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ABSTRACT 
Zero has a usab Ie sign bi t on some computers, but not on 

others. This accident of computer arithmetic influences the 
definition and use of familiar complex elementary functions like 
V, arctan and arccosh whose domains are the whole complex plane 
with a slit or two drawn in it. The Principal Values of those 
functions are defined in terms of the logarithm function from 
which they inherit discontinuities across the slit (s). These 
discontinuities are crucial for applications to conformal maps 
with corners. The behaviour of those functions on their slits 
can be read off immediately from defining Principal Expressions 
introduced in this paper for use by analysts. Also introduced 
herein are programs that implement the functions fairly accu-
rately despite roundoff and other numerical exigencies. Except 
at logarithmic branch points, those functions can all be conti-
nuous up to and onto their boundary slits when zero has a sign 
that behaves as specified by IEEE standards for floating-point 
arithmetic; but those functions must be discontinuous on one 
side of each slit when zero is unsigned. Thus does the sign of 
zero lay down a trail from computer hardware through programming 
language compilers, run-time support libraries and applications 
programmers to, finally, mathematical analysts. 

I. INTRODUCTION 

Conventions dictate the ways nine familiar multiple-valued 

complex elementary functions, namely 

UJV. ,Q,n, arcsin, arccos, arctan, arcsinh, arccosh, arc tanh, Z , 

shall be represented by single-valued functions called "Principal 

Values". These single-valued functions are defined and analytic 
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throughout the complex plane except for discontinuities across 
certain straight lines called "slits" so situated as to maximize 
the reign of continuity, conserving as many as possible of the 
properties of these functions' familiar real restrictions to apt 
segments of the real axis. There can be no dispute about where 
to put the slits; their locations are deducible. However, Princi-
pal Values have too often been left ambiguous on the slits, 
causing confusion and controversy insofar as computer programmers 
have had to agree upon their definitions. This paper's thesis 
is that most of that ambiguity can and should be resolved; how-
ever, on computers that conform to the IEEE standards 754 and 
p854 for floating-point arithemetic the ambiguity should not be 
eliminated entirely because, paradoxically, what is left of it 
usually makes programs work better. 

What has to be ambiguous is the sign of zero. In the past, 
most people and computers would assign no sign to zero except 
under auress, and then they would treat the sign as + rather 
than For example, the real function 

signum(x) := +1 if x> 0 
:= 0 if x o 

-I if x < 0 

illustrates the traditional noncommittal attitude toward zero's 
sign, whereas the Fortran function 

sign(l.O, := + 1.0 if x;;. 0 

:= -1.0 if x < 0 , 

must behave as if zero had a + sign in order that this function 
and its first argument have the same magnitude. Just as 
sign ( I .0, x) is continuous at x 0+, i.e. as x approaches zero 
from the right, so can each principal value above be continuous 
as its slit is reached from one side but not from the other. 
Sides can be chosen in a consistent way among all the elementary 
complex functions, as they have been chosen for the implementa-
tions built into the Hewlett-Packard hp-15C calculator that will 
be used to illustrate this approach. 
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The IEEE standards 754 and p854 take a different approach. 
They prescribe representations for both +0 and -0 but do not 
distinguish between them during ordinary arithmetic operations, 
so the ambiguity is benign. Rather than think of + 0 and -0 as 
distinct numerical values, think of their sign bit as an auxili-
ary variable that conveys one bit of information (or misinforma-
tion) about any numerical variable that takes on 0 as its value. 
Usually this information is irrelevant; the value of 3 + x is no 
different for x:= +0 than for x := -0, and the same goes for 
the functions signum (x) and sign(y,x) mentioned above. How-
ever, a few extraordinary arithmetic operations are affected by 
zero I s sign; for example 1/ (+0) +ca but 1/ (-0) = -co .. To re-
tain its usefulness, the sign bit must propagate through certain 
arithmetic operations according to rules derived from continuity 
considerations; for instance (-3)(+0):= -0, (-0)/(-5) =+0, 
(-0) - (+0) = -0, etc. These rules are specified in the IEEE 
standards along with the one rule that had to be chosen arbitra-
rily: 

S -8 := +0 for every string s representing a finite real number. 

Consequently when t=s, but O¢t¢co, then s-t and t-8 

both produce + 0 instead of opposi te signs. (That is why, in 
IEEE style arithmetic, s - t and - (t-s) are numerically equal 
but not necessarily indistinguishable.) Implementations of ele-
mentary transcendental functions like sin(z) and tan(z) and 

their inverses and hyperbolic analogs, though not specified by 
the IEEE standards, are expected to follow similar rules; if 
[(0) = 0 < 1 '(0), then the implementation of I(z) is expected 
to reproduce the sign of z as well as its value at z = ±O .. 
That does happen in several libraries of elementary transcenden-
tal functions; for instance, it happens on the Motorola 68881 
Floating-Point Coprocessor, on Apple computers in their Standard 
Apple Numerical Environment, in Intel's Common Elementary Function 
Libraries for the i8087 and i80287 floating-point coprocessors, 



in analogous libraries now supplied with the Sun III, with the 
ELXSI 6400 and with the IBM PC/RT, and in the C Math Library 
currently distributed with 4.3 BSD UNIX for machines that con-
form to IEEE 754. With a few unintentional exceptions, it 
happens also on the hp-71R,hand-held computer, whose arithmetic 
was designed to conform to IEEE p854. 

If a programmer does not find these rules helpful, or if 
he does not know about them, he can ignore them and, as has been 
necessary in the past, insert explicit tests for zero in his pro-
gram wherever he must cope with a discontinuity at zero. On the 
other hand, if the standards' rules happen to produce the desired 
results without such tests, the tests may be omitted leaving the 
programs simpler in appearance though perhaps more subtle. This 
is just what happens to programs that implement or use the 
elementary functions named above, as will become evident below. 

2. 	 WHERE TO PUT THE SLITS 

Each of our nine elementary complex functions f(z) has a 
slit or slits that bound a region, called the principal domain, 

inside which f(z) has a principal value that is single valued 
and analytic (representable locally by power series), though it 
must be discontinuous across the slit(s). That principal value 
is an extension, with maximal principal domain, of a real elemen-
tary function f(x) analytic at every interior point of its 
domain, which is a segment of the real x-axis. To conserve the 
power series' validity, points strictly inside that segment must 
also lie strictly inside the principal domain; therefore the 
slit(s) cannot intersect the segment's interior. Let z* =x- iy 

denote the complex conjugate of z =x + iy; the power series for 
f(x) satisfy the identity f(z*) = f(z)* within some complex 
neighbourhood of the segment's interior, so the identity should 
persevere throughout the principal domain' s interior too. 
Consequently complex conjugation must map the slit(s) to itself/ 
themselves. The slit(s) of an odd function f(z) == - f(-z) 

must be invariant under reflection in the origin z = O. Finally, 
the slit(s) must begin and end at branch-points: these are 
singularities around which some branch of the function cannot be 
represented by a Taylor nor Laurent series expansion. A slit can 
end at a branch point at infinity. 

Consequently the slit for v', £n and ZW turns out to be 
the negative real axis. Then the slits for arcsin, arccos and 
arctanh turn out to be those parts of the real axis not between 
-I and + I; similarly those parts of the imaginary axis not be-
tween -i and +i serve as slits for arctan and arcsinh. The 
slit for arccosh, the only slit with a finite branch-point (-\) 
inside it, must be drawn along the real axis where z ~ +I. None 
of this is controversial, although a few other writers have at 
times drawn the slits elsewhere either for a special purpose or 
by mistake; other tastes can be accommodated by substitutions 
sometimes so simple as writing, say, £n(-l)-£n(-I/z) in place 
of £n(z) to draw its slit along (and just under) the positive 
real axis instead of the negative real axis. 

3. 	 WHY DO SL ITSMATTER ? 

A computer program that includes complex arithmetic opera-
tions must be a product of a deductive process. One stage in 
that process might have been a model formulated in terms of ana-
lytic expressions that constrain physically meaningful variables 
without telling explicitly how to compute them. From those 
expressions somebody had to deduce other complex analytic expres-
sions that the computer will evaluate to solve the given physical 
problem. The deductive process entails transformations among 
which some may resemble algebraic manipulations of real expres-
sions, but with a crucial difference: 

Certain transformations, generally val id for real 
expressions, are valid for complex expressions only 
while their variables remain within suitable regions 
in the complex plane. 

Moreover, those regions of validity can depend disconcertingly 



upon 	 the computer that will be used to evaluate the expres-
sions in question. For example, simplifying the expression 
";(21 (4 I») ,/( II (4 - I») to ";(4) I (4 I) seems legitimate in so 
far as they both describe the same complex function, one that is 
continuous everywhere except for a pole at 4 = I and a jump-
discontinuity along the negative real axis 2 < O. And when those 
two expressions are evaluated upon a variety of computers includ-
ing the ELXSI 6400, the Sun III, the IBM PC/RT, the IBM pclAT, 
PCIXT 	 and PC using i80287 or" i8087, and the hp-71B, they 
agree 	everywhere within a rounding error or two. But when the 
same expressions are evaluated upon a different collection of 
computers including CRAYs, the IBM 370 family, the DEC VAX 
line, 	and the hp-15C, those expressions take opposite signs 
along 	the negative real axis! An experience like this could 
undermine one's faith in some computers. 

What deserves to be undermined is blind faith in the power 
of Algebra. We should not believe that the equivalence class of 
expressions that all describe the same complex analytic function 
can be recognized by algebraic means alone, not even if rela-
tively uncomplicated expressions are the only ones considered. 
To locate the domain upon which two analytic expressions take 
equal values generally requires a combination of algebraic, 
analytical and topological techniques. The paradigm is familiar 
to complex analysts, but it will be summarized here for the sake 
of other readers, using the two expressions given above for 
concrete illustration. 

