
Optimizing the FreeBSD IP and TCP Stack

André Oppermann

andre@FreeBSD.org

The FreeBSD Project

Sponsored by TCP/IP Optimization Fundraise 2005

Abstract

FreeBSD has gained fine grained locking in the
network stack throughout the 5.x-RELEASE
series cumulating in FreeBSD 6.0-RELEASE
[1][2]. Hardware architecture and performance
characteristics have evolved significantly since
various BSD networking subsystems have been
designed and implemented. This paper gives a
detailed look into the implementation and design
changes in FreeBSD 7-CURRENT to extract the
maximum network performance from the
underlying hardware.

General

Performance is a very flexible term describing
many different aspects on many different layers
of a system. Performance can be measured and
presented in many different ways. Some are
meaningful and realistic, some are nice but
unimportant in the big picture. Without focusing
on the right metrics and overall goals one may
spend a lot of time and effort optimizing one
little aspect of a system without much helping
the overall cause. It is just as important to find a
good trade-off between short-cut optimizations
and sound design with future proof system
architecture. Often it is more beneficial in the
mid to long run to properly analyze the big
picture and then to decide how to re-implement
a particular part of the system. Many times some

micro optimizations should not be done to avoid
architecture and layering violations preventing
future changes or portability to other – newer –
platforms. Not everything that is true today will
be true in a few years. The same holds for
optimizations that were made years ago – not
every computer is a VAX. However sound
system and sub-system design is very likely to be
still relevant and appropriate in years to come
[3].

Defining Performance

Two primary performance measures exist:
Throughput and Transaction performance.
Throughput is about how much of raw work can
be processed in a given time interval. Transaction
performance is about how many times an action
can be performed in a given time interval. Most
of the time these two are directly related to each
other. When I’m able to perform more actions in
the same amount of time I get more work done
if the work size stays the same. Or the other way
around when I’m able to increase the size of each
work item while performing the same amount of
actions the overall performance increases. What
is important to note is that both of these
properties have different limitations and scaling
behavior. Many workloads are limited by either
throughput or transactions, not both. If we can
find a way to increase the limiting factor by
taking a different programmatic approach we

have succeeded. It is the goal and purpose of an
operating system to provide its services to the
application as fast and as close to the raw
underlying hardware performance as possible.

This paper examines the issues and (proposed)
solutions in FreeBSD 7-CURRENT according to
the layers of the OSI layered network model [4]
from bottom to the top.

Physical Layer

On this layer the operating system guys have
very little influence. What we can predict is that
the hardware engineers are pushing the envelope
on how many bits per second we can transfer
over various metallic copper pairs, optical fibers
and over the air. In the copper and optically
wired world we are approaching 10 gigabits per
second speeds as a commodity in a single stream.
40 gigabits per second is available in some high
end routers already but not yet on machines
FreeBSD is capable of running on [5]. However
it is only a matter of time until it will arrive there
too.

Data Link Layer

On the data link the world has pretty much
consolidated itself to Ethernet everywhere [6].
Ethernet is packet format (called frame on this
layer) with a frame payload size from 64 bytes to
1500 bytes [7]. From Gigabit Ethernet on larger
frame sizes – called jumbo frames – of up to 16
kilobytes have been specified [8].

When a frame is received by a network interface
it has to be transferred into the main memory of
the system. Only there the CPU may access and

further process it. This process is called DMA
(direct memory access) where the network
adapter writes the received frame into a
predetermined location in the system memory.
The first bottleneck encountered is the bus
between network adapter and system memory.
Network adapters almost universally use the PCI
bus in its various incarnations [9]. Some
manufacturers like Intel have created a direct bus
between the network chip and the northbridge
(memory controller) of the system to avoid PCI
bus overheads. The PCI and PCI-X bus are

designed for concurrent access by multiple
devices and splits large data transfers into smaller
chunks of a lower number of bytes each. This
limits the maximum practically reachable
throughput. For 100 Mbit Ethernet the 32 bit
wide and 33MHz fast original PCI bus is
sufficient even in the presence of other data

Figure 1 Maximal packet and payload rate at
various Ethernet speeds (Source: Author)

Figure 3 PCI vs. PCI-X overhead and useable
bandwidth (Source: PCISIG)

Figure 2 Today’s PC architecture (Source:
PCISIG)

Figure 4 PCI Bandwidth comparison (Source:
PCISIG)

Figure 7 PCI-Express parallel lane
multiplexing (Source: PCISIG)

Figure 5 PCI-Express based networking
communication system (Source: PCISIG)

Figure 6 PCI-Express LVDS link (Source:
PCISIG)

transfers (hard disk access, etc). To achieve full
throughput for Gigabit ethernet the extended 64
bit wide and 66-133MHz fast PCI-X is
necessary. For 10 Gigabit ethernet either 64 bit
and 133MHz fast PCI-X or the new point-to-
point packet oriented PCI-Express bus is
required. PCI-Express has many advantages
compared to PCI and PCI-X. All devices have an
exclusive direct connection to either the
northbridge or a high speed switching fabric. The
electrical connections are high speed LVDS links
[10]. A number of these links can be bundled
together. On the protocol level the PCIe bus
works in a packet oriented mode and can transfer
large chunks of data consecutively. These
properties mesh ideally with the packet oriented
nature of ethernet network connections.

