/* $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ */ /* * Copyright (C) 1995, 1996 Wolfgang Solfrank. * Copyright (C) 1995, 1996 TooLs GmbH. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by TooLs GmbH. * 4. The name of TooLs GmbH may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include pte_t *ptable; int ptab_cnt; u_int ptab_mask; #define HTABSIZE (ptab_cnt * 64) struct pte_ovfl { LIST_ENTRY(pte_ovfl) po_list; /* Linked list of overflow entries */ struct pte po_pte; /* PTE for this mapping */ }; LIST_HEAD(pte_ovtab, pte_ovfl) *potable; /* Overflow entries for ptable */ static struct pmap kernel_pmap_store; pmap_t kernel_pmap; int physmem; static int npgs; static u_int nextavail; #ifndef MSGBUFADDR extern vm_offset_t msgbuf_paddr; #endif static struct mem_region *mem, *avail; vm_offset_t avail_start; vm_offset_t avail_end; vm_offset_t virtual_avail; vm_offset_t virtual_end; vm_offset_t kernel_vm_end; /* * This is a cache of referenced/modified bits. * Bits herein are shifted by ATTRSHFT. */ static char *pmap_attrib; #define ATTRSHFT 4 struct pv_entry *pv_table; static vm_zone_t pvzone; static struct vm_zone pvzone_store; static struct vm_object pvzone_obj; static int pv_entry_count=0, pv_entry_max=0, pv_entry_high_water=0; static struct pv_entry *pvinit; #if !defined(PMAP_SHPGPERPROC) #define PMAP_SHPGPERPROC 200 #endif struct pv_page; struct pv_page_info { LIST_ENTRY(pv_page) pgi_list; struct pv_entry *pgi_freelist; int pgi_nfree; }; #define NPVPPG ((PAGE_SIZE - sizeof(struct pv_page_info)) / sizeof(struct pv_entry)) struct pv_page { struct pv_page_info pvp_pgi; struct pv_entry pvp_pv[NPVPPG]; }; LIST_HEAD(pv_page_list, pv_page) pv_page_freelist; int pv_nfree; int pv_pcnt; static struct pv_entry *pmap_alloc_pv __P((void)); static void pmap_free_pv __P((struct pv_entry *)); struct po_page; struct po_page_info { LIST_ENTRY(po_page) pgi_list; vm_page_t pgi_page; LIST_HEAD(po_freelist, pte_ovfl) pgi_freelist; int pgi_nfree; }; #define NPOPPG ((PAGE_SIZE - sizeof(struct po_page_info)) / sizeof(struct pte_ovfl)) struct po_page { struct po_page_info pop_pgi; struct pte_ovfl pop_po[NPOPPG]; }; LIST_HEAD(po_page_list, po_page) po_page_freelist; int po_nfree; int po_pcnt; static struct pte_ovfl *poalloc __P((void)); static void pofree __P((struct pte_ovfl *, int)); static u_int usedsr[NPMAPS / sizeof(u_int) / 8]; static int pmap_initialized; /* * These small routines may have to be replaced, * if/when we support processors other that the 604. */ static __inline void tlbie(caddr_t ea) { __asm __volatile ("tlbie %0" :: "r"(ea)); } static __inline void tlbsync() { __asm __volatile ("sync; tlbsync; sync"); } static void tlbia() { caddr_t i; __asm __volatile ("sync"); for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) tlbie(i); tlbsync(); } static __inline int ptesr(sr, addr) sr_t *sr; vm_offset_t addr; { return sr[(u_int)addr >> ADDR_SR_SHFT]; } static __inline int pteidx(sr, addr) sr_t sr; vm_offset_t addr; { int hash; hash = (sr & SR_VSID) ^ (((u_int)addr & ADDR_PIDX) >> ADDR_PIDX_SHFT); return hash & ptab_mask; } static __inline int ptematch(ptp, sr, va, which) pte_t *ptp; sr_t sr; vm_offset_t va; int which; { return ptp->pte_hi == (((sr & SR_VSID) << PTE_VSID_SHFT) | (((u_int)va >> ADDR_API_SHFT) & PTE_API) | which); } static __inline struct pv_entry * pa_to_pv(pa) vm_offset_t pa; { int bank, pg; #if 0 bank = vm_physseg_find(atop(pa), &pg); if (bank == -1) return NULL; return &vm_physmem[bank].pmseg.pvent[pg]; #endif return (NULL); } static __inline char * pa_to_attr(pa) vm_offset_t pa; { int bank, pg; #if 0 bank = vm_physseg_find(atop(pa), &pg); if (bank == -1) return NULL; return &vm_physmem[bank].pmseg.attrs[pg]; #endif return (NULL); } /* * Try to insert page table entry *pt into the ptable at idx. * * Note: *pt mustn't have PTE_VALID set. * This is done here as required by Book III, 4.12. */ static int pte_insert(idx, pt) int idx; pte_t *pt; { pte_t *ptp; int i; /* * First try primary hash. */ for (ptp = ptable + idx * 8, i = 8; --i >= 0; ptp++) if (!