How to decide where two analytic expressions describe 
the same function. 

I. 	 Locate the singularities of each constituent subexpression 
of the given expressions. 
The singularities of an analytic function are the boundary 

points of its domain of analyticity. These will consist of poles, 
branch-points and slits in this paper; but more generally they 
would include certain contours of integration, boundaries of 

In general, singularities can beregions of convergence, etc. 
the singularities are obviouslyhard to find; in our examples 

the pole at 2'" I, the branch-point 2 = 0, and respective slits 
0< 2 < I, 2 < I and 2 < 0 whereon the quanti ties under square 

root signs are negative real. 
Taken together, the singularities partition the complex2. plane into a collection of disjoint connected components. 
Inside each such component locate a sma?? aontinuum 
upon which the equivalence of the given two expressions 
can be decided; that decision is valid throughout the 
component's interior. 
The "small continuum" might be a small disk inside which 

both expressions are represented by the same Taylor series; or 
it could be a curvilinear arc within which both expressions take 
values that can be proved equal by the laws of real algebra. 
Other possibilities exist; some will be suggested by whatever 
motivated the attempt to prove that the given expressions are 
equivalent. In our example, the two expressions are easily 

on that part of the real axis where 2 > 1 , which proven equal 
happens to lie inside the one connected component into which the 
slits along the rest of the real axis divide the complex plane. 
Therefore the two expressions must be equivalent everywhere in 

the complex plane except possibly for real 2 < 1 • 
The singularities cons ti tute loci in the plane upon3. which the processes in steps 1 and 2 above can be 
repeated, finally leaving isolated singular points to 
be handled individually. End of paradigm. 
In our example, the slit along 2 < 1 is partitioned into 

at Z = O. Eachtwo connected components by the branch-point 
Whether the two expres-component has to be handled separately. 

sions are equivalent on a component must depend upon the defini-
tion of complex ";2 on its slit where Z < 0; there diverse 

That is what this paper is about. computers appear to disagree. 
More generally, programmers who compose complex analytic 

expressions out of the nine elementary functions listed at this 
paper's beginning will have to verify whether their expressions 



deliver the functions that they intend to compute. In principle, 
that verification could proceed without prior agreements about 
the functions' values on their slits if instead analysts and pro-
grammers were obliged to supply an explicit expression to handle 
every boundary situation as they intend. Such a policy seems 
inconsiderate (not to say unconscionable) considering how hard 
some singu~arities are to find, and how easy to overlook; but 
that policy is not entirely heartless since verifying correctness 
along a boundary costs the intellect nearly as much as writing 
down a statement of intent about that boundary. The trouble with 
those statements is that they generally contain inequalities and 
tests and diverse cases, and as they accumulate they burden 
proofs and programs with a dangerously enlarged capture cross-
section for errors. And almost all of those statements become 
superfluous in programs after we agree upon reasonable defini-
tions for the functions in question on their slits. 

For instance, in our examp Ie above we had to discover 
whether the two expressions agreed on an interval 0 < z < 1 that 
lies strictly inside the dom~in of the desired function's analy-
ticity, not on its boundary. That interval turns out to be a 
removable singularity, and it does remove itself from all the 
computers mentioned above because they evaluate both expressions 
correctly on that interval; diverse computers disagree only on 
the boundary where the desired function is discontinuous. Per-
haps that's just luck. (Unlucky examples do exist and one will 
be presented later.) Let us accept good luck with gratitude 
whenever it simplifies our programs. 

Complex analytic expressions that involve slits and other 
singularities are intrinsically complicated, and they get more 
compl icated when rounding errors are taken into account. Our 
objective cannot be to make complicated things simple but rather, 
by choosing reasonable values for our nine elementary functions 
on their slits, to make them no worse than necessary. 

PRINCIPAL VALUES ON THE SLITS, IEEE STYLE4. 
Since all the slits in question lie on either the real or 

the imaginary axis, every point z on a slit is represented in 
at least two ways, at least once with a +0 and at least once 
with a -0 for whichever of the real and imaginary parts of z 

vanishes. Benignly, ambiguity in z at a discontinuity of f(z) 

permits fez) to be defined formally continuously, except possi-
bly at the ends of some slits, by continuation from inside the 
principal domain. This continuity goes beyond mere formality. 
By analytic continuation, the domain of each of our nine elemen-

tary functions fez) extends until it fills out a Riemann 

Surface; think of this surface as a multiple covering wrapped 
like a bandage around the Riemann Sphere and mapped onto it 
continuously by f. To construct f's principal domain, cut the 
bandage along the slit(s) and discard all but one layer covering 
the sphere. That layer is a closed surface mapped by f con-
tinuously onto a subset of the sphere. The shadow of that layer 
projected down upon the sphere is the principal domain; it con-
sists of the whole sphere, but with slit(s) covered twice. That 

is why we wish to represent slits ambiguously. 
Here are some illustrative examples, the first of a real 

function that is recommended for any implementation of IEEE 

standard 754 or p854. 
copysign(x, y) := ± x where the sign bit is that of y, so } 
copysign(1,+O) =+1 = lim copysign(l, y) at y= 0+, and (4.1) 

copysign(l,-O) -I = lim copysign(l, y) at y = 0-. 

v(-I+iO) =+O+i=lim,/(-I +iy) at y= 0+; } (4.2) 

v(-I-iO) =+0 -i = lim,j(-I +iy) at y =c- . 
Consequently, v(z*) =v(z)* for every z, and v(llz) = I/v(z) too. 
These identities persist within roundoff provided the programs 
used for square root and reciprocal are those, supplied in this 
paper, that would have been chosen anyway for their efficiency 

and accuracy. 
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arccos (2 + iO) 	== +0 - i arccosh(2)  

= lim arccos(2 + iy) 
at y 0+;) (4.3) 
arccos(2 - iO) 	== +0 + i arccosh(2) 

lim arccos(2+iy) at y == 0- • 

An implementation of arccos that preserves full accuracy in the 

imaginary part 	of arccos (2 + i y) when Iy I is very tiny can be 

expected to get its sign right when y = ± 0 too without extra 

tests in the code; such a program is supplied later in this 
paper.  

But the foregoing examples make it all seem too simple.  

The next example presents a more balanced picture.  
2Let function a(x) := V(x 2 -\) for real x with x ;> I, 

and let b(x):= a(x) for real x;> \ j note that b(x) is not 

yet defined when x ~ \. The principal values of the complex 

extensions of a and b following the principles enunciated 
above turn out to be 

a(z) = v'(z2- I) = a(-z}, and 

b(z) v'(z-I)v(z+ I) =-b(-z) . 

Both a and b are defined throughout the complex plane and both 

have a slit on the real axis running from I to + I, but a has 

another slit that runs along the entire imaginary axis separat-

ing the right half-plane where a b from the left half-plane 

where a=-b. The functions are different because generally 
v'(~) v'(n) v'(~ n) when largO;) + arg(n) I < 1f 

v( ~ n) when 	 larg(O + arg(n) I> 11" 

= ± v'( ~ n) (hard to say which) when i; n ~ O. 
Both functions a and b are continuous up to and onto ambiguous 
boundary points in IEEE style arithmetic, as described above, 

only if that arithmetic is implemented carefully; in particular, 

the expression z + I should not be replaced by the ostensibly 

equivalent z + (I + iO) lest the sign of zero in the imaginary 
part of z be reversed wrongly. (Generally, mixed-roode arith-
metic combining real and complex variables should be performed 
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directly, not by first coercing the real to complex, lest the 

sign of zero be rendered uninformative; the same goes for com-

binations of pure imaginary quantities with complex variables. 

And doing arithmetic directly this way saves execution time that 

would otherwise be squandered manipulating zeros.) When z is 

near ± I the expression a(z) nearly vanishes and loses its rela-

tive accuracy to roundoff. Although this loss could be avoided 

by rewriting a (z) := v' (z - I) (z + I»), doing so would obscure 

the discontinuity on the imaginary axis in a cloud of roundoff 

which obliterates Re (z) whenever it is very tiny compared wi th 

1 as well as when it is ±O. 

Also obscure is what happens at the ends of some slits. 

Take for example £n(z)=£n(p)+ ie, where p= Izi and e=arg(z) 

are the polar coordinates of z = x + iy and satisfy 

x =p cos e, y == p sin e, p;> 0 and -11" ~ e ~ 1f 

Evidently p:= +v(x2 + y2), and when 0 < p < +co then 

e := 2 arctan (y/(p+x») if x;> 0, or 

:=2arctan(p-x)/y) if x~O. 

At the end of the slit where z = x = y p == 0 (and tn = -co) 

the value of e may seem arbitrary, but in fact it must cohere 

with other almost arbitrary choices concerning division by zero 

and arithmetic with infinity. A reasonable choice is to inter-

pose the reassignment 

if p == 0 then x := copysign (\, x) 

between the computations of p and e above. More about that 

later. 
The foregoing examples provide an unsettling glimpse of 

the complexities that have daunted implementers of compilers and 

run-time libraries who would otherwise extend to complex arith-

metic the facilities they have supplied for real floating-point 

computation. These complexities are attributable to failures, 

in complex floating-point arithmetic, of familiar relationships 

like algebraic identities that we have come to take for granted 
in the arena of real variables. Three classes of failures can 



be discerned: 
(i) The domain of an analytic expression can enclose singu-

larities that have no counterparts inside the domain 
of its real restriction. That is why. for example. 
'/( z2 - I) '# '/(2 I) -Ie2 + I) • 

(ii) 	 Rounding errors can obscure the singularities. That is 
why, for example, -1(22 --,1) =-1(2 1)(z+I») fails so 
badly when either z2 = I very nearly or when z2 < 0 
very nearly. To avoid this problem, the programmer may 
have to decompose complex arithmetic expressions into 
separate computations of real and imaginary parts. 
thereby forgoing Some of the advantages of a compact
notation. 