From the operating system point of view
network adapters have a number of good and
bad properties. On the good side they support
full wire speed on the ethernet and on the system
interface side. Advanced features include IP,
TCP and UDP checksum offloading and
interrupt moderation. Unfortunately many
ethernet chips have a number of bugs and
restrictions which limit them often in very serious
ways. Common problems are DMA alignment
restrictions where the beginning of a frame must
fall on some specific address granularity which is
coarser than the general CPU platform
alignment. In these cases the network driver has
to copy the frame – by using the CPU – into
another place to guarantee proper alignment.
Obviously this doubles the workload per frame
and must be avoided for high network

performance. Very often network chips have
other implementation bugs that make the
advanced features unuseable. IP, TCP and UDP
checksumming is often not correctly
implemented and gives wrong results for certain
bit pattern in frames. Here the only option is to

disable that feature and continue to calculate
checksums with the CPU. Recently another
advances feature called TCP segmentation
offloading has been implemented in a couple of
high end network cards. This feature is generally
only useful when the machine is a sender of bulk
TCP transfers. The net performance benefit of
this offloading remain dubious and many of the
implementations are again plagued by subtle
bugs rendering the feature worthless. More on
this in the transport layer chapter.

Cache Prefetch

Once the packet is in system memory the CPU
has to start looking at the headers to determine
what kind of packet it is and what to do with it.
Modern CPU’s run internally at many times the
speed of their external system memory and
employ fast cache memories close to the CPU to
mitigate the effect of slow main memory
accesses. Since the packet came freshly from the
network it doesn’t have a chance to be in the
cache memories. On the first access to the packet
header the CPU has to access slow system
memory and to wait for a cache line to be
transferred. This time is entirely lost time and
occurs for every packet that enters the system at
least once. Depending on the cache line size it
may occur a second time when further TCP and
UDP header are examined. Aware of this
situation CPU designers have introduced a
feature called cache prefetching whereby the
programmer signals the CPU that it will access a

certain memory region very soon [11][12][13].
The CPU can then pre-load one or more cache
line sizes worth of data into the fast caches
before they are actually accessed and thus avoids
a full execution stall waiting for system memory.
FreeBSD 7-CURRENT is gaining generic kernel
infrastructure to support these cache prefetch
instructions in a first implementation for Intel’s
Pentium 3, Pentium 4, Pentium M and AMD’s
Athlon, Athlon64 and Opteron series of CPUs.
This prefetch command is then executed on the
packet headers the very moment the network
stack becomes aware of the new packet avoiding
a cache stall.

Network Layer

With the packet in system memory the network
hardware doesn’t play a role anymore and we are
squarely in the domain of the operating system
network stack.

Integrity Checks

At first the network code does basic IP header
integrity checks rejecting all packets with
inconsistent information. Packet rejections at this
stage are very seldom because a broken packet
normally gets rejected by the first hop it makes.Figure 8 Main memory access latency on

cache miss (Source: Techreport)

Figure 9 Execution stall due to cache miss
and memory access latency (Source: Intel)

Figure 10 Memory access latency and
execution stall masked by prefetch (Source:
Intel)

Firewalling

After the basic integrity checks the packet is run
through the firewall code. FreeBSD has three
different firewall packages – ipfw2, pf (from
OpenBSD) and ipf. All three firewall packages,
when enabled, insert themself into the packet
flow through a generic mechanism called PFIL
hooks. PFIL hooks can accommodate an
arbitrary number of consecutively run packet
filters. To protect the integrity of the TAILQ
implemented packet filter list a global, multi
reader / single writer lock is asserted. Locks are
expensive operations on SMP systems because
they perform a synchronous write to a certain
memory location. Any change to that location
causes that cached information on all other
CPU’s to be declared invalid. Any new lock
access has to obtain this memory location from
slow system memory again causing an execution
stall. In FreeBSD 7-CURRENT this per packet
overhead is getting replaced with a lock-free but
SMP safe function pointer list featuring atomic
writes for changes making read locks
unnecessary. Currently two implementations are
proposed and performance tests will determine
which one will be used.

Local or non-Local

The next step in packet processing is to
determine whether the packet is for this host or
if it has to be forwarded (routed) to some other
system. The determination is made by comparing
the destination address of the packet to all IP
addresses configured on the system. If one of
them matches, the packet is scheduled for further
local processing. If not – and the system is acting
as a router – it is scheduled for a routing table
lookup. Otherwise it gets dropped and an ICMP
error message is sent back to the packets source
IP address. The destination address comparison
used to loop through all interfaces structures and
all configured IP address on them. This became
very inefficient for larger number of interfaces
and addresses. Already in FreeBSD 4 a hash
table with all local IP addresses has been
introduced for faster address compares. The

probability that the hash table is permanently in
cache memory is very high. Nonetheless this
issue has to be further examined in detail for
FreeBSD 7-CURRENT and further
optimizations may be made.

Packets for a local IP addresses are discussed in
the next chapter.

Routing Packets

For packets that have to be forwarded to another
system, a routing table lookup on the destination
address has to be performed. The routing table
contains a list of all known networks and a
corresponding next hop address to reach them.
This table is managed by a routing daemon
application implementing a routing protocol like
OSPF or BGP. At the core of the Internet is a
zone called DFZ (default free zone) where all
globally reachable IPv4 networks are listed. At
the time of writing the DFZ has a size of 173,000
network entries [14][15]. IP routing uses a

system of longest prefix match called CIDR
(classless inter-domain routing) [16][17][18].
Each network is represented by a prefix and a
mask expressed in consecutive enabled bits
showing the number of relevant bits for a routing
decision. Such a prefix looks like this:
62.48.0.0/19 whereas 62.48.0.0 is the base
aligned network address and /19 is how many

Figure 11 IPv4 Internet DFZ topology map
(Source: CAIDA)

bits from the MSB are to be examined. In this
case 19 bits making a netmask of 255.255.224.0.
This entry spans 8,192 consecutive IP addresses
from 62.48.0.0 to 62.48.31.255. Any prefix may
have a more specific prefix covering only a part
of its range or it may be a more specific prefix to
an even larger, less specific one. The rule is that
the most specific entry in the routing table for a
destination address must win.

