
Help! My system is slow!

Profiling tools, tips and tricks

Kris Kennaway
kris@FreeBSD.org

Overview

Goal:
Present some tools for evaluating the workload of your
FreeBSD system, and identifying the bottleneck(s) that are
limiting performance on a workload.

Outline
What is the system doing?
Tools for investigating your workload
Tuning for performance
Benchmarking methodologies

What is performance?

"Performance" is a meaningless concept in isolation
It only makes sense to talk about performance of a
particular workload, and according to a particular set of
metrics
The first step is to characterize the workload you care
about, and what aspects of its operation are most important
to you

e.g.

webserver queries/second
DNS server response latency
Email delivery/second

What is your system doing?

How does your workload interact with the system?
CPU use
Disk I/O
Network I/O
Other device I/O
Application (mis-)configuration
Hardware limitations
System calls and interaction with the kernel
Multithreaded lock contention
Not enough work?

Typically one or more of these elements will be the limiting
factor in performance of your workload.

top, your new best friend
The top command shows a realtime overview of what your
processes are doing.

paging to/from swap
performance kiss of death!

spending lots of time in the kernel, or processing interrupts
Which processes/threads are using CPU
What they are doing inside the kernel

e.g. biord/biowr/wdrain: disk I/O
sbwait: waiting for socket input
ucond/umtx: waiting on an application thread lock
Many more

Only documented in the source code :-(
Good for orientation, then dig deeper with other tools

last pid: 5372; load averages: 8.11, 9.98, 14.01 up 0+01:22:42 22:31:41
125 processes: 10 running, 88 sleeping, 20 waiting, 7 lock
CPU: 35.7% user, 0.0% nice, 62.8% system, 0.0% interrupt, 1.5% idle
Mem: 103M Active, 3366M Inact, 850M Wired, 208K Cache, 682M Buf, 3616M Free
Swap: 16G Total, 16G Free

 PID USERNAME PRI NICE SIZE RES STATE C TIME CPU COMMAND
 5349 mysql 108 0 637M 89940K *bufob 6 3:02 56.88% {mysqld}
 5349 mysql 107 0 637M 89940K *bufob 2 2:51 54.79% {mysqld}
 5349 mysql 107 0 637M 89940K *bufob 5 2:52 51.17% {mysqld}
 5349 mysql 106 0 637M 89940K RUN 4 2:50 49.66% {mysqld}
 5349 mysql 106 0 637M 89940K *bufob 3 2:52 48.78% {mysqld}
 11 root 171 ki31 0K 128K CPU6 6 23:39 2.29% {idle: cpu6}
 11 root 171 ki31 0K 128K RUN 4 21:47 1.76% {idle: cpu4}

-H shows threads, -
SH kernel threads

Process state

Process summary

Memory use

CPU

Resident
memory
(RAM)

address
space use

Disk I/O

For disk-intensive workloads, they may be limited by
bandwidth or latency (response time for an I/O operation).

Random-access reads/writes require the disk to constantly
seek, limiting throughput.

Sequential I/O is limited by the transfer rate of the disk and
controller.

Also useful: iostat, systat

Many other activity metrics too

Measuring disk activity: gstat

dT: 1.001s w: 1.000s
 L(q) ops/s r/s kBps ms/r w/s kBps ms/w %busy Name
 0 0 0 0 0.0 0 0 0.0 0.0| acd0
 1174 1262 1 12 11.1 1261 15169 301.9 100.0| ad6
 0 0 0 0 0.0 0 0 0.0 0.0| ad6b
 0 0 0 0 0.0 0 0 0.0 0.0| ad6c
 1174 1262 1 12 11.2 1261 15169 302.1 100.0| ad6d
 0 0 0 0 0.0 0 0 0.0 0.0| ad6e

%busy does not show when your device is saturated!
High latency is the most obvious sign of an overloaded disk

% time I/O pending
(not capacity!)

(Read/write)/sec Latency

Throughput

Queued ops

Per-process I/O stats from top -m io

top -m io displays per-process I/O stats
-o total is useful sort ordering
also displays context switch and page fault information

last pid: 1593; load averages: 8.69, 7.07, 5.09 up 0+00:18:25 21:27:24
63 processes: 5 running, 58 sleeping
CPU: 64.4% user, 0.0% nice, 20.9% system, 0.1% interrupt, 14.6% idle
Mem: 870M Active, 602M Inact, 783M Wired, 148K Cache, 682M Buf, 5679M Free
Swap: 16G Total, 16G Free

 PID USERNAME VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND
 1527 mysql 75502 79761 241 254 0 495 5.88% mysqld
 1527 mysql 75502 79761 241 254 0 495 5.88% mysqld
 ...
 1527 mysql 75502 79761 241 254 0 495 5.88% mysqld
 1586 root 77934 33 0 0 0 0 0.00% sysbench
 ...

