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A bit of computer history
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break.2 (V3 Unix)
break sets the system's idea of the 
highest location used by the program 
to addr.

Locations greater than addr and 
below the stack pointer are not 
swapped and are thus liable to 
unexpected modification.
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9

1970 20201980 1990 2000 2010

1970
PDP-7: ?

1972 V1:
sysbreak

system call

1972 V2:
break

system call

1973 V3:
break

system call
and docs

1973 V4:
sbreak

system call
now provides
protection.

sbrk() introduced



break.2 (V4 Unix)
Break sets the system's idea of the 
lowest location not used by the 
program to addr (rounded up to the 
next multiple of 64 bytes).

Locations not less than addr and 
below the stack pointer are not in 
the address space and will thus 
cause a memory violation if 
accessed.
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break.2 (V4 Unix) (cont)
char *sbrk(incr)

…

From C, the calling sequence is 
different; incr more bytes are added 
to the program's data space and a 
pointer to the start of the new area 
is returned.

11



break.2 (V4 Unix) (cont)
When a program begins execution via 
exec the break is set at the highest 
location defined by the program and 
data storage areas.  Ordinarily, 
therefore, only programs with 
growing data areas need to use 
break.
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Heap fragmentation
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Dynamic linking
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Multi-threaded programs
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4.2BSD memory interfaces
• mmap()
• Allocate address space

• Alter backing mappings

• mremap()
• Relocate or extend 

mapping

• munmap()
• Remove backing
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4.2BSD memory interfaces
• mprotect()
• Alter page protections

• madvise()

• Hint usage to kernel

• mincore()
• Query backing status

• sbrk()
• Extend or reduce 

“break”

• sstk()
• Extend or reduce stack
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W^X and JITs
• Prohibits pages from having both PROT_EXEC and 

PROT_WRITE simultaneously

• JITs need to write then execute!

• Solution: Map PROT_WRITE then remove 
PROT_WRITE and add PROT_EXEC

• New problem: most pages should not become 
executable, but mmap() cannot express this!
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UNIX and BSD
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CHERI pointers
• Pointers with bounds and permissions

• With strong monotonicity guarantees

• Want W^X for pointers (in addition to pages)

• API changes required:

• Should mprotect() return a pointer?

• Should some other mechanism be used?
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mmap() functionality issues
• Interface conflates address reservation and mapping

• Lack of boundaries between reservations leads to 
bugs: e.g. Stack Clash

• Lack of expressiveness

• No portable way to express alignment

• No way to express maximum permission
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mmap() API issues
• Too many arguments

• Can you remember them all?

• Many calls don’t use them all

• Too many failure modes:

• FreeBSD 11.1: 19 documented errors (15 use 
EINVAL)

26



Other mmap() issues
• No support for mapping more pages than requested

• Can’t round up to superpage size

• CHERI bounds compression requires rounding for 
very large allocations

• No concept of address space ownership

• Math errors mean changing the wrong region
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RFC: cmmap (1/3)
• int cmreserve(cm_t *handlep, size_t length,

vaddr_t hint, int prot, cmreq_t *cmr);

• Reserve a region, optionally mapping.

• int cmgetptr(cm_t handle, void **ptrp);

•Get a pointer to the region.
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RFC: cmmap (2/3)
• int cmmap(cm_t handle, cmreq_t *cmr);

• Replace (part of) a region’s mappings.

• int cmclose(cm_t handle);

• Close a handle.

• int cmrestrict(cm_t handle, XX ops, XX *oops);

• Restrict the set of operations on a handle
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RFC: cmmap (2/3)
• int cmstat(cm_t handle, size_t index,

struct cm_stat * cs)

• Return data on a series of submaps

• cmadvise(), cmincore(), cminherit(), cmsync(), 
cmunmap()

• Like mmap() counterparts, but within region
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More on map requests
• Request object rather than many arguments

• cm_request_t following pthread_attr_t model

• Accessor functions to set up request

• Goal: useful defaults

• Ideally, requests should always be valid
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CHERI extensions
• int cmgetcap(cm_t cookie, void **ptrp,

perm_t perms)

• Get a capability pointer

• int cmandperm(cm_t cookie, perm_t perms,
perm_t *operms)

• Reduce the set of allowed permissions
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Should we replace mmap()?

Yes or No?
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BACKGROUND
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Removing sbrk()
• Mostly incorrect attempts to measure heap use

• Usually can be disabled, but some force required

• A few internal allocators

• Usually can be disabled

• Some LISP interpreters

• Mostly unpopular ones
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Removing sbrk() (cont.)
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