
FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 1 of 27

FreeBSD 5 Network Enhancements

André Oppermann <andre@FreeBSD.org>

SUCON 04

Zürich, 3. September 2004

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 2 of 27

This talk gives an overview on what is new or has changed in FreeBSD 5

Networking Code compared to FreeBSD 4-Series. It is by no means exhaustive

and touches only the most important improvements.

Areas covered:

• Routing Table

• Interface Handling

• IPv4 Processing

• Packet Filters

• TCP Processing

• New Network Stacks

• Network Stack (General)

About

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 3 of 27

PRCLONING removed.

PRCLONING was previously done for two reasons. TCP stored/cached certain
observations (for example RTT and RTT Variance) per remote host. For every host
that has/had a TCP session with us it would create/clone a route to store these
informations. Reduced rt_metrics from 14 to 3 fields and saving 11 times
sizeof(u_long), on i386 44 Bytes. Most of the 11 removed fields are now in the
tcp_hostcache (see later): (By: andre)

struct rt_metrics {

u_long rmx_locks; /* Kernel must leave these values alone */

u_long rmx_mtu; /* MTU for this path */

u_long rmx_hopcount; /* max hops expected */

u_long rmx_expire; /* lifetime for route, e.g. redirect */

u_long rmx_recvpipe; /* inbound delay-bandwidth product */

u_long rmx_sendpipe; /* outbound delay-bandwidth product */

u_long rmx_ssthresh; /* outbound gateway buffer limit */

u_long rmx_rtt; /* estimated round trip time */

u_long rmx_rttvar; /* estimated rtt variance */

u_long rmx_pksent; /* packets sent using this route */

u_long rmx_filler[4]; /* will be used for T/TCP later */

};

struct rt_metrics_lite {

u_long rmx_mtu; /* MTU for this path */

u_long rmx_expire; /* lifetime for route, e.g. redirect */

u_long rmx_pksent; /* packets sent using this route */

};

Routing Table

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 4 of 27

Removed pointer to route from INPCB

The backpointer from the INPCB into the routing table was complicating the locking of
the routing table and locking of the INPCB itself. When a route has to be removed
from the table but it was referenced by a INPCB it was necessary to sequentially scan
through ALL INPCB’s and remove the refence(es). A very expensive operation because
we had to lock every INPCB to do the lookup. Now instead of directly using the route
pointer a very fast routing table lookup is done on any packet sent out. (By: andre)

RTENTRY’s allocated with UMA

(Universal Memory Allocator, SLAB/Zone Type). Instead of kernel malloc. Much more
efficient memory usage now. 130 Bytes instead of 256 Bytes allocated per Route (on
i386), savings of 49%. (By: andre)
With about 200MB kmem is was possible to load 1.2 million routes into the kernel.

Routing Table

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 5 of 27

Interface Link State Notification via RTSOCKET and KQUEUE

At the moment this is only implemented for Ethernet Type interfaces. When the link
state goes down because the cable to the switch was unplugged you get a
RTMESSAGE and a KQUEUE event. The same when the link comes up again. This is
very useful for routing daemons. (By: andre, RTSOCKET, OpenBSD)

sys/net/if.h:

struct if_data {
...
u_char ifi_link_state; /* current link state */
...

};

#define LINK_STATE_UNKNOWN 0 /* link invalid/unknown */
#define LINK_STATE_DOWN 1 /* link is down */
#define LINK_STATE_UP 2 /* link is up */

Interface Handling

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 6 of 27

Interface renaming

Very cool. Allows to you to change any interface name to any arbitrary string of max.
15 characters. (By: brooks)

ifconfig -a
bge0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=1a<TXCSUM,VLAN_MTU,VLAN_HWTAGGING>
 inet 62.48.1.1 netmask 0xffffff00 broadcast 62.48.1.255
 inet6 fe80::2e0:81ff:fe27:e0a9%bge0 prefixlen 64 scopeid 0x2
 ether 00:e0:81:27:e0:a9
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active
ifconfig bge0 name office
ifconfig -a
office: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 options=1a<TXCSUM,VLAN_MTU,VLAN_HWTAGGING>
 inet 62.48.1.1 netmask 0xffffff00 broadcast 62.48.1.255
 inet6 fe80::2e0:81ff:fe27:e0a9%office prefixlen 64 scopeid 0x2
 ether 00:e0:81:27:e0:a9
 media: Ethernet autoselect (100baseTX <full-duplex>)
 status: active