(ptp->pte_hi & PTE_VALID)) { *ptp = *pt; ptp->pte_hi &= ~PTE_HID; __asm __volatile ("sync"); ptp->pte_hi |= PTE_VALID; return 1; } idx ^= ptab_mask; for (ptp = ptable + idx * 8, i = 8; --i >= 0; ptp++) if (!(ptp->pte_hi & PTE_VALID)) { *ptp = *pt; ptp->pte_hi |= PTE_HID; __asm __volatile ("sync"); ptp->pte_hi |= PTE_VALID; return 1; } return 0; } /* * Spill handler. * * Tries to spill a page table entry from the overflow area. * Note that this routine runs in real mode on a separate stack, * with interrupts disabled. */ int pte_spill(addr) vm_offset_t addr; { int idx, i; sr_t sr; struct pte_ovfl *po; pte_t ps; pte_t *pt; __asm ("mfsrin %0,%1" : "=r"(sr) : "r"(addr)); idx = pteidx(sr, addr); for (po = potable[idx].lh_first; po; po = po->po_list.le_next) if (ptematch(&po->po_pte, sr, addr, 0)) { /* * Now found an entry to be spilled into the real ptable. */ if (pte_insert(idx, &po->po_pte)) { LIST_REMOVE(po, po_list); pofree(po, 0); return 1; } /* * Have to substitute some entry. Use the primary hash for this. * * Use low bits of timebase as random generator */ __asm ("mftb %0" : "=r"(i)); pt = ptable + idx * 8 + (i & 7); pt->pte_hi &= ~PTE_VALID; ps = *pt; __asm __volatile ("sync"); tlbie(addr); tlbsync(); *pt = po->po_pte; __asm __volatile ("sync"); pt->pte_hi |= PTE_VALID; po->po_pte = ps; if (ps.pte_hi & PTE_HID) { /* * We took an entry that was on the alternate hash * chain, so move it to it's original chain. */ po->po_pte.pte_hi &= ~PTE_HID; LIST_REMOVE(po, po_list); LIST_INSERT_HEAD(potable + (idx ^ ptab_mask), po, po_list); } return 1; } return 0; } /* * This is called during initppc, before the system is really initialized. */ void pmap_bootstrap(kernelstart, kernelend) u_int kernelstart, kernelend; { struct mem_region *mp, *mp1; int cnt, i; u_int s, e, sz; /* * Get memory. */ mem_regions(&mem, &avail); for (mp = mem; mp->size; mp++) physmem += btoc(mp->size); /* * Count the number of available entries. */ for (cnt = 0, mp = avail; mp->size; mp++) cnt++; /* * Page align all regions. * Non-page aligned memory isn't very interesting to us. * Also, sort the entries for ascending addresses. */ kernelstart &= ~PAGE_MASK; kernelend = (kernelend + PAGE_MASK) & ~PAGE_MASK; for (mp = avail; mp->size; mp++) { s = mp->start; e = mp->start + mp->size; /* * Check whether this region holds all of the kernel. */ if (s < kernelstart && e > kernelend) { avail[cnt].start = kernelend; avail[cnt++].size = e - kernelend; e = kernelstart; } /* * Look whether this regions starts within the kernel. */ if (s >= kernelstart && s < kernelend) { if (e <= kernelend) goto empty; s = kernelend; } /* * Now look whether this region ends within the kernel. */ if (e > kernelstart && e <= kernelend) { if (s >= kernelstart) goto empty; e = kernelstart; } /* * Now page align the start and size of the region. */ s = round_page(s); e = trunc_page(e); if (e < s) e = s; sz = e - s; /* * Check whether some memory is left here. */ if (sz == 0) { empty: bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp); cnt--; mp--; continue; } /* * Do an insertion sort. */ npgs += btoc(sz); for (mp1 = avail; mp1 < mp; mp1++) if (s < mp1->start) break; if (mp1 < mp) { bcopy(mp1, mp1 + 1, (char *)mp - (char *)mp1); mp1->start = s; mp1->size = sz; } else { mp->start = s; mp->size = sz; } } #ifdef HTABENTS ptab_cnt = HTABENTS; #else /* HTABENTS */ ptab_cnt = 1024; while ((HTABSIZE << 7) < ctob(physmem)) ptab_cnt <<= 1; #endif /* HTABENTS */ /* * Find suitably aligned memory for HTAB. */ for (mp = avail; mp->size; mp++) { s = roundup(mp->start, HTABSIZE) - mp->start; if (mp->size < s + HTABSIZE) continue; ptable = (pte_t *)(mp->start + s); if (mp->size == s + HTABSIZE) { if (s) mp->size = s; else { bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp); mp = avail; } break; } if (s != 0) { bcopy(mp, mp + 1, (cnt - (mp - avail)) * sizeof *mp); mp++->size = s; cnt++; } mp->start += s + HTABSIZE; mp->size -= s + HTABSIZE; break; } if (!mp->size) panic("not enough memory?"); npgs -= btoc(HTABSIZE); bzero((void *)ptable, HTABSIZE); ptab_mask = ptab_cnt - 1; /* * We cannot do pmap_steal_memory here, * since we don't run with translation enabled yet. */ s = sizeof(struct pte_ovtab) * ptab_cnt; sz = round_page(s); for (mp = avail; mp->size; mp++) if (mp->size >= sz) break; if (!mp->size) panic("not enough memory?"); npgs -= btoc(sz); potable = (struct pte_ovtab *)mp->start; mp->size -= sz; mp->start += sz; if (mp->size <= 0) bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp); for (i = 0; i < ptab_cnt; i++) LIST_INIT(potable + i); LIST_INIT(&pv_page_freelist); #ifndef MSGBUFADDR /* * allow for msgbuf */ sz = round_page(MSGBUFSIZE); mp = NULL; for (mp1 = avail; mp1->size; mp1++) if (mp1->size >= sz) mp = mp1; if (mp == NULL) panic("not enough memory?"); npgs -= btoc(sz); msgbuf_paddr = mp->start + mp->size - sz; mp->size -= sz; if (mp->size <= 0) bcopy(mp + 1, mp, (cnt - (mp - avail)) * sizeof *mp); #endif #if 0 /* XXX */ for (mp = avail; mp->size; mp++) uvm_page_physload(atop(mp->start), atop(mp->start + mp->size), atop(mp->start), atop(mp->start + mp->size), VM_FREELIST_DEFAULT); #endif /* * Initialize kernel pmap and hardware. */ kernel_pmap = &kernel_pmap_store; #if NPMAPS >= KERNEL_SEGMENT / 16 usedsr[KERNEL_SEGMENT / 16 / (sizeof usedsr[0] * 8)] |= 1 << ((KERNEL_SEGMENT / 16) % (sizeof usedsr[0] * 8)); #endif for (i = 0; i < 16; i++) { kernel_pmap->pm_sr[i] = EMPTY_SEGMENT; __asm __volatile ("mtsrin %0,%1" :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT)); } kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT; __asm __volatile ("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT)); __asm __volatile ("sync; mtsdr1 %0; isync" :: "r"((u_int)ptable | (ptab_mask >> 10))); tlbia(); nextavail = avail->start; } /* * Restrict given range to physical memory */ void pmap_real_memory(start, size) vm_offset_t *start; vm_size_t *size; { struct mem_region *mp; for (mp = mem; mp->size; mp++) { if (*start + *size > mp->start && *start < mp->start + mp->size) { if (*start < mp->start) { *size -= mp->start - *start; *start = mp->start; } if (*start + *size > mp->start + mp->size) *size = mp->start + mp->size - *start; return; } } *size = 0; } /* * Initialize anything else for pmap handling. * Called during vm_init(). */ void pmap_init(vm_offset_t phys_start, vm_offset_t phys_end) { struct pv_entry *pv; vm_size_t sz; vm_offset_t addr; int i, s; int bank; char *attr; sz = (vm_size_t)((sizeof(struct pv_entry) + 1) * npgs); sz = round_page(sz); /* XXXCDC: ABSOLUTELY WRONG! uvm_km_zalloc() _CAN_ return 0 if out of VM */ addr = kmem_alloc(kernel_map, sz); addr = 0; s = splimp(); pv = pv_table = (struct pv_entry *)addr; for (i = npgs; --i >= 0;) pv++->pv_idx = -1; LIST_INIT(&pv_page_freelist); pmap_attrib = (char *)pv; bzero(pv, npgs); #if 0 pv = pv_table; attr = pmap_attrib; for (bank = 0; bank < vm_nphysseg; bank++) { sz = vm_physmem[bank].end - vm_physmem[bank].start; vm_physmem[bank].pmseg.pvent = pv; vm_physmem[bank].pmseg.attrs = attr; pv += sz; attr += sz; } #endif pmap_initialized = 1; splx(s); } /* * How much virtual space is available to the kernel? */ void pmap_virtual_space(start, end) vm_offset_t *start, *end; { /* * Reserve one segment for kernel virtual memory */ *start = (vm_offset_t)(KERNEL_SR << ADDR_SR_SHFT); *end = *start + SEGMENT_LENGTH; } /* * Create and return a physical map. */ struct pmap * pmap_create() { struct pmap *pm; pm = (struct pmap *)malloc(sizeof *pm, M_VMPGDATA, M_WAITOK); bzero((caddr_t)pm, sizeof *pm); pmap_pinit(pm); return pm; } /* * Initialize a preallocated and zeroed pmap structure. */ void pmap_pinit(pm) struct pmap *pm; { int i, j; /* * Allocate some segment registers for this pmap. */ pm->pm_refs = 1; for (i = 0; i < sizeof usedsr / sizeof usedsr[0]; i++) if (usedsr[i] != 0xffffffff) { j = ffs(~usedsr[i]) - 1; usedsr[i] |= 1 << j; pm->pm_sr[0] = (i * sizeof usedsr[0] * 8 + j) * 16; for (i = 1; i < 16; i++) pm->pm_sr[i] = pm->pm_sr[i - 1] + 1; return; } panic("out of segments"); } void pmap_pinit2(pmap_t pmap) { /* XXX: coming soon... */ return; } /* * Add a reference to the given pmap. */ void pmap_reference(pm) struct pmap *pm; { pm->pm_refs++; } /* * Retire the given pmap from service. * Should only be called if the map contains no valid mappings. */ void pmap_destroy(pm) struct pmap *pm; { if (--pm->pm_refs == 0) { pmap_release(pm); free((caddr_t)pm, M_VMPGDATA); } } /* * Release any resources held by the given physical map. * Called when a pmap initialized by pmap_pinit is being released. */ void pmap_release(pm) struct pmap *pm; { int i, j; if (!pm->pm_sr[0]) panic("pmap_release"); i = pm->pm_sr[0] / 16; j = i % (sizeof usedsr[0] * 8); i /= sizeof usedsr[0] * 8; usedsr[i] &= ~(1 << j); } /* * Copy the range specified by src_addr/len * from the source map to the range dst_addr/len * in the destination map. * * This routine is only advisory and need not do anything. */ void pmap_copy(dst_pmap, src_pmap, dst_addr, len, src_addr) struct pmap *dst_pmap, *src_pmap; vm_offset_t dst_addr, src_addr; vm_size_t len; { } /* * Require that all active physical maps contain no * incorrect entries NOW. */ void pmap_update() { } /* * Garbage collects the physical map system for * pages which are no longer used. * Success need not be guaranteed -- that is, there * may well be pages which are not referenced, but * others may be collected. * Called by the pageout daemon when pages are scarce. */ void pmap_collect(void) { } /* * Fill the given physical page with zeroes. */ void pmap_zero_page(vm_offset_t pa) { #if 0 bzero((caddr_t)pa, PAGE_SIZE); #else int i; for (i = PAGE_SIZE/CACHELINESIZE; i > 0; i--) { __asm __volatile ("dcbz 0,%0" :: "r"(pa)); pa += CACHELINESIZE; } #endif } void pmap_zero_page_area(vm_offset_t pa, int off, int size) { bzero((caddr_t)pa + off, size); } /* * Copy the given physical source page to its destination. */ void pmap_copy_page(src, dst) vm_offset_t src, dst; { bcopy((caddr_t)src, (caddr_t)dst, PAGE_SIZE); } static struct pv_entry * pmap_alloc_pv() { struct pv_page *pvp; struct pv_entry *pv; int i; if (pv_nfree == 0) { if (!(pvp = (struct pv_page *)kmem_alloc(kernel_map, PAGE_SIZE))) panic("pmap_alloc_pv: kmem_alloc() failed"); pv_pcnt++; pvp->pvp_pgi.pgi_freelist = pv = &pvp->pvp_pv[1]; for (i = NPVPPG - 2; --i >= 0; pv++) pv->pv_next = pv + 1; pv->pv_next = 0; pv_nfree += pvp->pvp_pgi.pgi_nfree = NPVPPG - 1; LIST_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list); pv = pvp->pvp_pv; } else { pv_nfree--; pvp = pv_page_freelist.lh_first; if (--pvp->pvp_pgi.pgi_nfree <= 0) LIST_REMOVE(pvp, pvp_pgi.pgi_list); pv = pvp->pvp_pgi.pgi_freelist; pvp->pvp_pgi.pgi_freelist = pv->pv_next; } return pv; } static void pmap_free_pv(pv) struct pv_entry *pv; { struct pv_page *pvp; pvp = (struct pv_page *)trunc_page((vm_offset_t)pv); switch (++pvp->pvp_pgi.pgi_nfree) { case 1: LIST_INSERT_HEAD(&pv_page_freelist, pvp, pvp_pgi.pgi_list); default: pv->pv_next = pvp->pvp_pgi.pgi_freelist; pvp->pvp_pgi.pgi_freelist = pv; pv_nfree++; break; case NPVPPG: pv_nfree -= NPVPPG - 1; pv_pcnt--; LIST_REMOVE(pvp, pvp_pgi.pgi_list); #if 0 /* XXX: Do we have an equivalent to this? */ uvm_km_free(kernel_map, (vm_offset_t)pvp, PAGE_SIZE); #endif break; } } /* * We really hope that we don't need overflow entries * before the VM system is initialized! XXX */ static struct pte_ovfl * poalloc() { struct po_page *pop; struct pte_ovfl *po; vm_page_t mem; int i; if (!pmap_initialized) panic("poalloc"); if (po_nfree == 0) { /* * Since we cannot use maps for potable allocation, * we have to steal some memory from the VM system. XXX */ mem = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM); po_pcnt++; pop = (struct po_page *)VM_PAGE_TO_PHYS(mem); pop->pop_pgi.pgi_page = mem; LIST_INIT(&pop->pop_pgi.pgi_freelist); for (i = NPOPPG - 1, po = pop->pop_po + 1; --i >= 0; po++) LIST_INSERT_HEAD(&pop->pop_pgi.pgi_freelist, po, po_list); po_nfree += pop->pop_pgi.pgi_nfree = NPOPPG - 1; LIST_INSERT_HEAD(&po_page_freelist, pop, pop_pgi.pgi_list); po = pop->pop_po; } else { po_nfree--; pop = po_page_freelist.lh_first; if (--pop->pop_pgi.pgi_nfree <= 0) LIST_REMOVE(pop, pop_pgi.pgi_list); po = pop->pop_pgi.pgi_freelist.lh_first; LIST_REMOVE(po, po_list); } return po; } static void pofree(po, freepage) struct pte_ovfl *po; int freepage; { struct po_page *pop; pop = (struct po_page *)trunc_page((vm_offset_t)po); switch (++pop->pop_pgi.pgi_nfree) { case NPOPPG: if (!freepage) break; po_nfree -= NPOPPG - 1; po_pcnt--; LIST_REMOVE(pop, pop_pgi.pgi_list); vm_page_free(pop->pop_pgi.pgi_page); return; case 1: LIST_INSERT_HEAD(&po_page_freelist, pop, pop_pgi.pgi_list); default: break; } LIST_INSERT_HEAD(&pop->pop_pgi.pgi_freelist, po, po_list); po_nfree++; } /* * This returns whether this is the first mapping of a page. */ static int pmap_enter_pv(int pteidx, vm_offset_t va, vm_offset_t pa) { struct pv_entry *pv, *npv; int s, first; if (!pmap_initialized) return 0; s = splimp(); pv = pa_to_pv(pa); if (first = (pv->pv_idx == -1)) { /* * No entries yet, use header as the first entry. */ pv->pv_va = va; pv->pv_idx = pteidx; pv->pv_next = NULL; } else { /* * There is at least one other VA mapping this page. * Place this entry after the header. */ npv = pmap_alloc_pv(); npv->pv_va = va; npv->pv_idx = pteidx; npv->pv_next = pv->pv_next; pv->pv_next = npv; } splx(s); return first; } static void pmap_remove_pv(pteidx, va, pa, pte) int pteidx; vm_offset_t va; vm_offset_t pa; struct pte *pte; { struct pv_entry *pv, *npv; char *attr; /* * First transfer reference/change bits to cache. */ attr = pa_to_attr(pa); if (attr == NULL) return; *attr |= (pte->pte_lo & (PTE_REF | PTE_CHG)) >> ATTRSHFT; /* * Remove from the PV table. */ pv = pa_to_pv(pa); /* * If it is the first entry on the list, it is actually * in the header and we must copy the following entry up * to the header. Otherwise we must search the list for * the entry. In either case we free the now unused entry. */ if (pteidx == pv->pv_idx && va == pv->pv_va) { npv = pv->pv_next; if (npv) { *pv = *npv; pmap_free_pv(npv); } else pv->pv_idx = -1; } else { for (; npv = pv->pv_next; pv = npv) if (pteidx == npv->pv_idx && va == npv->pv_va) break; if (npv) { pv->pv_next = npv->pv_next; pmap_free_pv(npv); } #ifdef DIAGNOSTIC else panic("pmap_remove_pv: not on list\n"); #endif } } /* * Insert physical page at pa into the given pmap at virtual address va. */ void pmap_enter(pmap_t pm, vm_offset_t va, vm_page_t pg, vm_prot_t prot, boolean_t wired) { sr_t sr; int idx, i, s; pte_t pte; struct pte_ovfl *po; int managed; struct mem_region *mp; vm_offset_t pa = pg->phys_addr; /* * Have to remove any existing mapping first. */ pmap_remove(pm, va, va + PAGE_SIZE); /* * Compute the HTAB index. */ idx = pteidx(sr = ptesr(pm->pm_sr, va), va); /* * Construct the PTE. * * Note: Don't set the valid bit for correct operation of tlb update. */ pte.pte_hi = ((sr & SR_VSID) << PTE_VSID_SHFT) | ((va & ADDR_PIDX) >> ADDR_API_SHFT); pte.pte_lo = (pa & PTE_RPGN) | PTE_M | PTE_I | PTE_G; managed = 0; #if 0 /* XXX */ if (vm_physseg_find(atop(pa), NULL) != -1) managed = 1; #endif for (mp = mem; mp->size; mp++) { if (pa >= mp->start && pa < mp->start + mp->size) { pte.pte_lo &= ~(PTE_I | PTE_G); break; } } if (prot & VM_PROT_WRITE) pte.pte_lo |= PTE_RW; else pte.pte_lo |= PTE_RO; /* * Now record mapping for later back-translation. */ if (pmap_initialized && managed) if (pmap_enter_pv(idx, va, pa)) { /* * Flush the real memory from the cache. */ __syncicache((void *)pa, PAGE_SIZE); } s = splimp(); pm->pm_stats.resident_count++; /* * Try to insert directly into HTAB. */ if (pte_insert(idx, &pte)) { splx(s); return; } /* * Have to allocate overflow entry. * * Note, that we must use real addresses for these. */ po = poalloc(); po->po_pte = pte; LIST_INSERT_HEAD(potable + idx, po, po_list); splx(s); } void pmap_kenter(vm_offset_t va, vm_offset_t pa) { pmap_enter(kernel_pmap, va, pa, VM_PROT_READ|VM_PROT_WRITE, TRUE); } void