The CIDR system makes a routing table lookup
more complicated as not only the prefix has to be
looked up but also the mask has to be compared
for a match. So a simple hash table approach is
ruled out. Instead a trie (retrieval algorithm) with
mask support must be used. The authors of the
BSD IP stack opted for a generic and well
understood PATRICIA (Practical Algorithm to
Retrieve Information Coded in Alphanumeric)
trie algorithm [19][20][21]. The advantage of the
PATRICIA trie is its depth compression where
it may skip a number of bits in depth when there
is not branch in them. Thus it is able to keep the
number of internal nodes very low and doesn’t
waste space for unnecessary ones. When a
lookup is done on this tree it travels along the
prefix bits as deep as possible into the tree and
then compares the mask and checks if it covers
the destination IP address of the packet. If not,
it has to do backtracking whereas it goes one
step back and compares again. This may happen
until the root node of the tree is reached again
and it is determined that no suitable route for this
packet exists. If a match is found along the way
the next hop IP address and the egress interface
are looked up and the packet is forwarded to it.

With an entry count of 173,000 and backtracking
the PATRICIA trie gets very inefficient on
modern CPU’s and SMP. For a lookup the entire
tree has to be locked, plus when a matching
entry was found it has to be locked too to
increment its reference count when its pointer
gets passed on to IP output function processing.
On top of it the size of a routing entry is very
large and doesn’t fit into a single cache line. For
a full DFZ view the BSD routing table consumes
almost 50MBytes of kernel memory. It is
obvious that this doesn’t fit into the CPU caches
and execution stalls due to slow system memory
accesses happen multiple times per lookup. The
larger the table gets the worse the already steep
performance penalty. The worst case is a stall for
every bit, 32 for IPv4.

The research literature suggest a number of
different trie approaches for the longest prefix
match problem [22]. A novel algorithm called
LC-Trie has achieved a certain notoriety for
extreme space efficiency [23][24]. It is able to
represent the entire DFZ table in approximately
only 3MBytes of memory on 32bit architectures.
It does this by path, mask and level compression
bundled with heavy pre-computation of the
entire table. This algorithm is very efficient and
lends itself pretty well to CPU caching. However

Figure 12 CIDR Address (Source: Wikipedia)

Figure 13 IP Address Match to CIDR Prefix
(Source: Wikipedia)

because it jumps around in the table it suffers
from a number of execution stalls too.
Nonetheless it is an order of magnitude faster
than the traditional BSD trie but with one major
drawback. For every change in the routing table
the entire LC tree has to be re-computed,
although some optimization in this area has been
done [25]. This rules it out for use in an Internet
environment where the constant ebb and flow of
prefixes is high [26][27].

FreeBSD 7-CURRENT will implement a
different but very simple, yet very efficient
routing table algorithm. First it shadows the
normal BSD tree and will be used only by
FreeBSD’s IP fast forwarding path which does
direct processing to completion. Later it may
become the main IPv4 routing table for the
normal IP input path too. The new algorithm
exploits all the positive features of modern
CPU’s, very fast integer computations and high
memory bandwidth, while avoiding the negative
cache miss execution stalls. It is very simple and
it may be non-intuitive to many people
accustomed to common wisdom’s in computing.
The algorithm splits the 32 bit IPv4 addresses
into four 8 bit strides in which it has a very dense
linear array containing the stride part of the
prefix and its mask. It has to do at most four
lookup’s into four strides. The key to efficiency

is cache prefetching, high memory bandwidth
and fast computations. For a lookup it prefetches
the first stride and linearly steps through all array
entries at the level computing the match for each
of them. On modern CPUs this is extremely fast
as it can run in parallel in the multiple integer
execution cores and all data is in the fast caches
[28][29][30]. When a true match is found it is
stored in a local variable. When a more specific
stride match is found it prefetches that entire
stride and does the same computation again for
this level. Once no further strides are found the
most specific match is used to forward the
packet. If no match was ever found it is clear
there is no routing table entry and the packet
gets rejected. No backtracking has to occur. At
most four, one for each stride and masked by the
prefetch, execution stalls can happen. The
footprint of each entry is very small and the
entire table fits into approximately the same
amount of space as the LC tree. It has a few
important advantages however. It doesn’t need
any locking for lookup. Lookups can happen in
parallel on any number of CPUs and it allows for
very easy and efficient table updates. For writes
to the tables a write lock is required to serialize
all changes and prevent multiple CPUs from
updating entries at the same time. While a
change is made lookups can still continue. All
changes are done with atomic writes in the
correct order. This gives a coherent view of the
table at any given point in time. Many changes –
next hop, invalidation of prefix, addition of a
prefix when there is space left in a stride bucket
– are done with just one atomic operation. All
other changes prepare a new, modified stride
bucket and then swap the parents stride pointer

Figure 14 AMD Athlon64/Opteron
architecture (Source: Ars Technica)

Figure 15 Stride bucket size distribution
(Source: Author)

to it. The orphaned stride bucket gets garbage
collected after a few milliseconds to guarantee
that any readers have left it by then. This routing
table design has been inspired by the rationale
behind [31].