Not currently supported by ZFS :-(

Tuning disk performance

Reduce disk contention
Move competing I/O jobs onto independent disks
Stripe multiple disks with gstripe

one logical filesystem, multiple physical devices can
handle I/O independently

For filesystems striped across multiple disks, make sure that
the filesystem boundary is stripe-aligned
e.g. for 64k stripe sizes, start of filesystem should be 64k-
aligned to avoid splitting I/O between multiple stripes
Add more/better hardware

Tuning disk performance (2)

Try to restructure the workload to separate "critical" data
and "scratch" data

scratch data can be reconstructed or discarded after a
crash
can afford to use fast but less reliable storage options

mount -o async is fast but unsafe after a crash
go one step further: store temporary data in memory
mdconfig -a -t swap -s 4g; mount -o async

Creates a "swap-backed" memory device
Swap only used when memory is low, otherwise stored
in RAM

Measuring network activity

netstat -w shows network traffic (bytes & packets/sec)
Does traffic match expectations?

Also shows protocol errors (-s)
retransmits, checksum errors, packet drops, corrupted
packets, ...

interface errors (-i)
usually a sign of bad media/NIC or mis-negotiated link
(speed/duplex)

Detailed investigation:

tcpdump
ntop
wireshark

Network performance tuning

Check packet loss and protocol negotiation

Socket buffer too small?
kern.ipc.maxsockbuf maximum socket buffer size
setsockopt(..., SO_{RCV,SND}BUF), ...)
net.inet.udp.recvspace

UDP will drop packets if the receive buffer fills
TCP largely self-tuning

net.inet.tcp.inflight.enable rumoured to cause
performance problems in some configurations

Check for hardware problems

Device I/O

If top shows a significant CPU% spent processing interrupts,
vmstat -i breaks down by device:

hydra1# vmstat -i
interrupt total rate
irq1: atkbd0 1 0
irq4: sio0 4148 0
irq6: fdc0 1 0
irq14: ata0 69 0
irq19: uhci1+ 1712756 1018
cpu0: timer 688497400 2000
irq256: em0 1692373 1324

'+' shows a shared interrupt; see dmesg boot logs
Can limit performance, especially with shared "giant
locked" interrupt handlers
Remove driver from kernel/(re)move device

Context switches

top -m io shows context switches/second per process
voluntary context switch

process blocks waiting for a resource
involuntary context switch

Kernel decides that the process should stop running for
now

Can indicate
resource contention in the kernel (symptom)
application design/configuration problem

e.g. too many threads, too little work per thread

System calls

vmstat -w shows the rate of system calls system-wide

hydra1# vmstat -w 1
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr ad4 ad5 in sy cs us sy id
 2 0 0 762M 3617M 32535 15 0 6 33348 0 0 0 295 370438 136078 48 25 27
 1 0 0 762M 3617M 1 0 0 0 0 0 0 0 4 696503 51316 34 62 4
 1 0 0 762M 3617M 0 0 0 0 0 0 0 0 3 698863 48835 34 62 3
 4 0 0 762M 3617M 0 0 0 0 0 0 0 0 3 714385 53670 32 64 5
12 0 0 762M 3617M 0 0 0 0 0 0 0 0 3 692640 48050 35 63 2
 9 0 0 762M 3617M 0 0 0 0 0 0 0 0 2 709299 50891 34 64 2
 9 0 0 762M 3617M 0 0 0 0 0 0 0 0 3 715326 52402 35 62 3

ktrace and truss will show you the system calls made by
a process

"raw feed" but can be useful for determining workload
and if the application is doing something bizarre

kernel AUDIT system also useful for filtering syscalls
TIP: log to a memory disk

Using ktrace

hydra1# ktrace -i -p 5349
hydra1# ktrace -C
hydra1# kdump -Hs
 ...
 5349 100403 mysqld CALL pread(0x21,0x1679a0cd0,0xbd,0x59e6e72)
 5349 100404 mysqld CALL pread(0x20,0x1679240d0,0xbd,0x5a1dc43)
 5349 100408 mysqld CALL pread(0x22,0x1676204d0,0xbd,0x5aaac73)
 5349 100410 mysqld CALL pread(0x18,0x1678608d0,0xbd,0x5a4ead7)
 5349 100402 mysqld RET fcntl 0
 5349 100409 mysqld RET pread 189/0xbd
 5349 100404 mysqld GIO fd 32 read 189 bytes
 5349 100408 mysqld GIO fd 34 read 189 bytes
 5349 100403 mysqld GIO fd 33 read 189 bytes
 5349 100410 mysqld GIO fd 24 read 189 bytes
 5349 100404 mysqld RET pread 189/0xbd
 5349 100403 mysqld RET pread 189/0xbd
 5349 100402 mysqld CALL gettimeofday(0x7fffff396560,0)
 5349 100410 mysqld RET pread 189/0xbd
 5349 100405 mysqld RET pread 189/0xbd

Questionable application design (no caching with MyISAM)

Activity inside the kernel

High system CPU% is often caused by multiple processes
executing in the kernel at the same time

e.g. high syscall rate
kernel lock contention

Often indicates a kernel scalability problem
But not always

User application (pthread) mutex contention also shows
up in the kernel
Can indicate poor application design or configuration

