Int msleep_sbt (..., :
- Int sleepq_set _timeout_sbt (..., ;

KBI: struct callout (before and after)

struct callout { struct callout {

void *c_arg; id
X * A P AN i *C_arg;
void (*c_func)(void *); void (*c_func)(void *);

L :
struct lock_object *c_lock; struct lock _object *c_lock;

Int c_flags;

Int c_flags;
volatile int c_cpu; volatile int c_cpu;
¥ };

e.

Changes to the backend (1)

* Initially considered a switch to a tree-based structure

- O(lg n) insert/removal impact on overall performances
- Lots of timeouts frequently rearmed but never fire (e.g. ahci(4))

- Reallocation during insert difficult/impossible with callout locking
policy

« Maintained the wheel and refreshed the code

e.

Changes to the backend (2)

» Hash function revisited to take a subset of bits from integer part
of sbintime_t and the others from fractional part

* Designed in a way key changes approximately every 4ms
* Rationale behind this choice:

- The callwheel bucket should not be too big to not rescan events In
current bucket several times if several events are scheduled close to
each other.

- The callwheel bucket should not be too small to minimize number of
sequentially scanned empty buckets during events processing.
e.

Obtaining current time

Time passed to callout is not anymore relative but absolute
Need to know current time

Two ways to obtain It:

- binuptime(). goes directly to the hardware
- getbinuptime(). read a cached variable updated from time to time

sbinuptime() and getsbinuptime() implemented as wrappers to

these two functions
.

Accuracy

Callout structure augmented
New KPI specifies a precision argument

Default level of accuracy for kernel services: extimation based
on timeout value passed and other global parameters (hz)

Tunable using the SYSCTL interface

Aggregation checked when the wheel is processed.:
- Precision + time fields of callout used to find a set of events which

allowed times overlap
e.

CPU-affinity/cache effects

 SWI complicates the job of the scheduler

- Possiblility to wake up another CPU (it may be expensive from deep
sleep state)

- Useless context switch
- Other CPU caches unlikely contains useful data

* Allow to run from hw interrupt context specifying C_DIRECT
flag

- Eliminates the above problem
- Enforces additional constraints in locking

.

CPU-affinity: an example

SWI context:

CPUO PROCESS |IDLE 'swi |IDLE
CPU1 IDLE IDLE IDLE PROCESS |PROCESS

HWI context:
CPUO PROCESS | IDLE PROCESS | PROCESS

CPU1 IDLE IDLE IDLE IDLE IDLE

e.

-~
5]
=
=
Q
Q
1)
%)
Q
[
X}
=
L
ot
@
T
-
e
=9
[1]
L1
[
2]
—]
1}
=
e
4]
==

6B8

Expected sleep tine {microseconds)

Experimental results (amd64)

FreeBSD 18 + calloutng
FreeBSD 18 ——
Optinal case

Actual sleep tine {nicroseconds)

gaa 1868 1208 1488 1688 1508 688 gee 1668 1208

1468

Expected sleep tine {microseconds)

FreeBSD 18 + calloutng

FreeBSD 18 ——
Optinal case

1688 15608

2008

23

-~
5]
=
=
Q
Q
1)
%)
Q
[
X}
=
L
ot
@
T
-
e
=9
[1]
L1
[
2]
—]
1}
=
e
4]
==

Experimenta

FreeBSD 18 + calloutng
FreeBSD 18 ——
Optinal case

6B8 gaa 1868 1208 1488 1688 1508 20008

Expected sleep tine {microseconds)

| results (arm)

FreeBSD 18 + calloutng

Actual sleep tine {nicroseconds)

688 gee 1668 1208 1468

Expected sleep tine {microseconds)

FreeBSD 18 ——
Optinal case

1688 15608

2008

24

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24

