
The FreeBSD Package Cluster

Kris Kennaway
kris@FreeBSD.org

BSDCan 2005, Ottawa, May 13



Outline

● Goals of the package cluster
● Challenges
● Overview of cluster architecture and
implementation

● Anatomy of package build process
● Optimizations
● Future work
● Summary



Overview of Ports Collection

● FreeBSD Ports Collection provides build
framework for compiling, installing and managing
third-party software
– 12852 ports at time of writing

● Binary (precompiled) packages may be produced
for easier installation on other machines

● 170 ports committers working on maintaining
ports collection and managing submissions from
user community



Goals of the package cluster
● Provide up-to-date packages for FTP and release
distribution.

● Automated QA of FreeBSD ports collection
– Test port/package compilation
– Identify common errors
– Semi-automated reporting to responsible parties

● Test bed for architectural development and large-
scale changes to ports collection
– Maintaining stability of ports collection for end-users
is paramount

– Ports collection contains all manner of weirdisms
● QA of FreeBSD development and stable branches

– Exercises wide feature set and operational conditions;
very good testbed for identifying bugs and focusing
developer attention on problems.



Challenges

● Large number of ports (>12852)
● 3 supported branches (4.x-STABLE, 5.x-STABLE,
6.0-CURRENT)

● 5 supported architectures (i386, alpha, sparc64,
ia64, amd64)

● Rapidly changing ports collection (dozens of
commits/day)
– Large fraction of ports collection affected over short
timescales

● Balancing package build and ports development
uses of the cluster

● Rapid growth of ports collection



Growth of the ports collection



Schematic of cluster architecture

Master

pointyhat.freebsd.org

LAN

FTP

i386 clients

sparc64

ia64

amd64

alpha



Build resources

● Master (pointyhat.freebsd.org)
– Dual i386 p3 1.3GHz
– 2GB RAM, ~280GB disk

● Clients
– i386: 27 p3 800MHz, 512/1024MB
– SPARC64: 12 clients (freebsd.org, .jp, .ca, .us)

● 9 Ultra 10, 2 4-CPU E450, 2-CPU E420R, 12-cpu E4500
– AMD64 (freebsd.org, .us)

● 1.6 Ghz,512MB; 2GHz*4, 16GB; 2GHz*2, 8GB
– IA64: 2 900MHz McKinley (freebsd.org)
– Alpha: 5 DS10 (freebsd.org)

● Secondary test cluster (yahoo.kr); 2 i386 p4 2GHz



Cluster architecture and history

● Cluster built on shell scripts, standard UNIX tools
(make, ssh, netcat,...) and some custom C code
– Current implementation scales well enough with
current machine resources

● Evolved continuously from original
implementation by Satoshi Asami (ca 1999)
– Significant changes and improvements over the past
few years

● Evolutionary pressures from scaling of ports
collection and cluster requirements

● Need to keep cluster in near-continuous operation
limits windows for major redevelopment
– Secondary test cluster (Y! Korea) useful for
developing changes



Overview of the build process

● Build master prepares the build and initializes the
client machines

● Jobs dispatched in parallel to available client
machines

● Packages are built in separate chroots on the client
● Results of build are copied back from slave to
master

● Master produces reports (webpage, email) of
package build status

● Packages post-processed and published
● Multiple simultaneous package builds

– Different architectures, branches
– maximize resource utilization



Configuration of build server

● Job ordering uses Makefile constructed from
package dependency data
– Ensures correct ordering of dependencies
– Automatically handles package build failure

● Communication with clients over ssh
– Suitable for local/remote clients
– All communication initiated by server

● HTTP server for client fetching of packages
● NFS server for local client machines (netboot)
● Scheduler tracks job load on client machines

– Detect offline machines
– Package builds preferentially distributed according to
machine capability and load

● Avoid over/underloading machines



Configuration of the build clients

● Netbooting where possible for ease of
maintenance

● Typically run FreeBSD-CURRENT or -STABLE
– Require certain minimum feature set
– QA of FreeBSD active branches

● Build chroots populated with image of target
FreeBSD world (4.x/5.x/6.x)
– Deliberately mismatched kernel/world in chroot

● Allows simultaneous builds for different FreeBSD branches
on same machine

● No need to reboot client and maintain separate installations
● Some kernel-sensitive binaries copied in from host
environment

● FreeBSD backwards compatibility takes care of the rest



Preparing a package build

● Update ports/src/doc trees
● Build an INDEX file

– Records package name/port directory mappings
– List of package dependencies

● Build a list of known-unbuildable ports
– Ports marked IGNORE/FORBIDDEN/... will never be
built because of known limitations (e.g. unsupported
version; security vulnerability; ...)