(iii) 	Careless handling can turn infinity or the sign of zero 
into misinformation that subsequently disappears leaving 
behind only a plausible but incorrect result. That is 
why compilers must not transform z - I into z - (I + iO) • 
as we have seen above, nor - (-x x 2) into x + x 2 • as 
we shall see below, lest a subsequent logarithm or square 
root produce a nonzero imaginary part whose sign is oppo-
site to what was intended. 

The first two classes are hazards to all kinds of arith-

metic; only the third kind of failure is peculiar to IEEE style 

arithmetic with its signed zero. Yet all three kinds, must be 

linked together esoterically because the third kind is not 

usually found in an applications program unless that program 

suffers also from the second kind. The link is fragile, easily 

broken if the rational operations or elementary functions, from 

which applications programs are composed. contain either of the 

last two kinds of failures. Therefore. implementers of compilers 

and run-time libraries bear a heavy burden of attention to detail 

if applications programmers are to realize the full benefit of the 

IEEE style of complex arithmetic. That benefit deserves Some 

discussion here if only to reassure implementers that their 
assiduity will be appreciated. 

The first benefit that users of IEEE style complex arith-

metic notice is that familiar identities tend to be preserved 

more often than when other styles of arithmetic are used. 

The mechanism that preserves identities can be revealed by an 

investigation of an analytic function f(z) whose domain is slit 
along 	some segment of the real or imaginary axis; say the real 

axis. When 2 = X + iy crosses the slit, f(z) jumps discontin-

uously as y reverses sign although f(z) is continuous as z 

approaches one side of the slit or the other. Consequently the 

two limits 

f(x+iO):= limf(x+iy) as y-+O+ and 

f(x - iO):= limf(x + iy) as y -+ 0-

both exist, but they are different when x has a real value 

inside the slit. Ideally. a subroutine P(z) programmed to 

compute f(z) should match these values; P(x±iO)=f(x± iO) 

respectively should be satisfied within a small tolerance for 

roundoff. This normally happens in IEEE style arithmetic as a 

by-product of whatever steps have been taken to ensure that 

P(x + iy) = f(x + iy), within a similarly small tolerance, for 

all sufficiently small but nonzero Iyl. To generate a discon-

tinuity, the subroutine P must contain constructions similar to 

copysign ( ••• ,y) or arctan(1/y) possibly with "y" replaced by 

some other expression that either vanishes or tends to infinity 

as y -+ O. That expression cannot normally be a sum or difference 

like arctan(y-l) +'IT/4 or exp(y) 1 that vanishes by cancella-

tion, because roundoff can give such expressions values (typic-

ally 0) that have the wrong sign when iyl is tiny enough. 

Instead, to preserve accuracy when Iyl is tiny, that expression 

must normally be a real product or quotient involving a power of 

y or sin (y) or some other bui It-in function that vanishes with 

y and therefore should inherit its sign at y = ± O. Thus does 

careful implementation of compiler and library combine with care-

ful applications programming to yield correct behaviour on and 

near the slit. And if two such carefully programmed subroutines 

P(z), though based upon different formulas, agree within roundoff 

everywhere near the slit, then the foregoing reasoning implies 

that normally they have to agree on the slit too; this is the 

way IEEE style arithmetic preserves identities like -I(z*) = (-12)* 



andv'(IIZ)=lh/z that would have to fail on slits if zero  
no sign.  

Of course, applications programmers generally have things  
more important than the preservation of identi ties on their  

minds. Figure I shows a more typical and realistic example.  
2Here I(z) :=I+z +zv'(I+z2 )+R-n(z2+ z v'(I+z2)), and we con- 

strue the, equation 1;;:== fez) as a conformal map, from the plane  

of z = x + iy to the plane of I;; = I;; + in, that maps the right half- 

plane x;;' + 0 onto the space occupied by a liquid that is forced  

by high preSSure to Jet into a slot. The walls of the slot,  

where I;; < 0 and n== ±'TT, should be the images of those parts of  

the imaginary axi s z2 < - 1 lying beyond ± i. The free surfaces  

of the jet, curving forward from I;; = ±i'TT and then back to  

<: = - 00 ±i'TT/2, should be the image of that segment of the  
imaginary axis -1 < < 0 between ±i. 
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FIG. 1 Conformal map I;; ;=f(z) of half-plane 
to jet with free boundary 

The picture of fez) should be symmetrical about the real 

axis because f(z*) = fez) *. As z runs up the imaginary axis, 

wi th x == +0 and y running from -GO through -I toward -0 and 

then from + 0 through + I toward +00, its image I;; = fez) should 

run from left to right along the lower wall and back along the 

lower free boundary of the jet, then from left to right along 
the jet's,upper free boundary and back along the upper wall. 
This is just what happens when fez) is plotted from a one-line 

program on the hp-71 B calculator, which imp lements the proposed 

IEEE standard p854. But when fez) is programmed onto the hp-

15C, whose zero is unsigned, the lower wall disappears. Its pre-

image, the lower part of the imaginary axis where ali < -I, is 

mapped during the computation of fez) into the slit that belongs 

to V and R-n; the upper part zli > 1 gets mapped onto the same 
slit. For lack of a signed zero, that slit gets attached to a side 

that is right for the upper wan but wrong for the lower wall, 

thereby throwing the pre-image of the lower wall away into a tiny 

segment of the upper wall. To put the lower wall back, x must be 

increased from 0 to a tiny positive value while y runs from-oo 

to-I. (How tiny should x be? That's a nontrivial question.) 

The misbehaviour revealed in the foregoing example fez) 

may appear to be deserved because fez) has slits on the imagin-

ary axis z2 < -I beyond ± i. Should mapping a slit to the wrong 

place be blamed upon the discontinuity there rather than upon 

arithmetic with an unsigned zero? No. Arithmetic with an un-

signed zero can also cause other programs to misbehave similarly 

at places where the functions being implemented are otherwise 

well behaved. For example consider a(z) := z -iv'(iz + 1 )V( iz - I), 

whose slit lies in the imaginary axis l<z2<0 between ±i. Now 

I;; := a(z) maps the slit z plane onto the I;; plane outside the 

circle 1<:1;;. I; vertical lines in the z plane map to stream 

lines in the vertical flow of a fluid around the circle. Imple-

menting a(z), the programmer notices that he can reduce two 

expensive square roots to one by rewriting 

a(z) := z + v(z:i.+ I) copysign(l, Re(z»). 

The two expressions for a(z) match everywhere in IEEE style 

arithmetic; but when zero has only one sign, say +, the second 

expression maps the lower part of the imaginary axis, where 

zli < -I, into the inside instead of the outside of the circle, 



although a(z) should be continuous there. 
The ease with which IEEE style arithmetic handled the 

important singularities near z = ±i in the examples above should 
not be allowed to persuade the reader that all singularities can 
be dispatched so easily. The singularities f(O) and f(oo) and 
the overflows near z =00 would have to be handled in the usual 
ways if they did not lie so far off the left-hand side of the 
picture that nobody cares. Another kind of singularity that did 
not matter here, but might matter elsewhere, insinuated weasel 
words like "not usually", "tends to be" and "normally" into the 
earlier discussion of Sums and differences that normally vanish 
by cancellation. Sums and differences can vanish without cancel~ . 
lation if they combine terms that have already vanished; an 

2example is h(x) ;=x+x when x=O. Evaluating h(±O) in IEEE  
style real arithemetic yields +0 instead of ±0 respectively,  
losing the sign of zero. h(x) has other troubles: it signals  
Underflow when x is very tiny, suffers inaccuracy when x is  
very near -I, and becomes Invalid at x=-oo. Simply rewriting  
h(x) :=x(l +x) dispels all these troubles, but is slightly less  
accurate for very tiny Ixl than is h(x) :=-(-x - x 2). which  
preserves accuracy and the sign of zero for all tiny real x. 


Complex arithmetic complicates this situation. Both expressions  
z+z2 and z(l+z) produce zeros with the wrong sign for Im(h(z») 

on various segments of the real z-axis; to get the correct sign 
and better accuracy requires an expression like 

h(x+iy) := x(l+x)_y2+ 2iy(x+0.5) 

regardless of arithmetic style. For similar reasons. the 
expression for f(z) used above for the conformal map would 
have to be rewritten if the interesting part of its domain were 
the left instead of right half-plane. 

IEEE style complex arithmetic appears to burden the imp le-
menters of compilers and run-time libraries with a host of 
complicated details that need rarely bother the user if they are 

dispatched properly; and then familiar identities will persist, 
despite roundoff, more often than in other styles of arithmetic. 
This thought would comfort us more if the aberrations were 
easier to uncover. Locating potential aberrations remains an 
onerous task for an applications programmer, regardless of the 
style of arithmetic; however that style can affect the locus of 
aberration fundamentally. In IEEE style arithmetic, a program-
med implementation of a complex analytic function can take 
aberrant boundary values, different from what would be produced 
by continuation from the interior, because of roundoff or similar 
phenomena. In arithmetic without a signed zero, such an aberra-
tion can be caused as well by an unfortunate choice of analytic 
expression, though the programmer has implemented it faithfully. 
The fact that an analytic expression determines the values of an 
analytic function correctly inside its domain is no reason to 
expect the boundary values to be determined correctly too when 
zero is unsigned. 