Transport Layer

Protocol Control Block Lookup

Packets for a local IP addresses get delivered to
the socket selection of their respective protocol
type – commonly TCP or UDP. The protocol
specific headers are checked first for integrity
and then it gets determined if a matching socket
exists. If not the packet gets dropped and an
ICMP error message is sent back. For TCP
packets, now called segments, the socket lookup
is complicated. The host may have a number of
active TCP connections and a number of
listening sockets. To make a determination
where to deliver the packet a hash table is
employed again. Before the hash table lookup
can be made the entire TCP control block list
including the hash table has to be locked to
prevent modifications while the current segment
is processed. The global TCP lock stretches over
the entire time the segment is worked on.
Obviously this locks out any concurrent TCP
segment processing on SMP as only one CPU
may handle a segment at any give point in time.
On one hand this is bad because it limits
parallelism but on the other hand it maintains
serialization for TCP segments and avoids
spurious out of order arrivals due to internal
locking races between CPUs handling different
segments for the same session. How to approach
this problem in FreeBSD 7-CURRENT is still
debated. One proposed solution is a trie
approach similar the new routing table coupled
with a lockless queue in each TCP control block.
When a CPU is processing one segment and has
locked the TCPCB while another CPU has
already received the next segment it simply gets
attached to the lockless queue for that socket.
The other CPU then doesn’t has to spin on the
TCPCB lock and wait for it to get unlocked. The
first CPU already has the entire TCPCB

structure and segment processing code in the
cache and before it exits the lock it checks the
queue for further segments. Some safeguards
have to be employed to prevent the first CPU
from looping for too long in the same TCPCB. It
may have to give up further processing after a
number of segments to avoid lifelock. The final
approach for FreeBSD 7-CURRENT is still
under discussion in the FreeBSD developer
community and extensive performance
evaluations will be done before settling to one
implementation.

TCP Reassembly

TCP guarantees a reliable, in-sequence data
transport. To transport data over an IP network
it chops up the data stream into segments and
puts them into IP packets. The network does its
best effort to deliver all these packets. However
occasionally it happens that packets get lost due
to overloaded links or other trouble. Sometimes
packets even get reordered and a packet that was
sent later may arrive before an earlier one. TCP
has to deal with all these problems and it must
shield the application from them by handling and
resolving the errors internally. In the packet loss
case only a few packets may be lost and
everything after it may have arrived intact. TCP
must not present this data to the application until
the missing segments are recovered. It asks the
sender to retransmit the missing segments using
either duplicate-ACK’s or SACK (selective
acknowledges) [32]. In the meantime it holds on
to the already received segments in the TCP
reassembly queue to speed up transmission
recovery and to avoid re-sending the perfectly

Figure 16 Bandwidth * delay product in
kbytes at various RTT and speeds, 300ms is
Europe - Japan (Source: Author)

received later segments. The same applies for the
reordering case where usually only a small
number of packets is held onto until the missing
segment arrives. With today’s network speeds
and long distances the importance of an efficient
TCP reassembly queue becomes evident as the
bandwidth-delay product becomes ever larger. A
TCP socket may have to hold to as many data in
the reassembly queue as the socket buffer limit
provides. Generally the socket buffers over-
commit memory – they don’t have enough
physical memory to fulfill all obligations
simultaneously – they may have on all sockets
together. In addition all network data arrives in
mbufs and mbuf clusters (2kbytes in size), no
matter how much actual payload is within such a
buffer. The current FreeBSD TCP reassembly
code is still mostly the same as in 4.4BSD Net/2.
It simply creates a linked list of all received
segments and holds on to every mbuf it got data
in. Obviously this is no longer efficient with large
socket buffers and provides some attack vectors
as well as for memory exhaustion by deliberately
sending many small packets while forgetting the
first one. All the memory and mbufs are then tied
up in the reassembly queue and not available for
legitimate data. Replicate this for a couple of
connections and the entire server runs out of
available memory. In FreeBSD 7-CURRENT the
entire TCP reassembly queue gets rewritten and
replaced with an adequate system. The new code
coalesces all continues segments together and
stores them as only one block in the segment list.
This way only a few entries have to be searched
in worst case if a new segments arrives. The
author has provided a proof of concept for this
part which was demonstrated to have significant
benefits over the previous code on large buffers
and a 4Gbps Myrinet link with constant packet
reordering due to a firmware bug [33]. The
proof of concept code is currently developed
further to merge mbufs in the reassembly queue
when either the previous or following mbuf has
enough free space to store the data portion of
the current one. This way a large part of the
malicious attack scenarios is covered. Then to
thwart all other attacks described in research
papers only the number of missing segments

(holes) has to be limited [34].

TCP segmentation offloading is a controversial
topic and has been hyped a lot with the
introduction of iSCSI and TOE (TCP Offload
Engines). TOE do the entire TCP processing in
dedicated processors on the network card [35].
The clear disadvantage of TOE is the operating
system has no longer any control over the TCP
session, its implementation and advanced
features. FreeBSD has a very good TCP and IP
stack and we most likely will not support full
TCP offloading. In addition the benefits are
limited even with TOE as the operation system
still has to copy all data from and to the
application from kernel space. TCP segmentation
offloading (TSO) is more interesting and to some
extent supported on most gigabit ethernet
network cards. Unfortunately often bugs in edge
cases or with certain bit patterns make this
feature useless. Complicating the matter is the
functioning of the general network stack in
FreeBSD where every data stream is stored on
mbuf clusters. The mbuf clusters are a little bit
larger than the normal ethernet MTU of 1500
bytes. Thus we already have a direct natural fit
which lessens the need and benefit of TSO.
There are cases where TSO may be beneficial
nonetheless. For example high speed single TCP
connection transfers may receive a boost from
lesser CPU processing load. Current experience
with existing implementations is inconclusive and
for FreeBSD 7-CURRENT we will do further
research to judge the possible advantages against
the complications of implementing support for
TSO [36][37]. An implementation of TSO for
FreeBSD’s network stack is a non-trivial
endeavor.