– Ports marked BROKEN are built infrequently to test
whether breakage still exists

● Prepare directories on master (log files, packages)
● Construct makefile from INDEX dependency list

– used to order job dispatches
– ~13MB, 38000 targets



Incremental package builds

● To avoid unnecessary rebuilding, most package
builds are incremental
– Compare old and new INDEX files
– Identify packages with changed version string, or
changed list of dependencies

– Remove these packages from the previous package set
– Only these packages, and those depending on them,
will be rebuilt automatically by the master Makefile.

● Incremental builds often only take a few hours
● Full rebuilds less often to catch unfetchable ports
and those broken by FreeBSD base system
changes



Preparing the client machine

● Remove stale build chroots
● Refresh client copy of cached data

– Tarball for populating chroots
– Remote clients: copy of ports/src/doc tree and build
scripts are refreshed with rsync

● Ensure that all resources are available
– squid, disk space

● Ready to begin dispatching package builds!



Anatomy of a package build (I)

● Build machine with free job slot is selected
– Build concurrency >= # CPUs for optimal resource usage

● Free chroot is claimed for use, or a new chroot is
created and populated

● Job dispatched to client over ssh
● Ports/src/doc trees are mounted inside the chroot

– NFS from a common local server
– NullFS from a local filesystem image

● For each build stage (fetch, extract, patch, build/
install), package dependencies are fetched via
HTTP from master
– Squid cache used to reduce network traffic

● Many packages reused (e.g. Perl, X libraries), so up to 90%
hit rate



Anatomy of a package build (II)

● Package dependencies added
● Build stage is executed (fetch/extract/patch/build)
● Package dependencies are removed

– Verifies that the dependency list is correct at each stage
● If build completes, package is created
● Packing list is verified

– All files listed in packing list were installed
– No installed files that are not listed in packing list

● Build chroot is cleaned
● Build master copies back results of build
(success/failure logs, package)

● Chroot on client is released for new build



Package build progression



Package build rate



Build post-processing

● Non-redistributable packages are removed if
package set is to be uploaded to FTP/distributed
on CDROM.

● INDEX post-processed to remove unbuilt
packages
– e.g. for use by sysinstall

● Checksum of packages constructed
● Packages rsync'ed to FTP site if requested

– incremental builds: only new/changed packages
● Cuts down on FTP mirror load

● Port distfiles rsync'ed to FTP site if collected



Package build summary data

● http://pointyhat.freebsd.org
– tracks results of package build as it progresses
– maintains history of broken ports with logs, for each
supported FreeBSD version and architecture

● classified by error type
– logs of successful builds
– useful for port maintainers, committers and users

● Feeds other databases (http://portsmon.firepipe.net
fenner's distfile survey, ...) providing other views
of this dataset

● Email reports of individual port build failures are
post-processed by Mk I Eyeball to weed out false
positives, and forwarded to responsible party for
action



Optimizations (I)

● Kernel optimization
– 6.0 much better than 5.x, particularly on 5.x
(mpsafevfs)

● Still in development though (i.e. some bugs on
SMP)

● Cache, cache, cache!
● NullFS > NFS on busy networks/servers

● Time trade-off for initial rsync
● vfs.nfs.access_cache_timeout=300

– NFS data is static throughout the life of the build
● Squid proxy
● Local FTP distfile mirror where possible
● Maintain constant build load (don't over/underload
machines)



Optimizations (II)

● Memory disk (md) instead of disk-backed FS for
package builds
– Dramatically cuts disk writes, even for swap-backed
md

– Build each port in separate md on SMP
● Better concurrency from multiple md kernel
threads, especially with mpsafevfs on 6.0

● Able to completely saturate 12-processor E4500
on 6.0 (i.e. very little Giant contention)



Future work

● Repeated pkg_add/pkg_delete during build stages
is time-consuming
– Better: leave package installed in a chroot, and relocate
the build directory between chroots instead of
adding/removing the package in the same chroot

– Trade time (is money) for disk (is cheap)
● Explore use of ccache for caching compilation

– Works well for single machines, but need to deal with
build locality

● Better management of transient build resources
– Deal with machines coming/going
– Network outages
– Machine reboots



Summary

● High-performance, custom purpose distributed
cluster for building binary packages from
FreeBSD ports collection

● All components freely available
– /usr/ports/Tools/portbuild/

● Documentation available
– http://www.freebsd.org/doc/en/articles/portbuild/index.html

● More machine resources always welcome
– Preferably several fast machines hosted by well-
known company/community member

● Amajor source of QA for FreeBSD Ports
Collection and the FreeBSD Operating System.
– stress-tests FreeBSD under real-world loads


