/* $Id: memobj-r0drv-freebsd.c $ */ /** @file * IPRT - Ring-0 Memory Objects, FreeBSD. */ /* * Copyright (c) 2007 knut st. osmundsen * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-freebsd-kernel.h" #include #include #include #include #include #include #include #include "internal/memobj.h" /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * The FreeBSD version of the memory object structure. */ typedef struct RTR0MEMOBJFREEBSD { /** The core structure. */ RTR0MEMOBJINTERNAL Core; /** Type dependent data */ union { /** Non physical memory allocations */ struct { /** The VM object associated with the allocation. */ vm_object_t pObject; } NonPhys; /** Physical memory allocations */ struct { /** Number of pages */ uint32_t cPages; /** Array of pages - variable */ vm_page_t apPages[1]; } Phys; } u; } RTR0MEMOBJFREEBSD, *PRTR0MEMOBJFREEBSD; MALLOC_DEFINE(M_IPRTMOBJ, "iprtmobj", "IPRT - R0MemObj"); /** * Gets the virtual memory map the specified object is mapped into. * * @returns VM map handle on success, NULL if no map. * @param pMem The memory object. */ static vm_map_t rtR0MemObjFreeBSDGetMap(PRTR0MEMOBJINTERNAL pMem) { switch (pMem->enmType) { case RTR0MEMOBJTYPE_PAGE: case RTR0MEMOBJTYPE_LOW: case RTR0MEMOBJTYPE_CONT: return kernel_map; case RTR0MEMOBJTYPE_PHYS: case RTR0MEMOBJTYPE_PHYS_NC: return NULL; /* pretend these have no mapping atm. */ case RTR0MEMOBJTYPE_LOCK: return pMem->u.Lock.R0Process == NIL_RTR0PROCESS ? kernel_map : &((struct proc *)pMem->u.Lock.R0Process)->p_vmspace->vm_map; case RTR0MEMOBJTYPE_RES_VIRT: return pMem->u.ResVirt.R0Process == NIL_RTR0PROCESS ? kernel_map : &((struct proc *)pMem->u.ResVirt.R0Process)->p_vmspace->vm_map; case RTR0MEMOBJTYPE_MAPPING: return pMem->u.Mapping.R0Process == NIL_RTR0PROCESS ? kernel_map : &((struct proc *)pMem->u.Mapping.R0Process)->p_vmspace->vm_map; default: return NULL; } } DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem) { PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)pMem; int rc; switch (pMemFreeBSD->Core.enmType) { case RTR0MEMOBJTYPE_CONT: contigfree(pMemFreeBSD->Core.pv, pMemFreeBSD->Core.cb, M_IPRTMOBJ); break; case RTR0MEMOBJTYPE_PAGE: { #ifdef USE_KMEM_ALLOC_ATTR kmem_free(kernel_map, (vm_offset_t)pMemFreeBSD->Core.pv, pMemFreeBSD->Core.cb); #else rc = vm_map_remove(kernel_map, (vm_offset_t)pMemFreeBSD->Core.pv, (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb); AssertMsg(rc == KERN_SUCCESS, ("%#x", rc)); vm_page_lock_queues(); for (uint32_t iPage = 0; iPage < pMemFreeBSD->u.Phys.cPages; iPage++) { vm_page_t pPage = pMemFreeBSD->u.Phys.apPages[iPage]; vm_page_unwire(pPage, 0); vm_page_free(pPage); } vm_page_unlock_queues(); #endif break; } case RTR0MEMOBJTYPE_LOCK: { vm_map_t pMap = kernel_map; if (pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS) pMap = &((struct proc *)pMemFreeBSD->Core.u.Lock.R0Process)->p_vmspace->vm_map; rc = vm_map_unwire(pMap, (vm_offset_t)pMemFreeBSD->Core.pv, (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb, VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); AssertMsg(rc == KERN_SUCCESS, ("%#x", rc)); break; } case RTR0MEMOBJTYPE_RES_VIRT: { vm_map_t pMap = kernel_map; if (pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS) pMap = &((struct proc *)pMemFreeBSD->Core.u.Lock.R0Process)->p_vmspace->vm_map; rc = vm_map_remove(pMap, (vm_offset_t)pMemFreeBSD->Core.pv, (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb); AssertMsg(rc == KERN_SUCCESS, ("%#x", rc)); break; } case RTR0MEMOBJTYPE_MAPPING: { vm_map_t pMap = kernel_map; if (pMemFreeBSD->Core.u.Mapping.R0Process != NIL_RTR0PROCESS) pMap = &((struct proc *)pMemFreeBSD->Core.u.Mapping.R0Process)->p_vmspace->vm_map; rc = vm_map_remove(pMap, (vm_offset_t)pMemFreeBSD->Core.pv, (vm_offset_t)pMemFreeBSD->Core.pv + pMemFreeBSD->Core.cb); AssertMsg(rc == KERN_SUCCESS, ("%#x", rc)); break; } case RTR0MEMOBJTYPE_PHYS: case RTR0MEMOBJTYPE_PHYS_NC: { vm_page_lock_queues(); for (uint32_t iPage = 0; iPage < pMemFreeBSD->u.Phys.cPages; iPage++) { vm_page_t pPage = pMemFreeBSD->u.Phys.apPages[iPage]; vm_page_unwire(pPage, 0); vm_page_free(pPage); } vm_page_unlock_queues(); break; } #ifdef USE_KMEM_ALLOC_ATTR case RTR0MEMOBJTYPE_LOW: { kmem_free(kernel_map, (vm_offset_t)pMemFreeBSD->Core.pv, pMemFreeBSD->Core.cb); break; } #else case RTR0MEMOBJTYPE_LOW: /* unused */ #endif default: AssertMsgFailed(("enmType=%d\n", pMemFreeBSD->Core.enmType)); return VERR_INTERNAL_ERROR; } return VINF_SUCCESS; } DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { #ifdef USE_KMEM_ALLOC_ATTR /* * Use kmem_alloc, fExectuable is not needed because the * memory will be executable by default */ NOREF(fExecutable); /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_PAGE, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; pMemFreeBSD->Core.pv = (void *)kmem_alloc(kernel_map, /* Kernel */ cb); /* Amount */ if (!pMemFreeBSD->Core.pv) return VERR_NO_MEMORY; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; #else int rc; size_t cPages = cb >> PAGE_SHIFT; /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJFREEBSD, u.Phys.apPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; pMemFreeBSD->u.Phys.cPages = cPages; vm_offset_t MapAddress = vm_map_min(kernel_map); rc = vm_map_find(kernel_map, /* map */ NULL, /* object */ 0, /* offset */ &MapAddress, /* addr (IN/OUT) */ cb, /* length */ TRUE, /* find_space */ fExecutable /* protection */ ? VM_PROT_ALL : VM_PROT_RW, VM_PROT_ALL, /* max(_prot) */ 0); /* cow (copy-on-write) */ if (rc == KERN_SUCCESS) { rc = VINF_SUCCESS; for (size_t iPage = 0; iPage < cPages; iPage++) { vm_page_t pPage; pPage = vm_page_alloc(NULL, iPage, VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); if (!pPage) { /* * Out of pages * Remove already allocated pages */ while (iPage-- > 0) { pPage = pMemFreeBSD->u.Phys.apPages[iPage]; vm_page_lock_queues(); vm_page_unwire(pPage, 0); vm_page_free(pPage); vm_page_unlock_queues(); } rc = VERR_NO_MEMORY; break; } pPage->valid = VM_PAGE_BITS_ALL; pMemFreeBSD->u.Phys.apPages[iPage] = pPage; } if (rc == VINF_SUCCESS) { vm_offset_t AddressDst = MapAddress; for (size_t iPage = 0; iPage < cPages; iPage++) { vm_page_t pPage = pMemFreeBSD->u.Phys.apPages[iPage]; MY_PMAP_ENTER(kernel_map->pmap, AddressDst, pPage, fExecutable ? VM_PROT_ALL : VM_PROT_RW, TRUE); AddressDst += PAGE_SIZE; } /* Store start address */ pMemFreeBSD->Core.pv = (void *)MapAddress; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } } rc = VERR_NO_MEMORY; /** @todo fix translation (borrow from darwin) */ rtR0MemObjDelete(&pMemFreeBSD->Core); return rc; #endif } DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { #ifdef USE_KMEM_ALLOC_ATTR /* * Use kmem_alloc_attr, fExectuable is not needed because the * memory will be executable by default */ NOREF(fExecutable); /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_LOW, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; pMemFreeBSD->Core.pv = (void *)kmem_alloc_attr(kernel_map, /* Kernel */ cb, /* Amount */ M_ZERO, /* Zero memory */ 0, /* Low physical address */ _4G - PAGE_SIZE, /* Highest physical address */ VM_MEMATTR_DEFAULT); /* Default memory attributes */ if (!pMemFreeBSD->Core.pv) return VERR_NO_MEMORY; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; #else /* * Try a Alloc first and see if we get luck, if not try contigmalloc. * Might wish to try find our own