5. PRINCIPAL VALUES ON THE SLITS, hp-J5C STYLE 
Of course, the hp-15C is not the only machine with an 

unsigned zero; a DEC VAX 1 J model is similar but lacks so far a 
careful software implementation of some of the functions under 
discussion - in time that lack will be remedied. Many other 
machines, the IBM 370 series among them, have a signed zero in 
their hardware but no provision for propagating its sign in a 
coherent and useful way, so they are customarily programmed as 
if zero were unsigned. All these machines discourage attempts 
to distinguish one side of a slit from the other on the slit 
itself • 

What we have to do is attach each slit to one of its sides 
in accordance with some reasonable rule, thereby obtaining a 
principal value which is continuous up to the slit from that 
side but not from the other. In other words, we have to assign 
a sign to zero on each slit and then compute the same principal 



value as would have been computed using IEEE-style arithmetic. 
The assignment cannot be arbitrary; for instance we cannot 
change sides in the middle of the slit lest a gratuitous singu-
larity be insinuated by the change. On the other hand, some 
degree of arbitrariness is obligatory. For instance, the two 
functi~ns 

b(z) := Y(z-I) y(z+ I) and -b(-z) 

are indistinguishable everywhere except in the slit _I < z < 1 

across which they are discontinuous, but in hp-15C style arith-
metic one function must be continuous onto the top of the slit 
and the other onto the bottom. Evidently no general rule attach-
ing a slit to one of its sides can depend solely upon the slit's 
shape nOr solely upon the function's values off the slit. And 
yet, paradoxically, the hp-15C appears to follow just such a 
rule, namely 

Counter>-CloakUJiBe Continuity (CCC) : 

Attach each slit to whichever side is approached when 
the finite branch-point at its end is circled counter-
clockwise.  

Thus when z is real and negative CCC defines YZ =iY!z! 

and R.n (z) = R.n Iz I+ in. Actually CCC is merely a mnemonic summary  
of the implications, for the nine functions that are the subject  
of this note, of the following more general convention applica- 
ble also to b(z) above, as CCC is not.  

The Pr>ineipal Expr>eBBion: 


Assign to each elementary function in question not 
merely a Principal Value but also a ~ineipal Expr>eB
Bion in terms of 9;n(z) and YZ, using the simplest 
formula that manifests its behaviour at finite 
branch-points without gratuitous singularities
elsewhere. 

What makes this convention effective is a canonical asso-
ciation between the archetypal branch-points of 9,n(z) and YZ 
on the one hand, and on the other any isolated branch-point at 
the end of a slit belonging to any other elementary function. 
For example, 

a.rcsin(z) 'Ir/2 (power series in l-z)y( I-z) for z near I, 
arccosh(z~ = 9,n(2z) - (power series in J /z) when z I is huge, 
arctanh(z) =-0.5 9,n(l-z) + (power series in I-z) for z near I. 

In each case the power series is determined uniquely. In general, 
if S is a finite branch-point at the end of a slit belonging to 
one of our nine functions I(z), and if the function is analytic 
inside some circular disk Iz- 61 < p except on the slit, then 
I(z) can be represented inside that slit disk by one of the for-
mulas 

I(z) = P(z-S)+p(z-S)y«z-6)/e) , or 
I(z) P(z-S)+p(z-S)R.n «z-6)/e) , or 
I(z) = P (some nonintegral power of y( (z - 6) /e») , 

where e=lim(S-z)/!S-z! as z-+6 along the slit, so 101=1 
and (z-S)/e < 0 in the slit, and P(t) and p(t) are represent-
able by power series around t= O. Given 13 and 1 and its slit, 
o and P and pare oanonioal (determined uniquely). Formulas 
slightly more general than these, but still essentially unique, 
cope with more general elementary functions or with isolated 
branch-points at 00. 

The dominant terms of these canonical formulas provide 
approximations useful near branch-points, and are therefore pre-
cious to analysts and programmers who have to exploit or compen-
sate for singularities, so these formulas should not be violated 
unnecessarily on the slits. Programs that handle singularities 
are complicated enough without the additional burden of treating 
specially those slits that need no special care so long as pro-
grams remain as valid on the slits as off them near their ends. 
Then programmers can predict from Principal Expressions how their 
programs will behave on slits. The Principal Expressions for all 
nine of our elementary functions are determined by convention 
and tabulated nearby. For other functions the choice of Principal 
Expression is forced by the choice of slits except when a slit 
contains just two singularities, both finite branch points at its 



ends'. In the exceptional case the Principal Expression tells 
which side of that slit is attached to it. For instance, the 
Fortran programmer can define the 

COMPLEX FUNCTION B(Z) '= CSQRT(Z -1.0)"'CSQRT(Z + 1.0) 

when he wishes to attach its slit to its upper side, and invoke 

-B (-Z) when he wishes to attach the slit to its lower side. 
Another e~ample has two definitions 

arccot(z) := arctan(I/z) and arccot(z):= 1T/2-arctan(z) 

that are both widely used though they differ by 1T in the left 

half-plane. The first has one slit on the imaginary axis 

-I < z2 < 0 between z '= ±i. The second has two slits on the 

imaginary axis z2 <-I beyond z = ±i. But arctan(l/z) is not 

a Principal Expression for arccot(z) because it has a gratui-

tous singularity at z= 0 where its slit changes sides. A cor-

rec t Principal Expression for the first defini tion of arccot (z) 

is either iR.n (z-i)/(z+i»)/2 or R.n«z+i)/(z-i»)/(2i) 

according to whether its slit be attached respectively to the 

left half-plane or to the right; except on the slit, these Prin-

cipal Expressions are equal and satisfy arccot (-z) = -arccot (z). 

Whichever one be chosen, the other is -arccot (-z). Similarly 
for ±arccoth(±z) :=R.n(z+ 1)/(z-I))/2. 

Table 1 


Conventional Principal Expressions for Elementary Functions: 


-1T";; arg(z) ";;1T; and -1T < arg(z) if 0 has just one sign. 
inez) := R.n( Iz I) + i arg(z) 

zW::exp(wR.n(z») (and zO= I, OW=O if Re(w»O) 
V(z) := zl/2 

arctanh(z) :=(R.n(l+z)-R.n(l-z»)/2 =-arctanh(-z) 

arctan(z) := arc tanh (iz) /i = -arctan(- z) 

arcsinh(z) := In(z +v (I + ») = -arcsinh(-z) 

arcsin(z) := arcsinh(iz)/i = -arcsin(-z) 

arccos(z) :=2 "R.n(V(I+z)/2)+iv(I-z)/2))li = 1T/2-arcsin(z) 
arccosh(z) :=2 in(v(z+ 1)/2) + V«Z-I)/2)) 

In general the definitions of Principal Expressions can 
and should be honoured in all styles of arithmetic, though they 
must be implemented carefully if they are to survive roundoff. 
Careful implementations of our nine elementary functions will be 

presented later in this paper. But some familiar identi ties 

satisfied in IEEE style arithmetic must be violated when 0 is 

unsigned no matter how the slits be attached. For instance, no 

elementary function f in the table except arctan and arcsinh 

can satisfy f(z"') = f(z)'" when z lies in a slit in the real 

axis. Similarly, 

R.n(l/z) = -inez) and v(l/z) = I/v(z) 

must be violated at z = I and therefore everywhere in the slit 

z < O. Other familiar identities violated only in a slit include 

arctanh(z) = R.n( (I + z) / (1- z) )/2 , violated when z > 1 , 

arctan(z)=itn«i+z)/(i-z»)/2, violated when iz <-I, and 

arccos(z)==2arctan(V«I-z)/(J+z»)), violated when z <-I. 

Other writers have put forward different formulas as defi-

nitions for our nine elementary functions. Comparing various 

definitions, and choosing among them, is a tedious business 

prone to error. Some ostensibly different definitions, like 

arccosh(z) = R.n(z+V(z-I)V(z+I») , 

give the same results as ours. Some are quite wrong, as are 

arccosh(z) = tn(z +V(z2 -I») and arccos(z) = in(z+v(z2_1»/i, 

because their slits are in the wrong places. Some are different 

on only part of a slit, as is 

arccosh(z) = -tn(z - V (z - I) V (z + I») 

which is continuous from below that part of the slit where z <-I 

and therefore violates the canonical formula around infinity. 

Some are very close to ours; for instance, a proposal to intro-

duce complex functions into APL recommended the formula 

arccosh(z) = in(z+ (z+ J)v«z-I)/(z+I») 

which yields the same principal value as our formula except for 

a gratuitous removable singularity at z = -I. The same proposal 

advocated 



arctan(z)", -iR.n«1 +iz)v'(I/(z2+ I)) 
because its range matches that of arcsin(z), though no reason 
was given why the ranges should match (but see below), and 
because it was alleged that the CCC rule should be reversed 
around a branch point at which the function is infinite, though 
doing so would introduce anomalies in the relation between tn 
and v', thereby vitiating the formula being advocated. Another 
well-known formula 

arctan(z) = i tn,(v'«i+z)/(i-z») 

is continuous one way around one branch-point and the opposite 
way around the other, thereby violating arctan(-z) =-arctan(z) 
on the slits. Our formula given earlier, which is equivalent to 

arctan(z) = i(tn(l-iz)-tn(J +iz»/2, 


follows the CCC rule and seems simplest, but it does violat~  
two cherished formulas  

arcsin(z) = arctan(z/v'(I_ z 2» and  

arccos(z) =2 arctan(v'«I-z)/(1 +Z») 


on the slit. These formulas are satisfied almost everywhere by  
the APL proposal's definition of arctan mentioned above, the  
except ions arccos (-I) and arcsin (± I) arising because, like  
zero, I/O has no sign and therefore arctan(1/0) has to be  
either undefined or chosen arbitrarily from {±n/2}. Rather  
than debate the merits of cherished formulas satisfied every- 
where except at Some finite branch-points versus canonical formu-
las satisfied around every finite branch-point, we choose what 
seem to be the more perspicuous definitions. For similar reasons, 
our formula above for arctanh seems preferable to the APL 
proposal's 

arctanh(z) = tn«1 +z)v'(I/(1 2 2»), 
Regardless of whether our Principal Expressions really are 

preferable to someone else I s. and regardless of the style of 
arithmetic, good reasons exist to seek universal agreement upon 
a set of Principal Expressions to define Principal Values for 
familiar elementary functions. The first to benefit from such 

an agreement would be analysts. who would suffer less confusion 
when reading each other's results. More importantly, programmers 
would make fewer mistakes, and find them sooner, when implement-
ing conformal maps from complex analytic expressions. Although 
those benefits might follow from any kind of agreement, Principal 
Expressions offer the further advantage that they introduce no 
unnecessary singularities. That advantage goes beyond mere parsi-
mony, because control of singularities is the essence of the 
subject. 

