
Filesystem Performance
on

FreeBSD
Kris Kennaway

kris@FreeBSD.org

BSDCan 2006, Ottawa, May 12



Introduction

● Filesystem performance has many aspects
● No single metric for quantifying it
● I will focus on aspects that are relevant for my
workloads (concurrent package building)

● The main relevant filesystem workloads seem to
be
– Concurrent tarball extraction
– Recursive filesystem traversals

● Aim: determine relative performance of FreeBSD
4.x, 5.x and 6.x on these workloads
– Overall performance and SMP scaling
– Evaluate results of multi-year kernel locking strategy
as it relates to these workloads



Outline

● SMP architectural differences between 4/5/6.x
● Test methodology
● Hardware used
● Parallel tarball extraction test

– Disk array and memory disk
● Scaling beyond 4 CPUs
● Recursive filesystem traversal test
● Conclusions & future work



SMP Architectural Overview

● FreeBSD 4.x; rudimentary SMP support
– Giant kernel lock restricts kernel access to one process
at a time

– SPL model; interrupts may still be processed in parallel
● FreeBSD 5.x; aim towards greater scalability

– Giant-locked to begin with; then finer-grained locking
pushdown

● FreeBSD 5.3; VM Giant-free
● FreeBSD 5.4; network stack Giant-free (mostly)
● Many other subsystems/drivers also locked

– Interrupts as kernel threads; compete for common
locks (if any) with everything else

● FreeBSD 6.x;
– Consolidation; further pushdown; payoff!
– VFS subsystem, UFS filesystem Giant-free



FreeBSD versions

● FreeBSD 4.11-STABLE (11/2005)
– Needed for amr driver fixes after 4.11-RELEASE

● FreeBSD 5.4-STABLE (11/05)
– No patches needed

● FreeBSD 6.0-STABLE (11/05)
– patches:

● Locking reworked in amr driver by Scott Long for better
performance

● All relevant changes merged into FreeBSD 6.1
– A kernel panic was encountered at very high I/O loads

● Also fixed in 6.1



Test aims and Methodology

● Want to measure
– overall performance difference between FreeBSD
branches under varying (concurrent process I/O) loads

– scaling to multiple CPUs
● Avoid saturating hardware resources (e.g. disk
bandwidth) with single worker process

● Or there is no SMP performance gain to be measured
● Easy to saturate a single disk; need array
(software/hardware) to provide excess capacity

● Other resources: CPU, memory bandwidth
● Measure both on real disk hardware and using
memory disk

● MD is useful in its own right for certain applications (mine)
● Also a model of very high I/O rates; eye on the future



Test Methodology (2)

● UFS1 vs UFS2 (5.x and above)
● UFS2 writes ~10% more data to disk for same FS workload,
and is also ~5% faster if the disk is not saturated; but
greater I/O rate saturates disk 10% sooner.

● UFS1 used to avoid premature saturation, compare to 4.11
● Various UFS mount modes

– Sync (slowest)
● All writes synchronous

– Noasync
● Data asynchronous, metadata synchronous

– Soft Updates
● Dependency ordering of writes to ensure on-disk consistency

– Pointless for md, but models high I/O rates on a very fast disk array
● Is expected to perform between noasync and async speeds

– Async (fastest)
● All writes asynchronous; may corrupt on power failure



Test Hardware

● 2 CPU i386 2.8GHz Nocona Xeon
– 4 GB RAM
– LSI MegaRAID 320-2x RAID0 controller (amr driver)
– 4 Ultra160 SCSI drives
– FreeBSD 4.11/5.4/6.0

● 4 CPU amd64 Opteron 846 (2GHz)
– 16 GB RAM
– Used as memory disk; models high I/O rates
– FreeBSD 5.4/6.0 only (no 4.x for amd64)

● 14-CPU sparc64 E4500
– 16GB RAM (slow!)
– 400MHz CPUs (slow!)
– FreeBSD 6.0 only
– Probe scaling of UFS beyond 4 CPUs

● Severely limited by CPU and memory bandwidth



Tarball extraction test

● BSDtar is less efficient (30% slower) than
GNUtar, and it has odd I/O patterns during
extraction (write, then read)

● Use GNUtar with uncompressed tarball of ports
tree (270 MB tarball, 93862 files, 4 levels deep)

● Extract to disk, and to swap-backed md to avoid
disk overhead (higher I/O rates)
– Swap backing is faster than malloc backing and doesn't
use swap unless there is memory pressure

● Run multiple extractions to different subdirectories
of filesystem root; destroy and recreate
filesystem/backing store between tests



Tarball extraction (2)

● Measurements:
– Time for completion of each process (real/sys/user)
– Total I/O written to backing device (iostat -i)

● Care needed; all processes not scheduled equally!
e.g. on 4 CPU system 4 gtar processes will
perform I/O to the near-exclusion of all others,
until they complete; then another 4, etc.
– 4.11 also, but not as marked as on 5.x/6.x
– ULE scheduler is fairer about I/O scheduling, but
performs worse except under minor load

● Use average runtime instead



Async mounts (2-CPUs, amr)



Async Analysis

● FreeBSD 6.0 has 30% better overall performance
compared to 4.11 on this hardware

● Small (5-8%) net performance benefit from second
CPU on 6.0
– still moderate contention within driver; hardware does
not seem to easily accommodate concurrent I/O.