Lock profiling

Kernel lock operations, contention, hold time, ...
options LOCK_PROFILING (MUTEX_PROFILING in 6.x)
Low overhead when not in use
Performance while profiling highly depends on hardware
timecounter
kern.timecounter.{choice,hardware}
TSC fastest, but not usable on older SMP hardware

Not synchronized between CPUs
Variable with CPU frequency
Usable on modern Intel CPUs
kern.timecounter.smp_tsc=1

Using lock profiling
sysctl debug.lock.prof.enable=1
...do stuff...
sysctl debug.lock.prof.enable=0

file:line and lock type
max - maximum time held
total - total time held
wait_total - total time spent waiting to acquire the lock
count - how many times the lock acquired
avg - average time held
wait_avg - average time spend waiting
cnt_hold - times someone else tried to acquire while we
held the lock
cnt_lock - times held by someone else when we tried to
acquire

Lock profiling

sysctl debug.lock.prof.stats | sort -n -k 3

 max total wait_total count avg wait_avg cnt_hold cnt_lock name
...
 3081 4001607 677963 531745 7 1 59840 65792
vm/vm_fault.c:293 (sleep mutex:vm object)
 348 620952 729407 531735 1 1 34587 75348
amd64/amd64/trap.c:661 (sleep mutex:process lock)
 211 303930 852309 321175 0 2 30751 84173
kern/kern_sig.c:996 (sleep mutex:process lock)
 5930 2811916 1022925 4352 646 235 4679 4340 vm/vm_map.
c:3213 (sx:user map)
 3101 399387 4571790 20466 19 223 544 12655 vm/vm_map.
c:1273 (sx:user map)
 3945 2123772 4585827 18938 112 242 3438 11753 vm/vm_mmap.
c:560 (sx:user map)

Shows high contention and resulting wait time on sx:user
map coming from mmapped memory.

Sleepqueue profiling (8.0)

Could be merged to 7.x
Statistics of wait channels (reasons for sleeping in kernel)
Can help characterize kernel workload
options SLEEPQUEUE_PROFILING
sysctl debug.sleepq.enable=1
...do stuff...
sysctl debug.sleepq.enable=0
sysctl debug.sleepq.stats | sort -n -k 2

umtxqb 1521
- 1864
sigwait 10831
umtxn 14141
getblk 56149
sbwait 603638

Hardware performance counters (pmc)
Application/kernel profiling using CPU performance
counters

instructions, cache misses, branch mis-predicts, ...
call graph or instruction-level
low overhead

options HWPMC_HOOKS
device hwpmc (or load module)

pmcstat -S instructions -O <outfile> &
...do stuff...
killall pmcstat
Post-processing to gprof output
Support for modern Intel CPUs in 7.1
Google "sixty second pmc howto"; pmc(3)

Kernel tuning

FreeBSD is largely auto-tuning
Run a modern version (e.g. 7.0 or 7.1)
Evaluate the ULE scheduler

default in 7.1
better interactive response
CPU affinity helps many workloads
...but not all (slightly more overhead than 4BSD)

Turn on superpages (8.0)
Turn off debugging (8.0)
Use a fast timecounter (TSC) if it matters to your workload
(e.g. java 1.5) and your hardware allows it

Benchmarking techniques

1. Identify a self-contained test case
 Repeatable

e.g. constant size workload
constant time

 Small, clearly demonstrates the problem
2. Change one thing at a time
3. Measure carefully

Several repeated measurements under identical
conditions
Over a suitably long time interval
Avoid confirmation bias

trust the numbers, not your perceptions
/usr/src/tools/tools/ministat is your friend

Using ministat

file containing list of data points from repeated runs of the
benchmark under identical conditions
two or more files with datasets from different conditions
Uses "Student's t" test to determine likelihood that the
datasets differ, and by how much

ministat output

hydra1# ministat -w 60 /tmp/mysql-4bsd /tmp/mysql-ule
x /tmp/mysql-4bsd
+ /tmp/mysql-ule
+--+
| xx + |
|xxx + |
|xxx ++ +++ +|
||A| |__A__| |
+--+
 N Min Max Median Avg Stddev
x 8 2137.84 2161.64 2154.225 2151.9587 9.9307178
+ 8 2761.64 2853.32 2789.6 2796.67 35.349801
Difference at 95.0% confidence
 644.711 +/- 27.8461
 29.9593% +/- 1.29399%
 (Student's t, pooled s = 25.9637)

"95% confidence level that second numbers are 29 ± 1.3%
higher than first"

When to throw hardware at the problem

Only once you have have determined that a particular
hardware resource is your limiting factor

More CPU cores will not solve a slow disk

Adding RAM can reduce the need for some disk I/O
more cached data, less paging from disk

Adding more CPU cores is not a magic bullet for CPU
limited jobs

some applications do not scale well
high CPU can be caused by resource contention

increasing resource contention will make
performance worse!

Help, I'm still stuck!

Talk to a developer
application developer

if you think the problem is related to a particular
application

FreeBSD support mailing list
if you think it is a FreeBSD performance problem or
configuration issue
questions@FreeBSD.org (general support)
hackers@FreeBSD.org (technical questions)

We may not be able to help
but armed with the data you have collected you're off to
a good start!