Interface Handling

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 7 of 27

Interface cloning for virtual interfaces

You need a GRE tunnel interface? Just make one yourself: (By: brooks)

ifconfig gre0 create

ifconfig -a

gre0: flags=9010<POINTOPOINT,LINK0,MULTICAST> mtu 1476

ifconfig gre0 destroy

Interface Handling

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 8 of 27

Automatic VLANS

Instead of cloning a vlan interface first and then specifying the parent interface and
the 802.1Q tag you just do this: (By: brooks)

ifconfig bge1.100 inet 192.168.1.1/24

ifconfig -a

bge1.100: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 192.168.1.1 netmask 0xffffff00 broadcast 192.168.1.255

inet6 fe80::2e0:81ff:fe27:e08a%bge1.100 prefixlen 64 scopeid 0x6

ether 00:e0:81:27:e0:8a

media: Ethernet autoselect (100baseTX <full-duplex>)

status: active

vlan: 100 parent interface: bge1

Interface Handling

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 9 of 27

NDIS Binary Compatibility

a.k.a. “Project Evil”.

FreeBSD i386 can use binary Ethernet and WLAN network drivers written to the
Windows XP NDIS 5.1 specification. It is a little cumbersome to convert a NDIS driver
into a FreeBSD Kernel Loadable Module (KLD): (By: wpaul)

ndiscvt -O -i neti557x.inf -s neti557x.sys -n intel0

/* Compile and install new kernel with “options NDIS” */

kldload intel0

Man ndis(4), ndisapi(9), ndiscvt(8).

Interface Handling

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 10 of 27

IP FastForward

IP FastForward processes a packet directly to completion (if it is not for the local host).
The if_input directly calls into ip_fastfoward. All basic packet validation checks, routing
table lookup, firewalling (pfil_hooks) and if_output steps are done in just one code
path and function call. Compared to normal IP forwarding this can give a speedup of
40 to 60% in packet forwarding performance. (By: andre)

sysctl net.inet.ip.fastforwarding=1

IPv4 Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 11 of 27

IP FastForward (continued)
Thu, 2 Sep 2004 18:49:05 -0400 [zebra 21767]:
> > Indeed. We have a modified 5.3 kernel that broke 1Mpps on a 2.8Ghz Xeon
> > using Smartbits.
>
> Have tried with 5.3 recently? I wrote a new ip_fastforward (don't look
> at the old man page, I haven't updated it yet) which processes packets
> directly to completion. Compared to normal forwarding via ip_input this
> should give you another 30% unless you have maxed out the bus bandwidth
> already. It's in every FreeBSD 5 kernel, just enable it with "sysctl
> net.inet.ip.fastforwarding=1".

Of course. Based on your new fast forwarding code is how 1Mpps was
achieved, btw ;-)

 Also changed the old flow fastforwarding in 4.9 kernel with your
code to improve performance on some routers that we run that are still in
4.x tree.. (just cant afford to upgrade the whole thing to 5.x just yet)

Your fast forwarding code is the solid positive step in terms of the way a
real router should work. Your concept is pretty close to idea of cisco CEF
implementation (with exception of real FIB yet, but that's being worked on
anyways) in terms of running direct process to completion in the network
interrupt routine. Great work! :)

James Jun <james@towardex.com> TowardEX Technologies, Inc.

IPv4 Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 12 of 27

Random IP ID’s

The IP_ID is used for packet reassembly and needs to be unique within a certain time
frame specific to a certain host. Normally the IP_ID is assigned sequentially to each IP
packet leaving the host. This makes it possible to gather for example the number of
hosts behind a NAT device (track different sequences of IP_ID’s). Enabling random
IP_ID’s assigns a random IP_ID to each packet rendering this kind of “attack”
ineffective: (By: kris, dwmalone, OpenBSD)

sysctl net.inet.ip.random_id=1

IPv4 Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 13 of 27

IP Options Processing

IP Options do not have any practical use today. The only useful application is RR
(Record Route) where it remembers the last 8 hops the packet traversed through.
That allows you to check parts of the path back to you. IP options processing is rather
expensive because the packet header has to be modified and expanded. In addition
the only other use is to circumvent or trick firewalls thus it is normally blocked there.
The options are these: (By: andre)

sysctl net.inet.ip.process_options=0

Possible Modes:

net.inet.ip.process_options=0 Ignore IP options and pass pkts unmodfied

net.inet.ip.process_options=1 Process all IP options (default)

net.inet.ip.process_options=2 Reject all pkts with IP options with ICMP

IPv4 Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 14 of 27

PFIL_HOOKS

As they are found in NetBSD, have been implemented and enabled permanently in the
ip_input and ip_output paths. The kernel config option is no longer needed and any
kernel will allow a packet filter to be loaded at run-time. (By: mlaier, sam, andre)