● sync/noasync results (not shown) are comparable.



Soft Updates (2-CPU, amr)



Soft Updates Analysis
● FreeBSD 5.4 is 7 times slower than 6.0!

– Mutex profiling shows that this is due to massive
contention for the Giant lock between multiple writing
processes and bufdaemon;

– Much worse than serialized!
● Soft Updates on FreeBSD 6.0 is slightly slower
than sync mounts at moderate load (~8 writers)!
– Seems to be due to poor scaling of bufdaemon; later



Async mount (4-CPU, md)



Analysis

● 5.4
– is only slightly slower than 6.0 on UP, but...
– ...performs worse on SMP than UP due to all the Giant
contention

● 6.0
– Takes 6.9 seconds to extract 93000 files to md!
– SMP is ~1.9 times faster than UP on 6.0
– This compares reasonably well to the 4-CPUs in the
machine since the md worker thread, bufdaemon, g_up
and g_down worker threads together consume nearly
150% of a CPU.

● Still some overhead lost to locking contention



Soft Updates (4-cpu, md)



Bufdaemon (non-)scalability

● md allows higher I/O rates; even more work is
pushed onto bufdaemon, which easily saturates
100% of a CPU.

● This is a major bottleneck for high-end I/O
performance with soft updates, and it is already
manifested on real disk hardware.

● In 6.0 bufdaemon is Giant-locked, but mutex
profiling shows this is not a factor in this workload
– In 7.0 bufdaemon is Giant-free

● Other mount modes scale well, although
bufdaemon is still (less of) a factor.



Scaling beyond 4 CPUs

● How far does FreeBSD 6.0's UFS scale?
● Use 14 CPU E4500

– Severe drawbacks
● slow CPUs (easily saturated by a single kernel thread)
● Low memory bandwidth (md worker thread saturates CPU
doing bcopy())

– Use gstripe with 5 md devices to spread backing store
load over 5 CPUs; but then:
PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
3 root 1 -8 0 0K 32K CPU8 8 662:56 95.41% g_up

10040 root 1 -8 0 0K 32K CPU6 1 0:53 66.19% md4
10038 root 1 -8 0 0K 32K CPU4 b 0:53 65.01% md3
10036 root 1 -8 0 0K 32K CPU12 4 0:52 63.44% md2
10034 root 1 -8 0 0K 32K CPU5 7 0:53 62.50% md1
10032 root 1 -8 0 0K 32K CPU1 3 0:53 62.16% md0

4 root 1 -8 0 0K 32K - c 514:51 56.74% g_down

– Nevertheless, achieve impressive scaling with multiple
concurrent extractions:



Scaling on 14 CPUs



Concurrent/serialized ratio



Parallel filesystem recursion

● Benchmark: ports collection INDEX builds
– Parallel, recursive traversal of ~15000 directories and
reads of comparable number of files

– Also forks 10000's of processes, so not a “pure” test;
but interesting results

● 4-CPU amd64 system;
– Therefore could only test 5.4 vs 6.0

● /usr/ports pre-cached by throwing away first run.



Parallel recursion on 4 CPUs



Status of the Giant lock

● 6.0 is ~15% faster than 5.4 on this test
● Profiling shows this is mostly due to contention on
the Giant lock in 5.4
– Under FreeBSD 5.4 Giant was acquired in
43366070/1181505200 = 3.6% of mutex acquisitions

– Furthermore, 47% of these operations contended for
the Giant lock (failed to acquire on first try).

– On FreeBSD 6.0 Giant was only acquired in
782961/780550666 = 0.100% of all mutex ops

– 36 times lower than on 5.4!
– of these, only1.43% caused contention.

● For this and many other realistic workloads on
FreeBSD 6.x, the Giant lock is no longer a
significant factor in kernel performance.



Mission Accomplished?



...Not Yet!

● Locking work is ongoing
– Some subsystems still Giant-locked (SCSI, TTY, IPv6)
– Locking optimization and further pushdown work

● Nevertheless, a significant validation of the work
of many FreeBSD developers over the past 6
years.



Conclusions

● Poor scaling of bufdaemon should be studied
– For some applications it may be appropriate to use
noasync/async mounts for better performance.

● Use an async swap-backed md if you can!
– Crazy fast

● FreeBSD 6.0 performs much better on the test
hardware than all previous versions tested
– 30% faster than 4.11 for concurrent writes
– 15% faster than 5.4 for concurrent reads

● Also faster than 4.11, but not shown
● Revisit scaling tests on 16-core amd64/32-thread
Ultrasparc T1 as we plan development priorities
for existing and future commodity hardware.