pages or something later if this * turns into a problemspot on AMD64 boxes. */ int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable); if (RT_SUCCESS(rc)) { size_t iPage = cb >> PAGE_SHIFT; while (iPage-- > 0) if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) > (_4G - PAGE_SIZE)) { RTR0MemObjFree(*ppMem, false); *ppMem = NULL; rc = VERR_NO_MEMORY; break; } } if (RT_FAILURE(rc)) rc = rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable); return rc; #endif } DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable) { /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_CONT, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; /* do the allocation. */ pMemFreeBSD->Core.pv = contigmalloc(cb, /* size */ M_IPRTMOBJ, /* type */ M_NOWAIT | M_ZERO, /* flags */ 0, /* lowest physical address*/ _4G-1, /* highest physical address */ PAGE_SIZE, /* alignment. */ 0); /* boundary */ if (pMemFreeBSD->Core.pv) { pMemFreeBSD->Core.u.Cont.Phys = vtophys(pMemFreeBSD->Core.pv); *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } NOREF(fExecutable); rtR0MemObjDelete(&pMemFreeBSD->Core); return VERR_NO_MEMORY; } #if 0 static void rtR0MemObjFreeBSDPhysPageInit(vm_page_t pPage, vm_pindex_t iPage) { pPage->wire_count = 1; pPage->pindex = iPage; pPage->act_count = 0; pPage->oflags = 0; pPage->flags = PG_UNMANAGED; atomic_add_int(&cnt.v_wire_count, 1); } #endif static int rtR0MemObjFreeBSDAllocPhysPages(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment, bool fContiguous) { int rc = VINF_SUCCESS; uint32_t cPages = cb >> PAGE_SHIFT; vm_paddr_t VmPhysAddrHigh; /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJFREEBSD, u.Phys.apPages[cPages]), enmType, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; pMemFreeBSD->u.Phys.cPages = cPages; if (PhysHighest != NIL_RTHCPHYS) VmPhysAddrHigh = PhysHighest; else VmPhysAddrHigh = ~(vm_paddr_t)0; if (fContiguous) { vm_page_t pPage = vm_page_alloc_contig(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ, cPages, 0, VmPhysAddrHigh, uAlignment, 0, VM_MEMATTR_DEFAULT); if (pPage) for (uint32_t iPage = 0; iPage < cPages; iPage++) { #if 0 rtR0MemObjFreeBSDPhysPageInit(&pPage[iPage], iPage); #endif pMemFreeBSD->u.Phys.apPages[iPage] = &pPage[iPage]; } else rc = VERR_NO_MEMORY; } else { /* Allocate page by page */ for (uint32_t iPage = 0; iPage < cPages; iPage++) { vm_page_t pPage = vm_page_alloc_contig(NULL, iPage, VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ, 1, 0, VmPhysAddrHigh, uAlignment, 0, VM_MEMATTR_DEFAULT); if (!pPage) { /* Free all allocated pages */ while (iPage-- > 0) { pPage = pMemFreeBSD->u.Phys.apPages[iPage]; vm_page_lock_queues(); vm_page_unwire(pPage, 0); vm_page_free(pPage); vm_page_unlock_queues(); } rc = VERR_NO_MEMORY; break; } #if 0 rtR0MemObjFreeBSDPhysPageInit(pPage, iPage); #endif pMemFreeBSD->u.Phys.apPages[iPage] = pPage; } } if (RT_FAILURE(rc)) rtR0MemObjDelete(&pMemFreeBSD->Core); else { if (enmType == RTR0MEMOBJTYPE_PHYS) { pMemFreeBSD->Core.u.Phys.PhysBase = VM_PAGE_TO_PHYS(pMemFreeBSD->u.Phys.apPages[0]); pMemFreeBSD->Core.u.Phys.fAllocated = true; } *ppMem = &pMemFreeBSD->Core; } return rc; } DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment) { #if 1 return rtR0MemObjFreeBSDAllocPhysPages(ppMem, RTR0MEMOBJTYPE_PHYS, cb, PhysHighest, uAlignment, true); #else /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_CONT, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; /* do the allocation. */ pMemFreeBSD->Core.pv = contigmalloc(cb, /* size */ M_IPRTMOBJ, /* type */ M_NOWAIT | M_ZERO, /* flags */ 0, /* lowest physical address*/ _4G-1, /* highest physical address */ uAlignment, /* alignment. */ 0); /* boundary */ if (pMemFreeBSD->Core.pv) { pMemFreeBSD->Core.u.Cont.Phys = vtophys(pMemFreeBSD->Core.pv); *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } rtR0MemObjDelete(&pMemFreeBSD->Core); return VERR_NO_MEMORY; #endif } DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest) { #if 1 return rtR0MemObjFreeBSDAllocPhysPages(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PhysHighest, PAGE_SIZE, false); #else return VERR_NOT_SUPPORTED; #endif } DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy) { AssertReturn(uCachePolicy == RTMEM_CACHE_POLICY_DONT_CARE, VERR_NOT_SUPPORTED); /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_PHYS, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; /* there is no allocation here, it needs to be mapped somewhere first. */ pMemFreeBSD->Core.u.Phys.fAllocated = false; pMemFreeBSD->Core.u.Phys.PhysBase = Phys; pMemFreeBSD->Core.u.Phys.uCachePolicy = uCachePolicy; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } /** * Worker locking the memory in either kernel or user maps. */ static int rtR0MemObjNativeLockInMap(PPRTR0MEMOBJINTERNAL ppMem, vm_map_t pVmMap, vm_offset_t AddrStart, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process, int fFlags) { int rc; NOREF(fAccess); /* create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_LOCK, (void *)AddrStart, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; /* * We could've used vslock here, but we don't wish to be subject to * resource usage restrictions, so we'll call vm_map_wire directly. */ rc = vm_map_wire(pVmMap, /* the map */ AddrStart, /* start */ AddrStart + cb, /* end */ fFlags); /* flags */ if (rc == KERN_SUCCESS) { pMemFreeBSD->Core.u.Lock.R0Process = R0Process; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } rtR0MemObjDelete(&pMemFreeBSD->Core); return VERR_NO_MEMORY;/** @todo fix mach -> vbox error conversion for freebsd. */ } DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process) { return rtR0MemObjNativeLockInMap(ppMem, &((struct proc *)R0Process)->p_vmspace->vm_map, (vm_offset_t)R3Ptr, cb, fAccess, R0Process, VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); } DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess) { return rtR0MemObjNativeLockInMap(ppMem, kernel_map, (vm_offset_t)pv, cb, fAccess, NIL_RTR0PROCESS, VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES); } /** * Worker for the two virtual address space reservers. * * We're leaning on the examples provided by mmap and vm_mmap in vm_mmap.c here. */ static int rtR0MemObjNativeReserveInMap(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process, vm_map_t pMap) { int rc; /* * The pvFixed address range must be within the VM space when specified. */ if (pvFixed != (void *)-1 && ( (vm_offset_t)pvFixed < vm_map_min(pMap) || (vm_offset_t)pvFixed + cb > vm_map_max(pMap))) return VERR_INVALID_PARAMETER; /* * Check that the specified alignment is supported. */ if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; /* * Create the object. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(*pMemFreeBSD), RTR0MEMOBJTYPE_RES_VIRT, NULL, cb); if (!pMemFreeBSD) return VERR_NO_MEMORY; /* * Allocate an empty VM object and map it into the requested map. */ pMemFreeBSD->u.NonPhys.pObject = vm_object_allocate(OBJT_DEFAULT, cb >> PAGE_SHIFT); if (pMemFreeBSD->u.NonPhys.pObject) { vm_offset_t MapAddress = pvFixed != (void *)-1 ? (vm_offset_t)pvFixed : vm_map_min(pMap); if (pvFixed != (void *)-1) vm_map_remove(pMap, MapAddress, MapAddress + cb); rc = vm_map_find(pMap, /* map */ pMemFreeBSD->u.NonPhys.pObject, /* object */ 0, /* offset */ &MapAddress, /* addr (IN/OUT) */ cb, /* length */ pvFixed == (void *)-1, /* find_space */ VM_PROT_NONE, /* protection */ VM_PROT_ALL, /* max(_prot) ?? */ 0); /* cow (copy-on-write) */ if (rc == KERN_SUCCESS) { if (R0Process != NIL_RTR0PROCESS) { rc = vm_map_inherit(pMap, MapAddress, MapAddress + cb, VM_INHERIT_SHARE); AssertMsg(rc == KERN_SUCCESS, ("%#x\n", rc)); } pMemFreeBSD->Core.pv = (void *)MapAddress; pMemFreeBSD->Core.u.ResVirt.R0Process = R0Process; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } vm_object_deallocate(pMemFreeBSD->u.NonPhys.pObject); rc = VERR_NO_MEMORY; /** @todo fix translation (borrow from darwin) */ } else rc = VERR_NO_MEMORY; rtR0MemObjDelete(&pMemFreeBSD->Core); return rc; } DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment) { return rtR0MemObjNativeReserveInMap(ppMem, pvFixed, cb, uAlignment, NIL_RTR0PROCESS, kernel_map); } DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process) { return rtR0MemObjNativeReserveInMap(ppMem, (void *)R3PtrFixed, cb, uAlignment, R0Process, &((struct proc *)R0Process)->p_vmspace->vm_map); } DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment, unsigned fProt, size_t offSub, size_t cbSub) { AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED); AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED); /* * Check that the specified alignment is supported. */ if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; /* Phys: see pmap_mapdev in i386/i386/pmap.c (http://fxr.watson.org/fxr/source/i386/i386/pmap.c?v=RELENG62#L2860) */ /** @todo finish the implementation. */ return VERR_NOT_SUPPORTED; } DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process) { /* * Check for unsupported stuff. */ AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED); AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED); if (uAlignment > PAGE_SIZE) return VERR_NOT_SUPPORTED; int rc; PRTR0MEMOBJFREEBSD pMemToMapFreeBSD = (PRTR0MEMOBJFREEBSD)pMemToMap; struct proc *pProc = (struct proc *)R0Process; struct vm_map *pProcMap = &pProc->p_vmspace->vm_map; /* calc protection */ vm_prot_t ProtectionFlags = 0; if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE) ProtectionFlags = VM_PROT_NONE; if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ) ProtectionFlags |= VM_PROT_READ; if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE) ProtectionFlags |= VM_PROT_WRITE; if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC) ProtectionFlags |= VM_PROT_EXECUTE; /* calc mapping address */ PROC_LOCK(pProc); vm_offset_t AddrR3 = round_page((vm_offset_t)pProc->p_vmspace->vm_daddr + lim_max(pProc, RLIMIT_DATA)); PROC_UNLOCK(pProc); // XXX pMemToMap should probably always have a companion vm_object_t vm_pindex_t cPages = atop(pMemToMap->cb); vm_object_t pObject; vm_ooffset_t ObjOffset; if ( pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS || pMemToMap->enmType == RTR0MEMOBJTYPE_PHYS_NC) { /* We do not bump object reference, so it should be autodestroyed upon unmapping */ ObjOffset = 0; pObject = vm_object_allocate(OBJT_DEFAULT, cPages); if (!pObject) return VERR_NO_MEMORY; /* Mapping physical allocations */ Assert(cPages == pMemToMapFreeBSD->u.Phys.cPages); /* Insert the memory page by page into the object. */ for (vm_pindex_t iPage = 0; iPage < cPages; iPage++) { vm_page_t pPage = pMemToMapFreeBSD->u.Phys.apPages[iPage]; pPage->valid = VM_PAGE_BITS_ALL; // ??? vm_page_insert(pPage, pObject, iPage); //vm_page_dirty(pPage); } } else { /* Mapping cont or low memory types where pages belong to kernel_object */ ObjOffset = (vm_offset_t)pMemToMap->pv - VM_MIN_KERNEL_ADDRESS; pObject = kernel_object; vm_object_reference(pObject); for (vm_pindex_t iPage = 0; iPage < cPages; iPage++) { vm_page_t pPage = vm_page_lookup(kernel_object, atop(ObjOffset) + iPage); pPage->valid = VM_PAGE_BITS_ALL; // ??? //vm_page_dirty(pPage); } } /* Insert the pObject in the map. */ rc = vm_map_find(pProcMap, /* Map to insert the object in */ pObject, /* Object to map */ ObjOffset, /* Start offset in the object */ &AddrR3, /* Start address IN/OUT */ pMemToMap->cb, /* Size of the mapping */ VMFS_ANY_SPACE, /* Whether a suitable address should be searched for first */ ProtectionFlags, /* protection flags */ VM_PROT_ALL, /* Maximum protection flags */ 0); /* */ if (rc == KERN_SUCCESS) { vm_map_wire(pProcMap, AddrR3, AddrR3 + pMemToMap->cb, VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES|VM_MAP_WIRE_WRITE); /* * Create a mapping object for it. */ PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)rtR0MemObjNew(sizeof(RTR0MEMOBJFREEBSD), RTR0MEMOBJTYPE_MAPPING, (void *)AddrR3, pMemToMap->cb); if (pMemFreeBSD) { Assert((vm_offset_t)pMemFreeBSD->Core.pv == AddrR3); pMemFreeBSD->Core.u.Mapping.R0Process = R0Process; *ppMem = &pMemFreeBSD->Core; return VINF_SUCCESS; } rc = vm_map_remove(pProcMap, ((vm_offset_t)AddrR3), ((vm_offset_t)AddrR3) + pMemToMap->cb); AssertMsg(rc == KERN_SUCCESS, ("Deleting mapping failed\n")); } vm_object_deallocate(pObject); return VERR_NO_MEMORY; } DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt) { vm_prot_t ProtectionFlags = 0; vm_offset_t AddrStart = (uintptr_t)pMem->pv + offSub; vm_offset_t AddrEnd = AddrStart + cbSub; vm_map_t pVmMap = rtR0MemObjFreeBSDGetMap(pMem); if (!pVmMap) return VERR_NOT_SUPPORTED; if ((fProt & RTMEM_PROT_NONE) == RTMEM_PROT_NONE) ProtectionFlags = VM_PROT_NONE; if ((fProt & RTMEM_PROT_READ) == RTMEM_PROT_READ) ProtectionFlags |= VM_PROT_READ; if ((fProt & RTMEM_PROT_WRITE) == RTMEM_PROT_WRITE) ProtectionFlags |= VM_PROT_WRITE; if ((fProt & RTMEM_PROT_EXEC) == RTMEM_PROT_EXEC) ProtectionFlags |= VM_PROT_EXECUTE; int krc = vm_map_protect(pVmMap, AddrStart, AddrEnd, ProtectionFlags, FALSE); if (krc == KERN_SUCCESS) return VINF_SUCCESS; return VERR_NOT_SUPPORTED; } DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage) { PRTR0MEMOBJFREEBSD pMemFreeBSD = (PRTR0MEMOBJFREEBSD)pMem; switch (pMemFreeBSD->Core.enmType) { case RTR0MEMOBJTYPE_LOCK: { if ( pMemFreeBSD->Core.u.Lock.R0Process != NIL_RTR0PROCESS && pMemFreeBSD->Core.u.Lock.R0Process != (RTR0PROCESS)curproc) { /* later */ return NIL_RTHCPHYS; } vm_offset_t pb = (vm_offset_t)pMemFreeBSD->Core.pv + (iPage << PAGE_SHIFT); struct proc *pProc = (struct proc *)pMemFreeBSD->Core.u.Lock.R0Process; struct vm_map *pProcMap = &pProc->p_vmspace->vm_map; pmap_t pPhysicalMap = pProcMap->pmap; return pmap_extract(pPhysicalMap, pb); } case RTR0MEMOBJTYPE_MAPPING: { vm_offset_t pb = (vm_offset_t)pMemFreeBSD->Core.pv + (iPage << PAGE_SHIFT); if (pMemFreeBSD->Core.u.Mapping.R0Process != NIL_RTR0PROCESS) { struct proc *pProc = (struct proc *)pMemFreeBSD->Core.u.Mapping.R0Process; struct vm_map *pProcMap = &pProc->p_vmspace->vm_map; pmap_t pPhysicalMap = pProcMap->pmap; return pmap_extract(pPhysicalMap, pb); } return vtophys(pb); } case RTR0MEMOBJTYPE_CONT: return pMemFreeBSD->Core.u.Cont.Phys + (iPage << PAGE_SHIFT); case RTR0MEMOBJTYPE_PHYS: return pMemFreeBSD->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT); case RTR0MEMOBJTYPE_PAGE: #ifdef USE_KMEM_ALLOC_ATTR { vm_offset_t pb = (vm_offset_t)pMemFreeBSD->Core.pv + (iPage << PAGE_SHIFT); return vtophys(pb); } #endif case RTR0MEMOBJTYPE_PHYS_NC: return VM_PAGE_TO_PHYS(pMemFreeBSD->u.Phys.apPages[iPage]); case RTR0MEMOBJTYPE_LOW: #ifdef USE_KMEM_ALLOC_ATTR { vm_offset_t pb = (vm_offset_t)pMemFreeBSD->Core.pv + (iPage << PAGE_SHIFT); return vtophys(pb); } #endif case RTR0MEMOBJTYPE_RES_VIRT: default: return NIL_RTHCPHYS; } }