Man pfil(9).

sys/netinet/ip_input.c:

/* Jump over all PFIL processing if hooks are not active. */

if (inet_pfil_hook.ph_busy_count == -1)

goto passin;

odst = ip->ip_dst;

if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,

 PFIL_IN) != 0)

return;

if (m == NULL) /* consumed by filter */

return;

ip = mtod(m, struct ip *);

dchg = (odst.s_addr != ip->ip_dst.s_addr);

#ifdef IPFIREWALL_FORWARD

if (m->m_flags & M_FASTFWD_OURS) {

m->m_flags &= ~M_FASTFWD_OURS;

goto ours;

}

dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL);

#endif /* IPFIREWALL_FORWARD */

passin:

Packet Filters

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 15 of 27

PF (from OpenBSD) and ALTQ (KAME) have been imported and are fully functional. All

features except CARP (coming soon) are available. (By: mlaier)

Man pf(4), pfctl(8), pf.conf(5), pfsync(4).

FreeBSD 5 has now three packet filters to chose from: IPFW (BSD origin), PF (OpenBSD)

and IPFILTER (Darren Reed).

Man ipfw(8), pfctl(8), ipf(8).

IPFW has been converted to use the generic PFIL_HOOKS like the other two. Previously it

was directly fitted (“hacked”) into ip_input and ip_output. This conversion removes about
370 lines code from those two and significantly cleans up those functions. Nothing in the
use of IPFW has changed. It is completely transparent to the user. (By: andre)

Packet Filters

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 16 of 27

IPFW has got a number of new functions:

Rule Sets which can be enabled and disabled together (By: luigi)

ipfw add 10000 set 5 allow ip from any to any

ipfw set disable 5

ipfw set move 10000 5 to 3

ipfw set swap 5 3

Rules to match on packets from/to jails (By: csjp)

ipfw add 10000 allow ip from any to any jail foobar

Rule to verify if a packet arrived via the interface the back-route points
to (verrevpath) (By: cjc)

ipfw add 10000 deny ip from any to any not verrevpath in

Packet Filters

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 17 of 27

Rule to verify the source address of a packet that is being routed (versrcreach)
(By: andre)

ipfw add 10000 deny ip from any to any not versrcreach in

Rule to verify a packet with a source address from a connected network actually arrive
through that interface (By: andre)

ipfw add 10000 deny ip from any to any not antispoof in

Lists of IP’s on command line (By: luigi)

ipfw add 10000 deny ip from 192.168.0.0/16, 172.16.0.0/12 to any

Lookup tables (implemented like routing tables, very fast for large numbers of entries)
(By: ru)

ipfw table 5 add 192.168.0.0/16

ipfw table 5 add 172.16.0.0/12

ipfw add 10000 deny ip from table 5 to any

Packet Filters

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 18 of 27

TCP Hostcache

The TCP hostcache contains/caches the per remote host observations from TCP. This
allows to remember the path characteristics from previous connections and to pre-
tune new TCP sessions to the same remote host. For HTTP connections this can
provide a significant speedup on consecutive connections. (By: andre)

struct hc_metrics {

/* housekeeping */

TAILQ_ENTRY(hc_metrics) rmx_q;

struct hc_head *rmx_head; /* head of bucket tail queue */

struct in_addr ip4; /* IP address */

struct in6_addr ip6; /* IP6 address */

/* endpoint specific values for tcp */

u_long rmx_mtu; /* MTU for this path */

u_long rmx_ssthresh; /* outbound gateway buffer limit */

u_long rmx_rtt; /* estimated round trip time */

u_long rmx_rttvar; /* estimated rtt variance */

u_long rmx_bandwidth; /* estimated bandwidth */

u_long rmx_cwnd; /* congestion window */

u_long rmx_sendpipe; /* outbound delay-bandwidth product */

u_long rmx_recvpipe; /* inbound delay-bandwidth product */

struct rmxp_tao rmx_tao; /* TAO cache for T/TCP */

/* tcp hostcache internal data */

int rmx_expire; /* lifetime for object */

u_long rmx_hits; /* number of hits */

u_long rmx_updates; /* number of updates */

};