Session Layer

T/TCP Version 2

T/TCP stands for transactional TCP. This name
however is misleading as it doesn’t have anything
to do with t ransactions commonly

understood from databases, file systems or other
applications. Rather it tries to provide reliable
transport that is faster than normal TCP for short
connections found in many applications, most
notably HTTP. It does this by modifying certain
aspects and behaviors of TCP [38]. It was
observed early on that the single largest latency
block in short TCP connections comes from the
three way handshake. T/TCP optimizes this by
doing a three way handshake only the first time
any two hosts communicate with each other. All

following connections send their data/request
segment directly with the first SYN packet. The
receiving side then directly converts this one
packet into a full socket and hands it over to the
application for processing of the contained data
or request instead of replying with SYN-ACK.
T/TCP waits until the applications answers the
request to piggyback the response with the first
packet sent back. This approach is clearly very
efficient and fast. Unfortunately the specification
is very weak on security and the TCP part of the
implementation complicated [39]. On the
application side TCP connections can be opened
without calling connect(2) on a socket by using
send*(2) doing an implicit and automatic connect
like UDP [40]. The host authentication for single
packet connects uses a count of the connections
between two hosts since the last three way
handshake. This is very easy to spoof and to
launch SYN attacks with. Thus T/TCP never
gained any meaningful traction in the market as
it was unfit for any use on the open Internet. The

only niche it was able to establish itself to some
extent is the satellite gateway market where the
RTT is in the range of 500ms and everything
cutting connection latency is very valuable. With
partly rewriting T/TCP avoiding the weaknesses
the Author tries to bring back the clear benefits
it can provide. The rewrite is dubbed T/TCPv2
and will be first implemented in FreeBSD 7-
CURRENT as an experimental feature. The
original connection count is replaced with two
48bit random values (cookies) exchanged
between the hosts. One cookie, the client cookie,
is initialized by the client for all connections
anew when it issues the SYN packet. This
cookie is then transmitted with every segment
from the client to the server and from the server
to client. It adds 48bits of further true entropy to
the 32bit minus window size to protect the TCP
connection from any spoofing or interference
attempts. This comes at very little cost with only
8 bytes overhead per segment and a single
compare upon reception of a segment. It is not
restricted to T/TCPv2 and can be used with any
TCP session as a very light-weight alternative to
TCP-MD5 [41]. The other cookie is a server
cookie which is transmitted from the server to
the client in the SYN-ACK response to the first
connection. The first connection is required to
go through the three way handshake too. This
cookie value is remembered by the client and
server and must be unique plus random for every
client host. The client then sends it together with
the SYN packet already containing data on
subsequent connections to qualify for a direct
socket like in original T/TCP. Unlike the
previous implementation it will not wait for the
application to respond but send a SYN-ACK
right away to notify the client of successful
reception of the packet. These two random value
cookies make T/TCPv2 (and TCP with the client
cookie) extremely resistant against all spoofing
attacks. The only way to trick a T/TCPv2 server
is by malicious and cooperating clients where the
master client obtains a legitimate server cookie
and then distributes it to a number of other
clients which then issue spoofed SYN request
under the identity of the master client.

Figure 17 Comparison between a TCP (a) and
T/TCP+T/TCPv2 (b) connection setup
(Source: Vrije Universiteit)

Presentation Layer

Skipped in this paper. TCP/IP does not have a
presentation layer.

Application Layer

In the application space HTTP web servers are a
prime example of being very dependent on the
underlying operating system and exercising the
network stack to its fullest extent. A HTTP
server serving static objects – web pages, images
and other files – is entirely dominated by
operating system overhead and efficiency [42]. A
HTTP request comes in from a client as TCP
session starting with a SYN packet entering the
SYN cache. The network stack responds with
SYN-ACK and then the client sends a request
for an object. When the first part of the request
is received the SYN cache expands the
connection into a full socket and signals the web
server the availability of a request by waking it
up from listen(2). The server then accepts the
request, parses it and locates the file in the file
system. When it is located and the server has
sufficient permissions to access it, it opens the
file for reading and sends the file content to the
client via the socket and closes the file again.
Once the client network stack has acknowledged
all packets the socket is closed on the server.
The HTTP request is fulfilled. Along this path a
number of potentially latency inducing steps
occur. First in line are the listen(2) and accept(2)
system calls dealing with all incoming
connections. FreeBSD implements an extension
to a socket in listen state called accept filter
which may be enabled with a setsockopt(2) call.
The accf_http(9) filter accepts incoming
connections but waits until a full HTTP request
has been received by the server until it signals the
new connection to the application. Normally this
would happen right after the ACK to the SYN-
ACK has been received by the server. In the
average case this saves a round-trip between
kernel and application. All new incoming
connections receive their own socket file
descriptor and the application has to select(2) or
poll(2) on them to check for either more request

data to read or more space in the socket to send.
Both calls use arrays of sockets which have to be
re-initialized every time a call to these function is
made. With large numbers of connections this
causes a lot of overhead in processing and
becomes very inefficient. FreeBSD has
introduced an event driven mechanism called
kqueue(2) to overcome this limitation [43]. With
kqueue the application registers a kernel event
on the socket file descriptor and specifies which
events it is interested in. The registered event is
active until it is cancelled. Whenever a specified
event is triggered on any registered event, the
event is added to an aggregated event queue for
this application from which it can read the events
one after the other. This programming model is
not only highly efficient but also very convenient
for server application programmers and is made
easily available in a portable library called
libevent [44]. Once the request has been fully

received the HTTP server parses it for the
requested file name and starts a lookup in the file
system with stat(2). It is an often overlooked
point of undesired blocking and latency when the
file path and directory entry are not already in
the file system or buffer cache. Reads from the
disk may have to be initiated and during that time
the application will block in the kernel and can’t
perform any other work as the stat(2) system call
can’t be performed in a non-blocking way. To
avoid this stall in the main loop of the application
it is beneficial to perform the stat(2) outside of