Programs that involve singularities are especially diffi-
cult to debug because so many programmers tend to think more like 
algebraists than like analysts or geometer.s. Unaccustomed to 
manipulating inequalities, they have trouble locating the slits 
that are implicit in complex expressions that contain any of our 
nine elementary functions. Instead, too many programmers are 
inclined to test complex expressions in the same way as they 
often test real expressions, by evaluating them at a handful of 
trial arguments to see whether the results agree wi th prior 
expectations. Because this test strategy usually works for real 
analytic expressions, programmers mostly ignore warnings that it 
is unreliable; what else should we expect in a society where 
drunk driving is still regarded widely as a mere peaaadillo? But 
this strategy is truly a dangerous way to test complex analytic 
expressions of conformal maps with corners because those maps are 
notoroious for mapping tiny regions into huge ones. When a tiny 
region like that is missed by a scattering of trial arguments, 
the test can be quite deceptive. The next example illustrates 
the point. 

Let g(z) :=2arccosh(1 +2z/3)-arccosh(5/3-(8/3)/(z+4», 
and construe the equation l;:= g(z) as a conformal map of the 
.II-plane. slit along the negative real axis .II < 0, onto a slotted 
strip in the plane of l;=t;+in. The strip lies where Inl <: 2n, 

and the slot within it lies where t; < 0 and Inl < 'IT. The bound-
ary of the slotted strip is the image of both sides of the slit 



in IEEE style arithmetic; with an unsigned zero the slit maps 
onto only that part of the boundary in the upper half-plane. 
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FIG. 2 Conformal map I; :=g(z) of slit plane to slotted strip 

The cost of computing g(z) comes mostly from two loga-

ri thms entai led by two calls upon arccosh. Two logarithms can 

be reduced to one by means of a page or so of algebraic manipu-

lation starting from the Principal Expression tabulated for 
arccosh above; the result is a ppoof that 

g(z) ==2R-n(v'«z+4)/3)h/(z+3) + v'o3)2/(2\1'(o3+3) +\I'z)) 

Without Principal Expressions, one might resort instead to for- 
mulas like  

Arccosh(03) Q,n(03 ±,I(z2 - I») + 2ik'TT for k = 0, ± I, ±2, •••  

or to identities like  

Arccosh (03) ± Arccosh (I;) = Arccosh(z I; ±v'( (03 2 - 1) (1;2 _ I) )) •  

wi th resul ts that are hard· to predict. A pos sib Ie outcome is  
the expression  

q(03) := 2arccosh(2(z+3)'!«z+3)/(27(z+4»))) 

which matches the desired g(z) everywhere in the o3-plane except 

in a small tear-drop shaped region situated symmetrically about 

the segment -4.5 < z < -3 on the real axis. The tear-drop f s 

boundary is the locus in the plane of 03 = x + iy whereon the 
argumen~ of arccosh in q(03) takes values on the slit between 
o and -1; the boundaryts equation is 

y2 + (x+3)2 (2x+9)!(2x+5) = 0 for -4.5 <;x<;-3. 

Whereas I; = g (z) maps the tear-drop onto two half-strips in the 

left-half of the I;-plane, I; =q(z) maps the tear-drop into two 

half-strips in the right half-plane. Indeed, q(03) = -g(03) in 

the tear-drop except. if zero is unsigned, q(03) = -g(03)* for 

-4.5 < 03 < -4. Is it likely that a few trial evaluations will 

reveal the difference between q(03) and g(z)? 

The examples presented in this paper may give the impres-

sion that an analyst will benefit far less than a programmer 

from Principal Expressions because their benefits seem meagre 

unless slits run along straight lines. Moreover a signed Zero 

Seems useless. except when slits lie in the real and imaginary 

axes. True; but not the whole truth. Despite that applications 

of elementary functions frequently relocate their slits to non-

standard places, the functions so constructed have to be communi-

cated to humans and to computers in terms of combinations of the 

standard elementary functions with which we are all acquainted. 

For instance, let e(z) be an analytic extension of arcsin(03) 

from the upper half-plane across its slits z2 > I into the lower 

half-plane, where we relocate the slits to run down from ± I 

along some paths to -ioo. Can e(03) be expressed in terms of 

arcsin (z)? Yes. In the upper half-plane or between the new 

slits, e(03):= arcsin(z). Elsewhere we define 8:= copysign(l, 

Im(03)) and calculate 

e(03) := s arcsin(z) + copysign( (I-s)'TT/2, Re(03)) • 

which is continuous across the old slits in IEEE style arithme-

tic. If 0 is unsigned, the last expression must be replaced by 

something somewhat more complicated. 

Readers who recoil from tedious labour may rather acquiesce 

to all the foregoing assertions th,i'm verify any of them per-

sonally, despite that such assertions are notoriously rife with 



mistakes. Yet, lest the pleasures of analysis be eschewn alto-
gether, the writer tenders some simple exercises for the reader's 
amusement; in each group the object is to discover the whole 
domain, including boundary. wherein one expression equals another. 
Exereises: Where are TWo Expressions in the Same Group Equal? 

Group I:, 'I/(z'2.- I ), 'I/(z-I)'I/(Z+I), -v'(I - z) '1/ (- I - z ) , 


i'l/(I-z) '1/( 1+ z). 


Group 2: 'I/(Z-I)/'l/z, 'I/(I-I/z), 'I/(z2- z )/z, 


'I/(x(x -I) - y2 + Ziy (x - 1/2»)/2. 
Group 3: 'I/(z)/'I/(Z-I), 'I/(Z/(z-I)). 

Group 4: 2arctanh(z), R.n((l+Z)/(I-z»), arcsinh(2z/(I-z2»). 

Group 5: cos(narccos(z»), cosh(narccosh(z»), for integers n. 

Group 6: arctan(z) + arctan (I /z), rr/2, -1T/2. 

Group 7: arccosh(z), arccosh(2z2-1)/2,2arcsinh('I/(z_I)/2l"  

i arccos(z).  

Group 8: arccosh(z) -arccosh (-z), i1T, -i1T. 

The answers may depend upon whether arithmetic is per-
formed in hp-15C style or in IEEE style, the difference appear-
ing only when a slit lies in the real or the imaginary axis. 

6. SUMMARY 

Two different styles of ari thmetic induce two different 
mental attitudes towards the connection between analytic expres-
sions and analytic functions. 

IEEE style arithmetic encourages the extension by contin-
uity of every complex analytic function from the interior of its 
domain to the boundary, including both sides of slits that are 
distinguishable with the aid of a signed ±O, Consequently, two 
expressions that represent the same function everywhere inside 
its domain are likely to match everywhere on the boundary too; 
most exceptions are correlated with roundoff problems. 

Arithmetic with an unsigned 0 permits continuous extension 

to one side of a slit but not to both. Consequently, two expres-
sions thflt represent the same function everywhere inside its 
domain often take different values on the boundary. Choosing 
among such expressions is tantamount to choosing among boundary 
values for what is otherwise the same function. Our nine elemen-
tary functions are among those defined by Principal Expressions 
determined along with their Principal Values by convention. 
Other complex functions have to be defined on and inside bounda-
ries by apt compositions of Principal Expressions, or else by 
ad hoe assi-gnments on boundaries. 

Regardless of the style of arithmetic, analytic expressions 
provide at best a statement of intent, at worst wishful thinking 
about complex analytic functions. Implementations faithful to 
the expressions despite roundoff and over/underflow must overcome 
nontrivial technical challenges. 

7. IMPLEMENTATION NOTES 
Six inverse trigonometric and hyperbolic functions are de-

fined in terms of R.n and '1/ by Principal Expressions tabulated 
above in such a way as might appear to provide one-line programs 
to compute those functions in, say, Fortran. Unfortunately, round-
off can cause such programs to lose their relative accuracy near 
their zeros or poles; and overflow can occur for large arguments 
even though the desired function has an unexceptionable value. 
Programs to compute complex elementary functions robustly and 
fairly accurately are surprisingly complicated, so much so as to 
justify supplying them in this paper. Actually, we supply algo-
rithms that can be converted into programs on various machines 
by being adapted to the peculiarities of diverse programming 
languages and computing environments. 

Certain Environmental Constants that characterize impor-
tant attributes of computer arithmetic may be specified precisely 
when that arithmetic conforms to IEEE 754 or p854; otherwise 
they might be slightly vague: 



n := Overflow threshold Nextafter(+co, 0) 

E := Roundoff threshold 1.0- Nextafter (1.0,0) 
A := Underflow threshold = 4(I-E)/n in IEEE 754 

Smallest possible no. = Nextafter(O.O, J) 2EA 
in IEEE 754. 

Here N"extafter is a function specified in the appendix to IEEE 
754; it perturbs its first argument by one ulp (one Unit in 
its Last 'Place) towards the second. That appendix also includes 
copysign, which was described early in this paper, and two func-
tions scalb and logb that will be used later. Let 6 be the 
arithmetic's radix, 2 for IEEE 754, or 2 or 10 for p854. For 
any floating-point x and integer N, scalb (x • N) := 6Nx compu-
ted without first computing so Over/Underflow is signalled 
only if the final value deserves it. Logb(NaN) is NaN. which 
stands for "Not a Number" and is produced by invalid operations 
like 0/0, 0"". ""/co and 00_00; 10gb (±oo) := +00; logb(O):=-oo 
with Divide-by-Zero signalled; and if A <: Ixl < 00 then logb(x) 
is an integer such that 1 <: Iscalb(x. -logb(x)}1 < 6. The same 
may be true when 0 < Ixl < A. but early implementations may in-
stead yield logb(x):= logb(A) in that case. Like the proce-
dures I dexp and frexp in the C library. scalb and togb are 
practically indispensible for scaling and for computing loga-
rithms and exponentials. 