pmap_kenter_pa(va, pa, prot) vm_offset_t va; vm_offset_t pa; vm_prot_t prot; { pmap_enter(kernel_pmap, va, pa, prot, TRUE); } void pmap_kenter_pgs(va, pgs, npgs) vm_offset_t va; struct vm_page **pgs; int npgs; { int i; for (i = 0; i < npgs; i++, va += PAGE_SIZE) { pmap_enter(kernel_pmap, va, VM_PAGE_TO_PHYS(pgs[i]), VM_PROT_READ|VM_PROT_WRITE, TRUE); } } void pmap_kremove(vm_offset_t va) { pmap_remove(kernel_pmap, va, va + PAGE_SIZE); } /* * Remove the given range of mapping entries. */ void pmap_remove(pm, va, endva) struct pmap *pm; vm_offset_t va, endva; { int idx, i, s; sr_t sr; pte_t *ptp; struct pte_ovfl *po, *npo; s = splimp(); while (va < endva) { idx = pteidx(sr = ptesr(pm->pm_sr, va), va); for (ptp = ptable + idx * 8, i = 8; --i >= 0; ptp++) if (ptematch(ptp, sr, va, PTE_VALID)) { pmap_remove_pv(idx, va, ptp->pte_lo, ptp); ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(va); tlbsync(); pm->pm_stats.resident_count--; } for (ptp = ptable + (idx ^ ptab_mask) * 8, i = 8; --i >= 0; ptp++) if (ptematch(ptp, sr, va, PTE_VALID | PTE_HID)) { pmap_remove_pv(idx, va, ptp->pte_lo, ptp); ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(va); tlbsync(); pm->pm_stats.resident_count--; } for (po = potable[idx].lh_first; po; po = npo) { npo = po->po_list.le_next; if (ptematch(&po->po_pte, sr, va, 0)) { pmap_remove_pv(idx, va, po->po_pte.pte_lo, &po->po_pte); LIST_REMOVE(po, po_list); pofree(po, 1); pm->pm_stats.resident_count--; } } va += PAGE_SIZE; } splx(s); } static pte_t * pte_find(pm, va) struct pmap *pm; vm_offset_t va; { int idx, i; sr_t sr; pte_t *ptp; struct pte_ovfl *po; idx = pteidx(sr = ptesr(pm->pm_sr, va), va); for (ptp = ptable + idx * 8, i = 8; --i >= 0; ptp++) if (ptematch(ptp, sr, va, PTE_VALID)) return ptp; for (ptp = ptable + (idx ^ ptab_mask) * 8, i = 8; --i >= 0; ptp++) if (ptematch(ptp, sr, va, PTE_VALID | PTE_HID)) return ptp; for (po = potable[idx].lh_first; po; po = po->po_list.le_next) if (ptematch(&po->po_pte, sr, va, 0)) return &po->po_pte; return 0; } /* * Get the physical page address for the given pmap/virtual address. */ vm_offset_t pmap_extract(pmap_t pm, vm_offset_t va) { pte_t *ptp; int s = splimp(); if (!(ptp = pte_find(pm, va))) { splx(s); return (0); } splx(s); return ((ptp->pte_lo & PTE_RPGN) | (va & ADDR_POFF)); } /* * Lower the protection on the specified range of this pmap. * * There are only two cases: either the protection is going to 0, * or it is going to read-only. */ void pmap_protect(pm, sva, eva, prot) struct pmap *pm; vm_offset_t sva, eva; vm_prot_t prot; { pte_t *ptp; int valid, s; if (prot & VM_PROT_READ) { s = splimp(); while (sva < eva) { if (ptp = pte_find(pm, sva)) { valid = ptp->pte_hi & PTE_VALID; ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(sva); tlbsync(); ptp->pte_lo &= ~PTE_PP; ptp->pte_lo |= PTE_RO; __asm __volatile ("sync"); ptp->pte_hi |= valid; } sva += PAGE_SIZE; } splx(s); return; } pmap_remove(pm, sva, eva); } boolean_t ptemodify(pg, mask, val) struct vm_page *pg; u_int mask; u_int val; { vm_offset_t pa = VM_PAGE_TO_PHYS(pg); struct pv_entry *pv; pte_t *ptp; struct pte_ovfl *po; int i, s; char *attr; int rv; /* * First modify bits in cache. */ attr = pa_to_attr(pa); if (attr == NULL) return FALSE; *attr &= ~mask >> ATTRSHFT; *attr |= val >> ATTRSHFT; pv = pa_to_pv(pa); if (pv->pv_idx < 0) return FALSE; rv = FALSE; s = splimp(); for (; pv; pv = pv->pv_next) { for (ptp = ptable + pv->pv_idx * 8, i = 8; --i >= 0; ptp++) if ((ptp->pte_hi & PTE_VALID) && (ptp->pte_lo & PTE_RPGN) == pa) { ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(pv->pv_va); tlbsync(); rv |= ptp->pte_lo & mask; ptp->pte_lo &= ~mask; ptp->pte_lo |= val; __asm __volatile ("sync"); ptp->pte_hi |= PTE_VALID; } for (ptp = ptable + (pv->pv_idx ^ ptab_mask) * 8, i = 8; --i >= 0; ptp++) if ((ptp->pte_hi & PTE_VALID) && (ptp->pte_lo & PTE_RPGN) == pa) { ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(pv->pv_va); tlbsync(); rv |= ptp->pte_lo & mask; ptp->pte_lo &= ~mask; ptp->pte_lo |= val; __asm __volatile ("sync"); ptp->pte_hi |= PTE_VALID; } for (po = potable[pv->pv_idx].lh_first; po; po = po->po_list.le_next) if ((po->po_pte.pte_lo & PTE_RPGN) == pa) { rv |= ptp->pte_lo & mask; po->po_pte.pte_lo &= ~mask; po->po_pte.pte_lo |= val; } } splx(s); return rv != 0; } int ptebits(pg, bit) struct vm_page *pg; int bit; { struct pv_entry *pv; pte_t *ptp; struct pte_ovfl *po; int i, s, bits = 0; char *attr; vm_offset_t pa = VM_PAGE_TO_PHYS(pg); /* * First try the cache. */ attr = pa_to_attr(pa); if (attr == NULL) return 0; bits |= (*attr << ATTRSHFT) & bit; if (bits == bit) return bits; pv = pa_to_pv(pa); if (pv->pv_idx < 0) return 0; s = splimp(); for (; pv; pv = pv->pv_next) { for (ptp = ptable + pv->pv_idx * 8, i = 8; --i >= 0; ptp++) if ((ptp->pte_hi & PTE_VALID) && (ptp->pte_lo & PTE_RPGN) == pa) { bits |= ptp->pte_lo & bit; if (bits == bit) { splx(s); return bits; } } for (ptp = ptable + (pv->pv_idx ^ ptab_mask) * 8, i = 8; --i >= 0; ptp++) if ((ptp->pte_hi & PTE_VALID) && (ptp->pte_lo & PTE_RPGN) == pa) { bits |= ptp->pte_lo & bit; if (bits == bit) { splx(s); return bits; } } for (po = potable[pv->pv_idx].lh_first; po; po = po->po_list.le_next) if ((po->po_pte.pte_lo & PTE_RPGN) == pa) { bits |= po->po_pte.pte_lo & bit; if (bits == bit) { splx(s); return bits; } } } splx(s); return bits; } /* * Lower the protection on the specified physical page. * * There are only two cases: either the protection is going to 0, * or it is going to read-only. */ void pmap_page_protect(vm_page_t m, vm_prot_t prot) { vm_offset_t pa = VM_PAGE_TO_PHYS(m); vm_offset_t va; pte_t *ptp; struct pte_ovfl *po, *npo; int i, s, idx; struct pv_entry *pv; pa &= ~ADDR_POFF; if (prot & VM_PROT_READ) { ptemodify(m, PTE_PP, PTE_RO); return; } pv = pa_to_pv(pa); if (pv == NULL) return; s = splimp(); while (pv->pv_idx >= 0) { idx = pv->pv_idx; va = pv->pv_va; for (ptp = ptable + idx * 8, i = 8; --i >= 0; ptp++) if ((ptp->pte_hi & PTE_VALID) && (ptp->pte_lo & PTE_RPGN) == pa) { pmap_remove_pv(idx, va, pa, ptp); ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(va); tlbsync(); goto next; } for (ptp = ptable + (idx ^ ptab_mask) * 8, i = 8; --i >= 0; ptp++) if ((ptp->pte_hi & PTE_VALID) && (ptp->pte_lo & PTE_RPGN) == pa) { pmap_remove_pv(idx, va, pa, ptp); ptp->pte_hi &= ~PTE_VALID; __asm __volatile ("sync"); tlbie(va); tlbsync(); goto next; } for (po = potable[idx].lh_first; po; po = npo) { npo = po->po_list.le_next; if ((po->po_pte.pte_lo & PTE_RPGN) == pa) { pmap_remove_pv(idx, va, pa, &po->po_pte); LIST_REMOVE(po, po_list); pofree(po, 1); goto next; } } next: } splx(s); } /* * Activate the address space for the specified process. If the process * is the current process, load the new MMU context. */ void pmap_activate(p) struct proc *p; { struct pcb *pcb = &p->p_addr->u_pcb; pmap_t pmap = p->p_vmspace->vm_map.pmap; pmap_t rpm; int psl, i, ksr, seg; /* * XXX Normally performed in cpu_fork(). */ if (pcb->pcb_pm != pmap) { pcb->pcb_pm = pmap; (vm_offset_t) pcb->pcb_pmreal = pmap_extract(kernel_pmap, (vm_offset_t)pcb->pcb_pm); } if (p == curproc) { /* Disable interrupts while switching. */ __asm __volatile("mfmsr %0" : "=r"(psl) :); psl &= ~PSL_EE; __asm __volatile("mtmsr %0" :: "r"(psl)); #if 0 /* XXX */ /* Store pointer to new current pmap. */ curpm = pcb->pcb_pmreal; #endif /* Save kernel SR. */ __asm __volatile("mfsr %0,14" : "=r"(ksr) :); /* * Set new segment registers. We use the pmap's real * address to avoid accessibility problems. */ rpm = pcb->pcb_pmreal; for (i = 0; i < 16; i++) { seg = rpm->pm_sr[i]; __asm __volatile("mtsrin %0,%1" :: "r"(seg), "r"(i << ADDR_SR_SHFT)); } /* Restore kernel SR. */ __asm __volatile("mtsr 14,%0" :: "r"(ksr)); /* Interrupts are OK again. */ psl |= PSL_EE; __asm __volatile("mtmsr %0" :: "r"(psl)); } } /* * Deactivate the specified process's address space. */ void pmap_deactivate(struct proc *p) { } /* * Synchronize caches corresponding to [addr, addr+len) in p. */ void pmap_procwr(struct