
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Is it time to replace mmap?
A history of virtual address management

(and a proposal for the future)

Brooks Davis
SRI International

BSDCan 2018, Ottawa, Canada

Memory

2

Photo credit: Steve Jurvetson from Menlo Park, USA

A bit of computer history

3

1940 2020200019801960

EDSAC c.1949
ENIAC c.1945

Photo sources:
ENIAC: Two women operating ENIAC - U.S. Army Photo
EDSAC: EDSAC I, R.Hill operating - Copyright Computer Laboratory, University of Cambridge.
Reproduced by permission. PDP-11: DEC - PDP-11- Ken Thompson and Dennis Ritchie –
Courtesy Computer History Museum

PDP-11
c.1970

Baby c.1948 I386 1985

UNIX

Program

Heap

Process address space

4

Code Data BSS Stack

0x
00

…
0

0x
7F

…
F

NULL

Process address space

5

HeapCode Data BSS Stack

Virtual address space

Physical address space

Copy on write

Disc

Heap

Process address space

6

Code Data BSS Stack

Br
ea

k

SP

UNIX and BSD

7

1970 20201980 1990 2000 2010

1970
PDP-7: ?

1972 V1:
sysbreak

system call

1972 V2:
break

system call

1973 V3:
break

system call
and docs

break.2 (V3 Unix)
break sets the system's idea of the
highest location used by the program
to addr.

Locations greater than addr and
below the stack pointer are not
swapped and are thus liable to
unexpected modification.

8

UNIX and BSD

9

1970 20201980 1990 2000 2010

1970
PDP-7: ?

1972 V1:
sysbreak

system call

1972 V2:
break

system call

1973 V3:
break

system call
and docs

1973 V4:
sbreak

system call
now provides
protection.

sbrk() introduced

break.2 (V4 Unix)
Break sets the system's idea of the
lowest location not used by the
program to addr (rounded up to the
next multiple of 64 bytes).

Locations not less than addr and
below the stack pointer are not in
the address space and will thus
cause a memory violation if
accessed.

10

break.2 (V4 Unix) (cont)
char *sbrk(incr)

…

From C, the calling sequence is
different; incr more bytes are added
to the program's data space and a
pointer to the start of the new area
is returned.

11

break.2 (V4 Unix) (cont)
When a program begins execution via
exec the break is set at the highest
location defined by the program and
data storage areas. Ordinarily,
therefore, only programs with
growing data areas need to use
break.

12

UNIX and BSD

13

1970 20201980 1990 2000 2010

1973 V4:
sbreak

system call
now provides
protection.

sbrk()
introduced

1975 V5:
brk() introduced

1983
4.2BSD:

First
references
to mmap()

Heap fragmentation

14

HeapCode Data BSS Stack

Br
ea

k

SP

Memory sharing

15

HeapCode Data BSS Stackl
s

HeapCode Data BSS Stackl
s

Physical address space

Dynamic linking

16

HeapCode Data BSS Stack

Program libc rtld

Multi-threaded programs

17

HeapCode Data BSS Stack

Code Data BSS StackHeap

4.2BSD memory interfaces
• mmap()
• Allocate address space

• Alter backing mappings

• mremap()
• Relocate or extend

mapping

• munmap()
• Remove backing

18

4.2BSD memory interfaces
• mprotect()
• Alter page protections

• madvise()

• Hint usage to kernel

• mincore()
• Query backing status

• sbrk()
• Extend or reduce

“break”

• sstk()
• Extend or reduce stack

19

Only sbrk() implemented!

UNIX and BSD

20

1970 20201980 1990 2000 2010

1973 V4:
sbreak

system call
now provides
protection.

sbrk()
introduced

1975 V5:
brk() introduced

1983
4.2BSD:

First
references
to mmap()

1990 4.3-Reno:
mmap()

implemented
with VM from

Mach

UNIX and BSD

21

1970 20201980 1990 2000 2010

1990 4.3-Reno:
mmap()

implemented
with VM from

Mach 2003 OpenBSD 3.3:
Implements W^X

W^X and JITs
• Prohibits pages from having both PROT_EXEC and

PROT_WRITE simultaneously

• JITs need to write then execute!

• Solution: Map PROT_WRITE then remove
PROT_WRITE and add PROT_EXEC

• New problem: most pages should not become
executable, but mmap() cannot express this!

22

UNIX and BSD

23

1970 20201980 1990 2000 2010

1990 4.3-Reno:
mmap()

implemented
with VM from

Mach 2003 OpenBSD 3.3:
Implements W^X

2012 CHERI Project

CHERI pointers
• Pointers with bounds and permissions

• With strong monotonicity guarantees

• Want W^X for pointers (in addition to pages)

• API changes required:

• Should mprotect() return a pointer?

• Should some other mechanism be used?

24

mmap() functionality issues
• Interface conflates address reservation and mapping

• Lack of boundaries between reservations leads to
bugs: e.g. Stack Clash

• Lack of expressiveness

• No portable way to express alignment

• No way to express maximum permission

25

mmap() API issues
• Too many arguments

• Can you remember them all?

• Many calls don’t use them all

• Too many failure modes:

• FreeBSD 11.1: 19 documented errors (15 use
EINVAL)

26

Other mmap() issues
• No support for mapping more pages than requested

• Can’t round up to superpage size

• CHERI bounds compression requires rounding for
very large allocations

• No concept of address space ownership

• Math errors mean changing the wrong region

27

RFC: cmmap (1/3)
• int cmreserve(cm_t *handlep, size_t length,

vaddr_t hint, int prot, cmreq_t *cmr);

• Reserve a region, optionally mapping.

• int cmgetptr(cm_t handle, void **ptrp);

•Get a pointer to the region.

28

RFC: cmmap (2/3)
• int cmmap(cm_t handle, cmreq_t *cmr);

• Replace (part of) a region’s mappings.

• int cmclose(cm_t handle);

• Close a handle.

• int cmrestrict(cm_t handle, XX ops, XX *oops);

• Restrict the set of operations on a handle

29

RFC: cmmap (2/3)
• int cmstat(cm_t handle, size_t index,

struct cm_stat * cs)

• Return data on a series of submaps

• cmadvise(), cmincore(), cminherit(), cmsync(),
cmunmap()

• Like mmap() counterparts, but within region

30

More on map requests
• Request object rather than many arguments

• cm_request_t following pthread_attr_t model

• Accessor functions to set up request

• Goal: useful defaults

• Ideally, requests should always be valid

31

CHERI extensions
• int cmgetcap(cm_t cookie, void **ptrp,

perm_t perms)

• Get a capability pointer

• int cmandperm(cm_t cookie, perm_t perms,
perm_t *operms)

• Reduce the set of allowed permissions

32

Should we replace mmap()?

Yes or No?

33

BACKGROUND

34

UNIX and BSD

35

1970 20201980 1990 2000 2010

1990 4.3-Reno:
mmap()

implemented
with VM from

Mach 2003 OpenBSD 3.3:
Implements W^X

2016 FreeBSD 11:
No sbrk() on Arm64

and RISC-V2012 CHERI Project

Removing sbrk()
• Mostly incorrect attempts to measure heap use

• Usually can be disabled, but some force required

• A few internal allocators

• Usually can be disabled

• Some LISP interpreters

• Mostly unpopular ones

36

Removing sbrk() (cont.)

37

out