Figure 18 Response time poll(2) vs. kqueue(2)
from httperf (Source: Jonathan Lemon)

[1] Introduction to Multithreading and
Multiprocessing in the FreeBSD SMPng
Network Stack, Robert N. M. Watson,
EuroBSDCon Basel, November 2005,
http://www.eurobsdcon.org,
http://people.freebsd.org/~rwatson/

[2] New Networking Features in FreeBSD 6.0,
André Oppermann, EuroBSDCon Basel,
November 2005, http://www.eurobsdcon.org,
http://people.freebsd.org/~andre/

[3] The Design and Implementation of the
FreeBSD Operating System, Marshall Kirk
McKusick and George V. Neville-Neil, 2004,
Addison-Wesley, ISBN 0-201-70245-2,
http://www.aw-bc.com/catalog/academic/prod
uct/0,1144,0201702452,00.html

[4] Open Systems Interconnection Reference
Model,
http://en.wikipedia.org/wiki/OSI_model

[5] Cisco CRS-1 Carrier Routing System,
40Gbps (OC-768/STM-258) interface,
http://www.cisco.com/en/US/products/ps5763/
index.html

[6] Ethernet, General Description and History,
http://en.wikipedia.org/wiki/Ethernet

[7] IEEE 802.2 Logical Link Control, 1998
Edition,
http://standards.ieee.org/getieee802/download/
802.2-1998.pdf

[8] IEEE 802.3 LAN/MAN CSMA/CD Access
Method,
http://standards.ieee.org/getieee802/802.3.html

[9] PCI-SIG PCI 2.3, PCI 3.0, PCI-X 2.0,
PCI-Express 1.1 Specification,
http://www.pcisig.com

the main loop and distribute it among a number
of pthread(2)s or pre-fork(3)ed process children.
Thus the application can accept and process
further incoming connections as well as quickly
answer those which are already in any of the
operating systems caches. After the stat(2) has
determined that the file is available and the
application has sufficient rights to read it, it is
open(2)ed for reading. Normally the file content
is read into the application and then written out
on the socket again. This however causes the file
content to be copied two times between the
kernel and application. The sendfile(2) system
call offers a direct path from the file system to
the network socket. With sendfile(2) the
application specifies an optional header and
footer which is sent with the file, the file
descriptor of the opened file, the length and the
offset in the file to be sent. This approach
completely eliminates any file content copies
between kernel and application and it allows the
kernel to coalesce header, footer and file content
together into fewer, larger packets sent over the
network. Here again the sendfile(2) system call
may block if not all file content is in the file
system or buffer cache causing the application to
block until all data is fetched from the physical
disk. Sendfile(2) offers an option to immediately
return with an EWOULDBLOCK error message
signaling the direct unavailability of the file
content. The application then may use the same
approach as with stat(2) and distribute it to
either a pthread or pre-forked process child for
further processing keeping the main loop going.
FreeBSD 7-CURRENT will continue to improve
the internal efficiency of the existing optimization
functions and may implement further methods as
outlined in [45][46].

Business Layer

The author wants to thank all sponsors of the
TCP/IP Optimization Fundraise 2005 for making
a lot of optimization work in the FreeBSD kernel
possible. A full list of all donors and their
contribution is available at [47].

References:

http://www.eurobsdcon.org
http://people.freebsd.org/~rwatson/
http://www.eurobsdcon.org,
http://people.freebsd.org/~andre/
http://www.aw-bc.com/catalog/academic/product/0,1144,0201702452,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0201702452,00.html
http://en.wikipedia.org/wiki/OSI_model
http://www.cisco.com/en/US/products/ps5763/index.html
http://www.cisco.com/en/US/products/ps5763/index.html
http://en.wikipedia.org/wiki/Ethernet
http://standards.ieee.org/getieee802/download/802.2-1998.pdf
http://standards.ieee.org/getieee802/download/802.2-1998.pdf
http://standards.ieee.org/getieee802/802.3.html
http://www.pcisig.com

[10] Low voltage differential signaling,
http://en.wikipedia.org/wiki/Low_voltage_diffe
rential_signaling

[11] Software Optimization Guide for AMD64
Processors, Chapter 5, AMD Publication
#25112, Revision 3.06, September 2005,
http://www.amd.com/us-en/assets/content_typ
e/white_papers_and_tech_docs/25112.PDF

[12] IA-32 Intel® Architecture Optimization
Reference Manual, Chapter 6, Intel Document
248966, Revision 1.2, June 2005,
ftp://download.intel.com/design/Pentium4/man
uals/24896612.pdf

[13] Understanding CPU caching and
performance, Jon “Hannibal” Stokes, Ars
Technica, July 2002,
http://arstechnica.com/articles/paedia/cpu/cachi
ng.ars

[14] CAIDA, Cooperative Association for
Internet Data Analysis, Routing Analysis
Group,
http://www.caida.org/analysis/topology/

[15] Daily CIDR and DFZ Routing Report,
Geoff Huston, July 1988 - present,
http://www.cidr-report.org/

[16] RFC1518, An Architecture for IP Address
Allocation with CIDR, September 1993,
http://www.ietf.org/rfc/rfc1518.txt

[17] RFC1519, Classless Inter-Domain
Routing (CIDR): an Address Assignment and
Aggregation Strategy, September 1993,
http://www.ietf.org/rfc/rfc1519.txt