proc *p, vm_offset_t va, size_t len) { vm_offset_t pa; pa = pmap_extract(p->p_vmspace->vm_map.pmap, va); __syncicache((void *)pa, len); } /* * Add a list of wired pages to the kva * this routine is only used for temporary * kernel mappings that do not need to have * page modification or references recorded. * Note that old mappings are simply written * over. The page *must* be wired. */ void pmap_qenter(va, m, count) vm_offset_t va; vm_page_t *m; int count; { int i; for (i = 0; i < count; i++) { vm_offset_t tva = va + i * PAGE_SIZE; pmap_kenter(tva, VM_PAGE_TO_PHYS(m[i])); } } /* * this routine jerks page mappings from the * kernel -- it is meant only for temporary mappings. */ void pmap_qremove(va, count) vm_offset_t va; int count; { vm_offset_t end_va; end_va = va + count*PAGE_SIZE; while (va < end_va) { unsigned *pte; pte = (unsigned *)vtopte(va); *pte = 0; tlbie(va); va += PAGE_SIZE; } } /* * pmap_ts_referenced: * * Return the count of reference bits for a page, clearing all of them. */ int pmap_ts_referenced(vm_page_t m) { /* XXX: coming soon... */ return (0); } /* * this routine returns true if a physical page resides * in the given pmap. */ boolean_t pmap_page_exists(pmap, m) pmap_t pmap; vm_page_t m; { register pv_entry_t pv; int s; if (!pmap_initialized || (m->flags & PG_FICTITIOUS)) return FALSE; s = splvm(); /* * Not found, check current mappings returning immediately if found. */ for (pv = TAILQ_FIRST(&m->md.pv_list); pv; pv = TAILQ_NEXT(pv, pv_list)) { if (pv->pv_pmap == pmap) { splx(s); return TRUE; } } splx(s); return (FALSE); } /* * Used to map a range of physical addresses into kernel * virtual address space. * * For now, VM is already on, we only need to map the * specified memory. */ vm_offset_t pmap_map(vm_offset_t *virt, vm_offset_t start, vm_offset_t end, int prot) { while (start < end) { pmap_kenter(virt, start); virt += PAGE_SIZE; start += PAGE_SIZE; } return (virt); } vm_offset_t pmap_addr_hint(vm_object_t obj, vm_offset_t addr, vm_size_t size) { return (addr); } int pmap_mincore(pmap_t pmap, vm_offset_t addr) { /* XXX: coming soon... */ return (0); } void pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, vm_pindex_t pindex, vm_size_t size, int limit) { /* XXX: coming soon... */ return; } void pmap_growkernel(vm_offset_t addr) { /* XXX: coming soon... */ return; } /* * Initialize the address space (zone) for the pv_entries. Set a * high water mark so that the system can recover from excessive * numbers of pv entries. */ void pmap_init2() { pv_entry_max = PMAP_SHPGPERPROC * maxproc + vm_page_array_size; pv_entry_high_water = 9 * (pv_entry_max / 10); zinitna(pvzone, &pvzone_obj, NULL, 0, pv_entry_max, ZONE_INTERRUPT, 1); } void pmap_swapin_proc(struct proc *p) { /* XXX: coming soon... */ return; } void pmap_swapout_proc(struct proc *p) { /* XXX: coming soon... */ return; } void pmap_new_proc(struct proc *p) { /* XXX: coming soon... */ return; } void pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, boolean_t pageable) { return; } void pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired) { /* XXX: coming soon... */ return; } void pmap_prefault(pmap_t pmap, vm_offset_t addra, vm_map_entry_t entry) { /* XXX: coming soon... */ return; } void pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) { /* XXX: coming soon... */ return; } void pmap_pinit0(pmap_t pmap) { /* XXX: coming soon... */ return; } void pmap_dispose_proc(struct proc *p) { /* XXX: coming soon... */ return; } vm_offset_t pmap_steal_memory(vm_size_t size) { vm_size_t bank_size; vm_offset_t pa; size = round_page(size); bank_size = phys_avail[1] - phys_avail[0]; while (size > bank_size) { int i; for (i = 0; phys_avail[i+2]; i+= 2) { phys_avail[i] = phys_avail[i+2]; phys_avail[i+1] = phys_avail[i+3]; } phys_avail[i] = 0; phys_avail[i+1] = 0; if (!phys_avail[0]) panic("pmap_steal_memory: out of memory"); bank_size = phys_avail[1] - phys_avail[0]; } pa = phys_avail[0]; phys_avail[0] += size; bzero((caddr_t) pa, size); return pa; }