Certain detail s, particularly those that pertain to 00 
and NaN, are peculiar to IEEE style arithmetic. Otherwise the 
algorithms presented here for various complex elementary trans-
cendental functions. though designed for IEEE style arithmetic, 
can be used with other reasonably rounded binary floating-point 
arithmetics to get comparable results. Our algorithms assume 
either that zero always has a + sign, or else that its sign 
obeys the rules specified by IEEE 754 and p854. Those stan-
dards also specify rules for +(10 and -co and for NaN. Predi-
cates like x=y. x<y and x < y are all false; but x""'"y 
and x'/> yare true when either or both of x and yare NaN. 

Algebraic operations upon a NaN reproduce it. Both infinities 
and NaN~ can be produced by our algorithms, and both wi 11 be 
accepted as inputs to them. 

The IEEE standards prescribe responses to five kinds of 
exceptions: 

Invalid Operation, ();;erflo'W. Divide-by-Zero. 

Underflo'W. Inexact. 

Each kind has its flag. to be raised to signal that its kind of 
exception has occurred; each kind produces a defauU resuZt. 

respectively 
NaN, +00, +00, gradual underflow, rounded result. 

Gradual underfZo'W approximates any value between ±A with an 
error smaller than €A instead of flushing it to zero. Neither 
this feature nor flags figure as much as they could and should 
in our algorithms. In environments that conform fully to IEEE 
754, as does the Standard Apple Numerical Environment (SANE) on 
Apple computers, robust exception-handling complicates programs 
much less than ours have been complicated by our desire to pro-
vide algorithms adaptable also to machines that do not conform 
to the Si.:andards. Most of our algorithms can be adapted to such 
machines by merely excising references to features that those 

machines do not support. For instance. a statement like "If 
x = 00 then ••• " will be deleted for machines that have no infi-
nity; however, some obvious precaution against division by zero 
may have to be inserted elsewhere instead. Machines that flush 
underflows to zero instead of underflowing gradually may produce 
less accurate results when they approach the underflow thres-
holds ±A. 

Our algorithms would be simpler, some much simpler. if every 
arithmetic operation accepted and produced intermediate results 
of wider range and precision than our algorithms are normally 
expected to accept or produce. Such a situation arises when the 
transcendental functions are intended for a higher-level language 
like Fortran that supports only Single- and Doub1e- precision 



variables, but the implementer has access to another wider 
format like IEEE 754's Extended format. That is implemented in 
floating-point coprocessor chips such as the Intel i8087 and 

i80287 used in the IBM PC, PC/XT and PC/AT, the Motorola fl888 I 

used in a host of 68000-based workstations, the Western Electric 

32106, ,and also in Apple's SANE. But no such Extended format 

is provided by the National Semiconductor 32081 used in the IBM 

PC/RT, nor by the Weitek 1164/1165 chips used in the Sun III 

among others, nor by the NCUBE multiprocessor array. nor by 

Fairchild's Clipper; for their sakes we use devious formulas 

to preserve accuracy and avoid spurious overflows. 

In the programs below. e,p,e,s, t, 14 v,x,y, t; and n 
denote real variables; w :=u+iv, z :=x+iy and t,; :=t;+in de-

note complex variables; and a star denotes not multiplication 

but complex conjugation: z*=x-iy. Mixed-mode arithmetic upon 

one real and one complex variable is presumed N(J! to be per-

formed by coercing the real to complex, but rather in a way that 

avoids unnecessary hazards like Oco or co- <0 by avoiding unneces-
sary real operations:  

S+z := (S+x) +iy, Sz :=Sx+iSy, z/S :=x/S+iy/S; but  

S/z:=S/(x+(y/x)y)-i<Y/x)(S/(x+(y/x)y)) if Iyl <; lxi, 

:=(x/y)(S/(y+(x/y)x))-iS/(Y+(x/y)x) if Ixl '" Iyl, 


with due attention to spurious over/underflows and zeros and 
infinities. 

Ideally, the operators Re and 1m, that select the Real 

and Imaginary parts respectively, should be interpreted in a way 

that avoids unnecessary computation of the unwanted part when-

ever possible. For instance, Re (wz) should be evaluated by 

computing only ux-vy, without evaluating Im(wz) too. Besides 

saving time, this policy avoids spur.ious exceptions like overt 

underflow that might afflict only the unwanted part. 

Note too, to conserve ±O, that -z is not O-z though 

they be equal arithmetically; and similarly w-z is the same as 

-z+w but not -(z-w). Multiplication or division by i ="'-1 

should be accomplished not by actual multiplication but rather 
by swaps and sign reversal; iz :=-y+ix. In a similar way, an 
expression that is syntactically pure imaginary with an unsigned 

zero for its real part should be handled in a way that avoids 

both unnecessary arithmetic and unnecessary hazards. For instance, 

is+z := x+i(S+y), (i8)z := i(8z), 

z/(i8) := -i(z/S) , (is)/z := i(S/z). 
In languages where a construction 1ike CMPLX (x , y) is used to 

create the complex value z :=x+ iy, the expression CMPLX (0,8) 

should be treated as is, whereas CMPLX(+O,S) and CMPLX(-O,8) 

should be treated as intentional attempts by the programmer to 

introduce an appropriately signed zero into the calculation. Of 

course, both attempts will produce the same CMPLX(+ 0,8) on a 

machine whose only zero is + O. 

8. COMPLEX ZEROS AND INFINITIES 

All four zeros ±O ± iO are arithmetically equal. Whether 

all complex infinities should be arithmetically equal is a topo-

logical question. When dealing' with complex algebraic (not 

transcendental) functions, the most convenient topology is that 

of the Riemann sphere with its unique point at infinity. A 

metria (distance function) that induces that topology is the 

Chordal Metria : 
Chord (z , l;) := Iz - r,; I / v' « I+ Iz 12) ( I + Ir,; 12) ) 

if Iz I < co and It,; I < co, 

:= Chord (I / z , I / r,;) if z =P 0 and l; =P 0 ; 

..;; Chord (0, co):= Chord(co, 0) := I. 

In this topology, every algebraic function is a continuous 

(though perhaps multi-valued) map of the sphere to itself. So 

are our nine elementary functions f(z). Only a function discon-

tinuous at infinity can be affected by its multiplicity of 

representations there; an important instance is the equality 

case f(z) z. To combat ambiguity at infinity a programmer 

can map all its representations upon one of them, namely real 



+co, by invoking the function 

PROJ (x + iy) := x + iy if Ix I *' co and Iy I *' co , 
:= + co + i copysign (0, y) otherwise, 

before performing any operation discontinuous at infinity. Of 

course, PROJ is just the identity function on machines that 
lack a way to represent co. 

The topology of the Riemann sphere is inappropriate for 
Z 

functions like e that have an essential singularity at infi-

nity. Instead, different representations of infinity are custo-

marily associated with different paths that tend to infinity in 
some asymptotic way, justifying assertions like 

exp(-co+iy)=O and lexp(+co+iy)1 co for all finite y. 

For example, "00 + i2" could represent a path asymptotically 

parallel to the positive real axis and 2 units above it; 

"00+ ioo" would have to represent a path parallel to that traced 

by exp(S+ i8) 	as 13-++00 for some fixed but unknown 8 strictly 

between 0 and rr/2. Unfortunately, programming languages like 

Fortran represent complex variables by pairs of reals in such a 

way as allows 	at most nine asymptotic directions (8) to be repre-

sented by two real variables of which at least one is ± 00. Those 
directions are 

8: ±rr -3rr/4 -'rr/2 -rr/4 ±O 
z: -00 ±is -oo-ioo S-ico 4co ±i"" +00 ±is 

8: rr/4 rr /2 h/4 NaN 
Z: +oo+ioo S+i"" -oo+i"" NaN±i"" or ± ""± i NaN. 

(Here e stands for any finite real number.) 
These complex infinities z are the only ones available. By 

default, in the absence of some contrivance programmed explicit-

ly to cope with other asymptotic directions, every infinite 

complex result, especially of multiplication and division, has 

to be approximated by something chosen from the available com-

plex infinities z in a fashion resembling the way real numbers 

are rounded to the ones representable in floating-point. That 

default rounding, while fully satisfactory in the topology of 

the Riemann sphere, can approximate arbitrary asymptotic direc-
tions at best 	crudely, 

Crudely, but not quite arbitrarily. The approximations 

should be predictable and consistent with reasonable expecta-

tions; in particular, it seems reasonable to expect 

wz exp(~n(W)+~n(Z» and w/z=exp(~n(W)-,tn(Z» 

to hold within an allowance for roundoff even for infinite or 

zero products and quotients. These relations imply Iwzl = Iwllzl 

and Iw/zl = Iwi/izi at 0 and 00, equations that can be satisfied 

exactly; another implication is that 

arg(wz) arg(w) + arg(z) mod 2rr and 

arg(w/z) arg(w) -arg(z) mod 2rr 

have to be approximated within the set of ten values available 

for arg(1;;) when I::; is zero or infinite. Those values turn out 

to be: 

arg(+O±iO) 	 arg(+""± is) = ±O for all finite 13 , 

arg (+"" ± ioo) ±rr/4, 

arg(S ± ioo) = ±1f/2 for all finite 13 , 
arg(-co± ioo) = ±31f/4, 

arg(- 0 ± iO) = 	 arg(--<x>± is) = ±1f for all finite e ; 
arg(NaN + i Anything) and arg (Anything + i NaN) are both NaN. 