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 19 of 27

TCP Hostcache (continued)

sysctl net.inet.tcp.hostcache Shows the status of hostcache

sysctl net.inet.tcp.hostcache.list Shows all entries in the hostcache

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 20 of 27

Inflight Bandwidth-Delay Limiter

TCP maintains a send-window of how many data it can send out (inflight) before it
receives an acknowledge from the remote host. When everything goes well the
window opens pretty quickly until the path in between is overloaded and packet gets
lost. This is then detected and the window shrinks in response. And then it opens
again, resulting in the saw-tooth pattern. The Inflight code observes the timing of the
ACK’s and computes the delay-bandwidth product of the path. It then limits the
opening of the window to exactly that amount to prevent the loss/shrink cycle which
slows down the transmission. For long standing connections like FTP, FileSharing and
large HTTP downloads this can provide a much smoother packet transport and thus a
significant speedup. (By: dillon)

sysctl net.inet.tcp.inflight.enable=1 Enabled by default.

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 21 of 27

Compressed TIME_WAIT2 State

TCP connections in TIME_WAIT2 state (connection closed) waiting for the 2MSL
timeout maintain only a minimal set of necessary information instead of a full blown
TCP control block. This saves about 80% memory per connection in that state.
Especially for HTTP servers this give a far better kernel memory resource usage and a
higher number of concurrent connections that can be served within a short time frame
(“Slashdot effect”). (By: jlemon, silby)

RFC3042 Limited Transmit

Speeds up the recovery from packet losses by sending more data faster if double
ACK’s are reveived. (By: hsu)

sysctl net.inet.tcp.rfc3042=1 Enabled by default.

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 22 of 27

RFC3390 Increased initial TCP congestion Window

Normally TCP will start with a window of just one packet to send out and then wait for
the first ACK to arrive. RFC3390 allows for up to four packets to be sent out right
away. On connections with large RTT’s this give a significant speedup and allows the
window to grow faster after the first ACK’s are received. Especially for HTTP servers
with many short connections this makes a noticeable difference. (By: hsu)

sysctl net.inet.tcp.rfc3390=1 Enabled by default.

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 23 of 27

SACK, Selective TCP ACK’s

Normally when TCP experiences packet loss almost all packets from the point of the
loss have to be resent even if most/all of them made it to the remote host. With SACK
the remote host will ACK the packets received after the lost one as successfully arrived
and thus indicate which one is missing. The sender then resend’s just the missing one
and continues from the highest received packet. On lossy links (like WLAN) this
significantly speeds up packet loss recovery and general connection throughput.
(By: ps, jayanth, Yahoo!, OpenBSD)

sysctl net.inet.tcp.sack.enable=1 Enabled by default.

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 24 of 27

TCP_MD5

Only partly implemented at the moment. But allows Zebra/Quagga routing daemons to
connect to Cisco’s and Junipers with MD5 signed TCP connections. (By: bms)

Needs a few things compiled into the kernel:

options FAST_IPSEC

options crypto

options TCP_MD5

TCP Processing

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 25 of 27

Bluetooth Netgraph Framework

This includes almost the entire Bluetooth specification and works with 3com Bluetooth
cards and any USB Bluetooth adapter. (By: emax)

Man ng_bluetooth(4), ng_btsocket(4), ng_hci(4), ng_l2cap(4), bluetooth(3),

ng_bt3c(4), ng_h4(4), ng_ubt(4).

ATM Netgraph Framework

A new and very throughout ATM framework implementing almost all aspects of ATM
packet networking and works with Fore/Marconi ATM155 and ATM622 cards,
IDT77252 and Midway based cards. Drivers for the Mindspeed ATM155/622 chips are
in the works. (By: harti)

Man ng_atm(4), natm(4), ng_atmpif(4), ng_sscfu(4), ng_sscop(4), ng_uni(4),

natmip(4).

New Network Stacks

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 26 of 27

Locking concept of the network stack is per data structure.

Different concepts lock per code path (kernel threads, as in DragonFlyBSD) and/or

do a fixed per-CPU split of packets and connections.

Both have advantages and disadvantages. Time and experience will tell.

Network Stack (General)

FreeBSD 5 Network Enhancements - SUCON 04 - 3. Sept. 2004 - André Oppermann <andre@FreeBSD.org> Page 27 of 27

That’s it. Any questions?

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27