[18] Classless Inter-Domain Routing,
Description and History,
http://en.wikipedia.org/wiki/Classless_Inter-Do
main_Routing

[19] PATRICIA—Practical Algorithm To
Retrieve Information Coded in Alphanumeric,

Donald R. Morrison, Journal of the ACM,
Volume 15, Issue 4 (October 1968), Pages:
514 - 534,
http://portal.acm.org/citation.cfm?id=321481

[20] TCP/IP Illustrated, Vol. 2, The
Implementation, Gary R. Wright and W.
Richard Stevens, Addison-Wesley, 1995, ISBN
0-201-63354-X,
http://www.aw-bc.com/catalog/academic/prod
uct/0,1144,020163354X,00.html

[21] Algorithms in C, Parts 1-4: Fundamentals,
Data Structures, Sorting, Searching, 3rd
Edition, September 1997, ISBN 0-201-31452-
5,
http://www.aw-bc.com/catalog/academic/prod
uct/0,1144,0201314525,00.html

[22] On Fast Address-Lookup Algorithms,
Henry Hong-Yi Tzeng, Tony Przygienda,
IEEE Journal on Selected Areas in
Communications, Vol. 17, No. 6, June 1999,
Pages: 1067 - 1082,
http://dl.comsoc.org/cocoon/comsoc/servlets/G
etPublication?id=92711

[23] IP-Address Lookup Using LC-Tries, S.
Nilsson and G. Karlsson, IEEE Journal on
Selected Areas in Communications., Vol.17,
No.6, June 1999, Pages:1083 - 1092,
http://dl.comsoc.org/cocoon/comsoc/servlets/G
etPublication?id=137835

[24] Modified LC-Trie Based Efficient Routing
Lookup, V.C. Ravikumar, R. Mahapatra, J. C.
Liu, Proceedings of the 10th IEEE
MASCOTS, 2002, Page: 177,
http://doi.ieeecomputersociety.org/10.1109/M
ASCOT.2002.1167075

[25] Enabling incremental updates to LC-trie
for efficient management of IP forwarding
tables, D. Pao, Yiu-Keung Li, IEEE
Communications Letters, Vol. 7, No. 5, May
2003, Pages: 245 - 247,
http://dl.comsoc.org/cocoon/comsoc/servlets/G

http://en.wikipedia.org/wiki/Low_voltage_differential_signaling
http://en.wikipedia.org/wiki/Low_voltage_differential_signaling
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25112.PDF
ftp://download.intel.com/design/Pentium4/manuals/24896612.pdf
ftp://download.intel.com/design/Pentium4/manuals/24896612.pdf
http://arstechnica.com/articles/paedia/cpu/caching.ars
http://arstechnica.com/articles/paedia/cpu/caching.ars
http://www.caida.org/analysis/topology/
http://www.cidr-report.org/
http://www.ietf.org/rfc/rfc1518.txt
http://www.ietf.org/rfc/rfc1519.txt
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
http://portal.acm.org/citation.cfm?id=321481
http://www.aw-bc.com/catalog/academic/product/0,1144,020163354X,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,020163354X,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0201314525,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0201314525,00.html
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=92711
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=92711
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=137835
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=137835
http://doi.ieeecomputersociety.org/10.1109/MASCOT.2002.1167075
http://doi.ieeecomputersociety.org/10.1109/MASCOT.2002.1167075
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=1218307
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=1218307
http://dl.comsoc.org/cocoon/comsoc/servlets/GetPublication?id=1218307

etPublication?id=1218307

[26] RIS – Routing Information Service, RIPE,
1999 - present,
http://www.ripe.net/projects/ris/

[27] CAIDA, Cooperative Association for
Internet Data Analysis, Routing Analysis
Group, http://www.caida.org/analysis/routing/

[28] Inside AMD's Hammer: the 64-bit
architecture behind the Opteron and Athlon 64,
Jon “Hannibal” Stokes, Ars Technica, February
2005,
http://arstechnica.com/articles/paedia/cpu/amd-
hammer-1.ars

[29] The Pentium: An Architectural History of
the World's Most Famous Desktop Processor
(Part I), Jon “Hannibal” Stokes, Ars Technica,
July 2004,
http://arstechnica.com/articles/paedia/cpu/penti
um-1.ars

[30] The Pentium: An Architectural History of
the World's Most Famous Desktop Processor
(Part II), Jon “Hannibal” Stokes, Ars Technica,
July 2004,
http://arstechnica.com/articles/paedia/cpu/penti
um-2.ars

[31] Judy Arrays, Doug Baskins, Alan
Silverstein, HP, January 2002,
http://judy.sourceforge.net/doc/shop_interm.pd
f

[32] RFC2018, TCP Selective
Acknowledgment Options, October 1996,
http://www.ietf.org/rfc/rfc2018.txt

[33] Rewritten TCP reassembly, André
Oppermann, December 2004, FreeBSD-net
mailing list,
http://lists.freebsd.org/pipermail/freebsd-net/20
04-December/005879.html

[34] Robust TCP Stream Reassembly In the
Presence of Adversaries, Sarang
Dharmapurikar, Vern Paxson, August 2005,
http://www.icir.org/vern/papers/TcpReassembl
y/TcpReassembly.pdf

[35] Introduction to TCP Offload Engines,
Sandhya Senapathi, Rich Hernandez, Dell
Power Solution Magazine, March 2004,
http://www.dell.com/downloads/global/power/
1q04-her.pdf

[36] Linux and TCP offload engines, Corbet
and comments, LWN.net, August 2005,
http://lwn.net/Articles/148697/