Thus, any coherent scheme for computing complex products, 

quotients and logarithms at zero and infinity can be regarded 

as a scheme that rounds arg(l::;) into one of the ten values above 

when I::; is zero or infinite. To be acceptable, such a scheme 

should not add much to the cost of complex multiplication and 

division. The procedure Box that follows seems tolerable. 

9. THE PROCEDURES 
Box supplants the explicit calculation of arg during 

multiplication and division. It is followed by procedures and 

auxiliary procedures that calculate the Principal Expressions 

of the Elementary Functions of Table 1, and algorithms for CTANH 

and CTAN are given too. Several real special functions are 



•• 

usen by these procedures; indeed the only complex auxiliary func-
tion that occurs during the computation of the inverse trigono-

Metric and hyperbolic functions is CSQRT. It is assumed that 

the radix of the computer arithmetic is 2. 

••• To compute x + iy = 21 := Box( l;;) = Box (~+ in). 

CBox(~+in): 0'. Defined onty for zero and infinite arguments. 

If ~=O and n""O then 21:= copysign(1 ;~) + 

else if I~ I = 00 

then { if Inl = co 

then 21:= copysign t I ; ~) + i copysign (I ,n) 

else z:= copysign (I ;~) + in/~ } 

else if Inl=oothen z:""~/n+icopysign(l.n)  

else 21:= (0 + iO)/O; •• Invalid use. 0 

Return z; end CBOX. 

···To compute p:= 1211 Ix+iyl =v(x2 +l). 

ABS (x+iy): ••• Fortran's CABS(Z)=C's hypot(x,y). 

The obvious formula can produce errors bigger than one 

ulp, and could over/underflow spuriously. Not so for 

what follows. 

Constants 1'2:=V2, 1'2pl:= I+V2, t2pl :=1 +v2-r2pl; 

These constants must be correctly rounded to work-

ing precision; consequently 1'2pl +t2pl = 1 + V2 

to double that precision. 

Save invalid flag; ••• This suppresses spurious Invalid 

Operation signals from NaN comparison or co-co; 

but spurious inexact signals can be generated by 

this program. 

x:=!xl y:=lyl; 8:=0.0; 


If x < y then swap x and y; ••• so x ;;I> y ;;I> 0 if not NaN.  

If Y =co then x:= y ; 


t:=x-y; 


If x *" co and t *" x then  
{ ••• executed if x *" co, y *" 00 and y is not negligible.  

Save Underflow flag;  

If t> Y 


then" when 2 < x/y < 2/£,0 

{ 8:= x/y; 8 :=8+ V(I +82 ) 

else 0.0 when I '" x/y '" 2 , 
8:"" tty; t:=(2+8)8; 

8 :=«t2pl +t/(1'2+ v(2+t»))+8)+1'2pl }; 

8:= y/8 Harmless Gradual Underflow can occur here.00' 

Restore Underflow flag; 

} ; 
Restore Invalid flag; 0 Only if deserved can Overflow 

happen now. 

Return x + 8; end ABS. 

"'To compute a:= arg(z) arg(x+iy). 

ARG(x+iy): "'=Fortran's ATAN2(y,x). 

If x =0 and y=O then x :=copysign(1 ,x) 

If Ixl =co or Iyl 00 then 21:= CBOX(z); 
••• leaves signs unchanged. 

If Iyl > Ixl then a:= copysign(n/2, y) -arctan(x/y) 

else if x < 0 then a:= copysign(n, y) + arctan(y/x) 

else a:= arctan(y/x) ; 

Suppress any Underflow signal unless lal < 0.125, say; 

••• Better accuracy may be obtained by further case 

reduction and use of identities like  

... arctan (y/x) = n/4 + arctan( (y -x) / (y + x») • 


Return a; end ARG.  



"'To compute x+ z:=~2= (~+in)2. 
CSQUARE (~+ in) : 

x!= (~-n)(~+n) ; ••• Not ~2_n2. 

yO:= ~n +- ~n ; ••• ONE multiply, one add. 
If a spurious NaN is created by overflow it gets 

• o. removed thus: 

If x:#;c then 
if Iyl =CIO then x:= copysign(O,c,J 

else if Inl =CIO then X:=-CIO 

else if I~I =CIO then x:= <X> } 

else if y:#y and Ixl CIO then y:= copysign(O,y) 

Return (x + iy); end CSQUARE. 

k 2 
'0' To compute p:= l(x+iy)/2 I scaled to avoid Over/Underflow. 

CSSQS(x+iy): =p+ik, with an integer k. 

Integer k; 

k :=0 ; 

Save and reset the Over/Underflow flags;  

p := x 2 + y2 ; ••• Multiply twice and add.  

U (p:#p or p=CIO) and (Ixl =CIO or Iyl =(0) then P:=CIO  

else if the Overflow flag was just raised, or  

the Underflow flag was just raised and p < '}.J'2. } 

then 1 k:=logb(max(lxl,lyi)); 
p := scalb (x, 2 + scalb (y, _k)2 } ; 


Restore the Over/Underflow flags:  

Return (p + i k); end CSSQS.  

"'To compute t;+in=~ :=yz =Y(x+iy). 

CSQRT (x + iy): 

Real p; Integer k; 


p + ik:= CSSQS(x + iy) ; 


• •• Sum-of-Squares Scaled: see above.  

If x =x then p:= scalb( Ix I , -k) + yp ;  

If k is odd then k:= (k-I)/2 


else {k:= k/2-1; p:=p+p}; 

p:= scalb(yp,k) ; 
• •• = y( ( Ix + iy I + Ix 1)/2) without over/underflow. 

E;,:=p; n:=y;  

If p:# 0 then  
if Inl:# 00 then { n:= (n/p)/2 ;  

if n underflowed, signal it } ;  

if x < 0 then { ~: = In  

n := copysign(p, y) } 


} ; 

Return (E;, + in) ; 

·.. 
• •• This program seems to handle all cases correctly:  

"'y(-S±iO)=+O ± iy(S) for all 13;;.0.  

••• ..,I (x ± iClO) = +00 ± iCIO for aU x, finite,  
infinite or NaN, and if x is NaN then 

• • 0 

·.. "Invalid Comparison" is signalled too.  

• •• For all finite S,  
••• y(NaN + is) , .J(S + and .J(NaN+  

are all NaN + i NaN;  

y(+CIO± is) =+CIO ± iO ; 


Y(+CIO± iNaN) =+CIO+ iNaN;  

Y(-CIO±il3) =+O±i ClO ; 


V(-CIO ± i NaN) = NaN ± ioo •  

End CSQRT 



00 oTo compute ';+in = r;. :=in(2J z) .. in(2J (x+iy») (integer J). 

CLOGS(x+ iy,J): O"For use with J"*O only when Ix+iyl 

••• is huge. This program is particularly helpful for 
••• inverse trigonometric and hyperbolic functions that 

• •• behave like 11,n (2z) for huge Iz I. This program uses 
• •• ' a subprogram 11,n 1p (x) := in( I + x) presumed .to be 

avpilable with full relative accuracy for all tiny 

• •• real x. Such a program exists in various math. 

••• libraries, included that for 4.3 BSD Unix, Intel's 

• •• CEL and Apple's SANE. The accuracy of 11,n I p 
••• influences the choice of thresholds TO, TI and T2. 

Constants TO := 1/../2 ; TI := 5/4; T2:= 3; 11,n 2 := 11,n(2) ; 

Real p; Integer k; 

p+ik:=CSSQS(x+iy); ••• = l(x+iy)/2k I 2 +ik; see above. 

S : = max ( Ix I , Iy I ) ; 8: = mi n ( Ix I • I y I ) ; 
If k=O and TO < 13 and (13 <::TI or p<T2)  

then p:= 11,nlp(S-J)(S+ I) +8 2)/2 


else p:= 11,n(p)/2 + (k+J) 11,n2;  

8 :=ARG(x+iy) ; 


Return (p+i8); end CLOGS.  

"'To compute 1;+ in = r;.:= 11,n(z)=11,n(x+iy). 

CLOG(Z) :=CLOGS(z,O). 

O"To compute I;+in = r;.:= arccos(z) = arccos(x+iy). 

CACOS (z) : ••• Based upon formulas : 

1;: 2 arctan(Re("/(J -z»)/Re(4(1 + z»)) ; 

••• Suppress any Divide-by-Zero signal when z <:: -I • 

n :=arcsinh(Im (../(1 +z)*../ (I-z»)); 

Return (I; +in); end CACOS. 

1;; := arccosh(z) arccosh(x +iy) • 

CACOSH(z) : • • • Based upon formulas: 
••• I; := arcsinh(Re( ../(z - 1) * ../ (z + I»)) ; 
• •• n : .. 2 arc t an ( Im( ../ (z - 1) ) / Re ( ../ (z + J ) )) ; 

••• Suppress any Divide-by-Zero signal when z <:: -I • 

Return (I; + in); end CACOSH. 

• • • To compute .; + 

••• To compute I;+in = r;. := arcsin(z) = arcsin{x+ iy) •. 

CASIN(x+iy): "'Based upon formulas: 
••• 1;:= arctan(x/Re("/(I-z)"/{1 +z»)); 

••• Suppress any Divide-by-Zero signal when z <:: -I • 

• •• n:= arcsinh(Im(../(I-z)*../(1 +z»)); 

Return (I; + in); end CASIN • 

••• To compute I; + r;. := arcsinh(z) arcsinh(x + iy) • 

CASINH(z) := -i CASIN(iz). 

••• To compute I; + r;. := arctanh(z) = arctanh(x + iy) 

CATANH(x + iy): 

Constants a:= ../W)/4, p:= I/a ; 
13:= copysign(1 ,x) ; z:= Sz*;'" Copes with unsigned O. 

If x> a or Iyl > a ••• To avoid overflow. 

then { n := copysign('lr/2. y); 1;:= Re( II (x + iy) ) 

else if x 1 
then { 1;:= 11,n(../(../(4+y2»)/../(lyl +p)); 

n := copysign('IT/2 + arctan( (ly I + p)/2), y)/2} 

else'" Normal case. Using 11,n I p (u) := in{1 + u) 

••• accurately even if u is tiny. 
• 2 I 2

{ I; :=!1,nJp(4xl(I-x) +(Iy +p) ))/4; 

n := arg( (I -x) (I + x) - (lyl + p)2 +2iy)/2 } 

• •• All cases appear to be handled correctly. 

Return (13 r;.*) ; end CATANH. 



••• To compute E:+ in = 1; := arctan(z) arctan(x+iy) • 
CATAN(z) := -iCATANH(iz). 

"'To compute x+iy = z :=t:anh(S;) tanh(';+ 
CTANH(~ + 

If 1.;1> arcsinh(n)/4 ••• Avoid overflow.  

then z:= copysign( I , .;) + i copysign(O, n)  
else {  

t := tan(n) ; ••• Suppress any Divide-by-Zero  

• •• signal here.  

6 := I + t 2 ; ••• = I/cos 2n. 

8 := sinh (.;) ;  

P :=y'(1 +B2); "'= cosh';.  

if Itl=co 
then z:= p/B + ilt ••• May signal if 8= O. 

else z:= (6P8+ it) I (I +6B2) 

} ; 

Return z; end CTANH. 

••• To compute x+ iy = z := tan(1;;) tan('; + 
CTAN(1;;) := -i CTANH(i 1;;). 

10. 	 THE EXPONENTIAL FUNCTION zW, AND 00 
The function zW has two very different definitions. One 

is recursive and applicable only when W is an integer: 
z°= I and z (W+ 1) = zW z whenever zW exists. 

The second definition is analytic: 

ZW:= lim exp(w 9.n(O) , 
1;;"'z 

provided the limit exists using the principal value and domain 

of 9.n(1;;). The limit process is necessary to cope smoothly with 

z = O. Since the recursive definition makes sense when z is a 

number or a square matrix or a nonlinear map of some domain into 

itself, regardless of whether 9.n(Z) exists, the fact that both 

definitions coincide when W is an integer and inez) exists 

must be a nontrivial theorem. The fact that both definitions 

agree that zO = I for every z is doubly significant because pro-

grammers who have implemented zW on computers have so often 

decreed 0° to be a capital offence. 

I can only speculate on why 0° might be feared. Perhaps 

fear is induced by the singularity that zW possesses at z =W= 0; 

if both z and ware compelled to approach 0 but allowed to do 

so independently along any paths, then paths may be chosen on 

which zW holds fast to any preassigned value whatsoever. Assum-

ing for the sake of argument (because it is generally not so) 

that neither z nor W could be exactly zero but must instead be 

approximately zero because of roundoff or underflow, the expres-

sion 0° would have to be treated as if it really ought to have 
been (roundoff) roundoff, which generally defies estimation. 

To draw conclusions based upon something better than fear 

or speculation, we need estimates for certain costs and benefits. 

Setting zO:= I without exception confers the benefit of adher-

ence to simply stated rules; but it introduces some risk that we 

might unwittingly accept for 0° instead of an unknown but 

preferred value with tiny 1;; and v. That added risk should 

be judged in the light of the greater and unavoidable risk that 



W 
<i might unwittingly be accepted when z and Ware both non-
zero but tiny and quite wrong because of roundoff. In other 
words, only on those extremely rare occasions when a program of 

unknown reliability betrays its inaccuracy by a chance encounter 

with 0° will we benefit from outlawing 00. But outlawing 00 

incurs ,the cost of departing from a simple rule; it imposes upon 

those pro~rammers who prefer to take z ° for granted, regard-

less of whether z = 0, the extra burden of remembering to insert 
extra code to cope with a rare eventuality. 

There are two situations in which programmers are fully 

entitled to take 0° = I for granted. The first arises in lan-

guages like Fortran and Pascal that distinguish variables of 

type INTEGER from floating-point variables of type REAL and 
COMPLEX. Suppose that M is of type INTEGEl't but nl' has a  

" h M b d' . . h d f W
floatlng-polnt type; t en z can e lstlngU1S e rom z , 

ana particularly zO from zO'O, because they call upon different 

subroutines from a library of intrinsic functions. Since round-

off cannot possibly obscure the value of an exponent M of type 

INTEGER in the way it might obscure the value of a floating-

point variable w that happens to vanish, there is no reason to 

doubt that zO = I for every z regardless of one's fears about 

0.0°.°, Therefore, in every language in which M can be declared 

of INTEGER type, the exponential function zM must be consistent 

with its recursive definition even if computed, at least when IMI 
is huge, with the aid of logarithms; in short, 

Mwhen M 0 then z regardless of z. 

A second situation in which programmers might presume that 
00.0°. = I arises frequently. Consider two expressions z :=z(O 

and w:= w(C;) that depend upon some variable C;, and suppose that 

z (B) = w(B) = 0 and that z and Ware analytic functions of t;, 

in some open neighbourhood of C; B. This means that z (C;) and 

w(C;) can be expanded in Taylor series in powers of t;,-i3 valid 

near C; = 13, and both series begin with positive powers of t;,- S. 
Then we find that z-+O and w-+O and zW = exp(w9,n(z))-+1 as 

C; -+ 13 regardless of the branch chosen for Q,n. Since this pheno-
menon occurs for al.l. pairs of analytic expressions z and w, it 

is very common. 
In the light of the foregoing considerations, 0,0°. 0 = 00 = I 

seems to be the only reasonable choice; similar considerations 

imply 00°.0 =00° = I too, Some other exponential expressions in-

volving infinite operands require further thought. For instance, 

1.0"" is clearly an invalid operation, but I"" I might be 

acceptable. Somewhat less clear are the signs of results like 
000(±O.S)"" = (±2f"" = 00,-00 = 0 , and 
0-00(±o.sf"", (± 2)"", (±oo)oo, all ±oo. 

It is possible to argue that all these results should be assigned 

+ signs in real arithmetic on any North American computer; since 

all sufficiently big floating-point numbers on such machines are 
even integers, taking the limi t makes co an even integer too. 

Whether equally fulgent reaaoning Can be applied to complex 

arithmetic remains to be seen. And whether 0""" = co should 
1signal "Division by Zero", as 0- and I/O must, ~eems to be a 

matter of taste until we realize that no signal is needed for 

0-"" because "Division by Zero" is a misnomer imposed for histori-

cal reasons in place of the more appropriate phrase 

"an infinite result produced exactly from finite operands". 

When z is neither zero nor infinite, and when W is not 

an integer, the complex function could be assigned a multi-

plicity of values; they are arranged around a circle if W is 

real, or otherwise along an Archimedean spiral in the complex 

plane. What distinguishes the principal Value defined above 

from all others is that its logarithm has minimum magnitude; 

this definition is conventional. Respectable accuracy can be 

difficult to achieve when either Iwi or Iw 9,n (z) I is big, 

requiring extraordinarily careful calculation of tn(z), but 

that is a story to unfold elsewhere. 
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gous libraries running on the ELXSI 6400 (programmed by Peter 
Tang), on the National Semiconductor 32081 floating-point slave 
processor chip, and on the IBM PC/RT. The latter two machines' 



libraries are very much like the C Math Library for IEEE 754-
conforming machines programmed mostly by Dr Kwok-Choi Ng and now 
distributed with 4.3 BSD UNIX by the University of California at 
Berkeley; that library is intended ultimately to be distributed 
independently of Berkeley UNIX. 

The hp-71 B is currently the only implementation in Decimal 
arithmeti~ of p854; that hand-held computer is the subject of 
the July 1984 issue of the He~lett-Packard Journal, vol. 35, no. 
17. Many of the complex elementary functions, plus PROJ, have 
been implemented in the hp-71B's Math Pac, HP 82480A; but its 
implementers were compelled by limitations upon time and space 
to acquiesce to a few compromises that I wish they could have 
avoided. For instance, users of that machine have to write z*z 
instead of ZA2 to compute z2, and (-IMPT(Z), REPT(Z») instead 
of (0, 1) * Z to compute iz, if they wish to conserve the sign 
of zero. 

Some of the ideas that lead to canonical formulas around 
branch-points are explained in pp.276-286 of volume III of A.I. 
Markushevich's Theory of Functions of a Complex Variable trans-
lated by R.I. Silverman, 1967, Prentice-Hall, N.J. The confor-
mal map from the right half-plane to a liquid jet was adapted, 
with corrections, from pp. 122-5 of Theory of Functions as 
AppUed to Engineering Problems, edited by Rothe, Ollendorf and 
Pohlhausen, translated by Herzenberg in 1933, reprinted in 1961 
by Dover, N.Y. Another Dover reprint is the Handbook of Mathe

matical Functions with Formulas, Graphs, and Mathematical 

Tables, edited by M. Abramowitz and Irene Stegun. issued origin-
ally in 1964 as no. 55 in the U.S. National Bureau of Standards 
Applied Math. Series. Its Chapter 4 locates the slits for all 
nine elementary functions considered here, but its formulas 
4.4.37-9 for complex Arcsin, Arccos, and Arctan are non-
committal on the slits and generally vulnerable to roundoff; 
and it lacks a formula for complex Arccosh. During the Hand-
book's ninth reprinting its definition of arccot(z) changed 

from 'rr/2-arctan(z) to arctan(l/z). Finally, H. Kober's 
Dictionary of ConformaZ Representations contains pictures of 
many useful conformal maps; this too was reprinted by Dover, 

in 1957. 
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