[37] Response to Article on TOE, Wael
Noureddine and comments, LWN.net, August
2005, http://lwn.net/Articles/149941/

[38] RFC1644, T/TCP – TCP Extensions for
Transactions Functional Specification, July
1994, http://www.ietf.org/rfc/rfc1644.txt

[39] TCP/IP Illustrated, Vol. 3: TCP for
Transactions, HTTP, NNTP, and the UNIX
Domain Protocols, W. Richard Stevens,
Addison Wesley, 1996, ISBN 0-201-63495-3,
http://www.aw-bc.com/catalog/academic/prod
uct/0,1144,0201634953,00.html

[40] FreeBSD 5.4 manual page ttcp(4),
http://www.freebsd.org/cgi/man.cgi?query=ttc
p&apropos=0&sektion=0&manpath=FreeBSD
+5.4-stable&format=html

[41] RFC2385, Protection of BGP Sessions via
the TCP MD5 Signature Option, August 1998,
http://www.ietf.org/rfc/rfc2385.txt

[42] Flash: An Efficient and Portable Web
Server, Vivek S. Pai, Peter Druschel, and Willy
Zwaenepoel, Rice University, Proceedings of
the 1999 USENIX Annual Technical
Conference,
http://www.usenix.org/publications/library/pro
ceedings/usenix99/full_papers/pai/pai.pdf

http://ieeexplore.ieee.org/xpl/abs_free.jsp?arNumber=1200197
http://www.ripe.net/projects/ris/
http://www.caida.org/analysis/routing/
http://arstechnica.com/articles/paedia/cpu/amd-hammer-1.ars
http://arstechnica.com/articles/paedia/cpu/amd-hammer-1.ars
http://arstechnica.com/articles/paedia/cpu/pentium-1.ars
http://arstechnica.com/articles/paedia/cpu/pentium-1.ars
http://arstechnica.com/articles/paedia/cpu/pentium-2.ars
http://arstechnica.com/articles/paedia/cpu/pentium-2.ars
http://judy.sourceforge.net/doc/shop_interm.pdf
http://judy.sourceforge.net/doc/shop_interm.pdf
http://www.ietf.org/rfc/rfc2018.txt
http://lists.freebsd.org/pipermail/freebsd-net/2004-December/005879.html
http://lists.freebsd.org/pipermail/freebsd-net/2004-December/005879.html
http://www.icir.org/vern/papers/TcpReassembly/TcpReassembly.pdf
http://www.icir.org/vern/papers/TcpReassembly/TcpReassembly.pdf
http://www.dell.com/downloads/global/power/1q04-her.pdf
http://www.dell.com/downloads/global/power/1q04-her.pdf
http://lwn.net/Articles/148697/
http://lwn.net/Articles/149941/
http://www.ietf.org/rfc/rfc1644.txt
http://www.aw-bc.com/catalog/academic/product/0,1144,0201634953,00.html
http://www.aw-bc.com/catalog/academic/product/0,1144,0201634953,00.html
http://www.freebsd.org/cgi/man.cgi?query=ttcp&apropos=0&sektion=0&manpath=FreeBSD+5.4-stable&format=html
http://www.freebsd.org/cgi/man.cgi?query=ttcp&apropos=0&sektion=0&manpath=FreeBSD+5.4-stable&format=html
http://www.freebsd.org/cgi/man.cgi?query=ttcp&apropos=0&sektion=0&manpath=FreeBSD+5.4-stable&format=html
http://www.ietf.org/rfc/rfc2385.txt
http://www.usenix.org/publications/library/proceedings/usenix99/full_papers/pai/pai.pdf
http://www.usenix.org/publications/library/proceedings/usenix99/full_papers/pai/pai.pdf

[43] Kqueue: A generic and scalable event
notification facility, Jonathan Lemon,
FreeBSD, May 2001,
http://people.freebsd.org/~jlemon/papers/kque
ue.pdf

[44] libevent library, Niels Provos,
www.monkey.org/~provos/libevent/

[45] Lazy Asynchronous I/O For Event-Driven
Servers, Khaled Elmeleegy, Anupam Chanda,
Alan L. Cox, Willy Zwaenepoel, Proceedings
of the General Track, 2004 USENIX Annual
Technical Conference,
http://www.usenix.org/events/usenix04/tech/ge
neral/full_papers/elmeleegy/elmeleegy.pdf

[46] accept()able Strategies for Improving
Web Server Performance, Tim Brecht, David
Pariag, Louay Gammo, Proceedings of the
General Track, 2004 USENIX Annual
Technical Conference,
http://www.usenix.org/events/usenix04/tech/ge
neral/full_papers/brecht/brecht.pdf

[47] FreeBSD TCP/IP Cleanup and
Optimization Fundraise 2005, André
Oppermann, FreeBSD kernel committer, July
2005,
http://people.freebsd.org/~andre/tcpoptimizatio
n.html

http://people.freebsd.org/~jlemon/papers/kqueue.pdf
http://people.freebsd.org/~jlemon/papers/kqueue.pdf
http://www.monkey.org/~provos/libevent
http://www.usenix.org/events/usenix04/tech/general/full_papers/elmeleegy/elmeleegy.pdf
http://www.usenix.org/events/usenix04/tech/general/full_papers/elmeleegy/elmeleegy.pdf
http://www.usenix.org/events/usenix04/tech/general/full_papers/brecht/brecht.pdf
http://www.usenix.org/events/usenix04/tech/general/full_papers/brecht/brecht.pdf
http://people.freebsd.org/~andre/tcpoptimization.html
http://people.freebsd.org/~andre/tcpoptimization.html

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

