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Abstract— The DragonFlyBSD operating system is a fork of 

the highly successful FreeBSD operating system. Its goals are to 
maintain the high quality and performance of the FreeBSD 4 
branch, while exploiting new concepts to further improve 
performance and stability. In this paper, we discuss the 
motivation for a new BSD operating system, new concepts being 
explored in the BSD context, the software infrastructure put in 
place to explore these concepts, and their application to the 
network subsystem in particular. 
 

Index Terms— Message passing, Multiprocessing, Network 
operating systems, Protocols, System software. 
 

I. INTRODUCTION 

T HE DragonFlyBSD operating system is a fork of the 
highly successful FreeBSD operating system. Its goals are 

to maintain the high quality and performance of the FreeBSD 
4 branch, while exploring new concepts to further improve 
performance and stability. It departs from its predecessor in a 
number of ways, most notably, in place of the symmetric 
multiprocessing support being added to the upcoming 
FreeBSD 5 branch, DragonFlyBSD uses the concepts of 
partitioning and replication layered on top of a message 
passing system to implement lock-free scalability on 
symmetric as well as non-symmetric NUMA multiprocessors. 
The lightweight message passing system is also used as the 
basis for user-land messaging. This allows for a degree of 
extensibility and application-specific customization not 
possible in traditional monolithic kernels. In this paper, we 
discuss the motivation for a new BSD operating system, new 
concepts, the software infrastructure put in place to explore 
these concepts, and their application to the network subsystem 
in particular. 

 

II. PROJECT OVERVIEW 
The DragonFlyBSD project was started by Mathew Dillon 

and announced in July of 2003. It is currently comprised of 16 
committers with write privileges to the source repository and a 
community of outside contributors who submit bug patches 
and help with testing. The source base was forked off the 
RELENG_4 branch of FreeBSD on June 16, 2003 and 
consists of 19,037 source files spread out among 2122 

directories with slightly over 8 million lines of code, 2 million 
of which are in the kernel. 

The project has a number of resources available to the 
public, including an on-line CVS repository with mirror sites, 
accessible through the web as well as the cvsup service, 
mailing list forums, and a bug submission system. 
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III. MOTIVATION 

A. Technical Goals 
The DragonFlyBSD operating system has several long-

range technical goals that it hopes to accomplish within the 
next few years. The first goal is to add lightweight threads to 
the BSD kernel. These threads are lightweight in the sense 
that, while user processes have an associated thread and a 
process context, kernel processes are pure threads with no 
process context. The threading model makes several 
guarantees with respect to scheduling to ensure high 
performance and simplify reasoning about concurrency. We 
shall describe the lightweight kernel threading model more 
fully later on. 

Another technical goal is to implement a message passing 
system for use both within the kernel as well as between 
kernel and user land threads.  System calls can then be 
implemented as messages and new application-specific system 
calls can be added easily. The message passing system is also 
integral to future plans for clustering and single system image 
(SSI) support. 

The next goal is to add multiprocessor support to the kernel 
using a thread serialization paradigm where resources are 
owned by a particular processor and messages passed to 
perform an operation on that resource.  Through judicious 
application of partitioning and replication along with lock-free 
synchronization techniques, we believe we can achieve greater 
scalability as the number of processors increase than a system 
that has locking overhead and contention for shared resources. 

From an implementation point of view, the multiprocessing 
work requires a cleanup in the existing code base of old 
assumptions and dependencies that no longer hold in an MP 
environment, such as being able to access the current running 
process. We want to go further along these lines and decouple 
some of the dependencies in the I/O subsystem on the current 
address space, generalizing them to work with virtual memory 
objects instead.  The end goal is to be able to run device 
drivers and large subsystems such as the VFS layer in user-
land. This facilitates development of new drivers and 
filesystems. When application-specific customizations are 
factored in, running in user-land can potentially result in an 
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increase, rather than decrease, in end-application performance. 
Also along the theme of pushing functionality out to user-

land, DragonFlyBSD will implement a threads package where 
thread scheduling is performed in user-land.  Kernel support 
in the form of shared memory regions and batched message 
passing will allow similar efficiencies to the Scheduler 
Activations model [10] adopted by earlier versions of Solaris 
and by FreeBSD 5. 

B.  Efficiency through scale 
The effects of size on an organization are well-noted in 

many diverse fields [1][7].  For example, as a corporation gets 
bigger, it is no longer able to move as nimbly and introduce 
new products in new markets as quickly as its smaller 
counterparts [1]. In classroom settings, teachers know well 
that smaller class sizes lead to more class interaction. The 
FreeBSD organization has grown tremendously and rapidly in 
its successful 10 year run --- so much so that it now suffers 
from many of the same symptoms that large organization do. 
By reorganizing in a smaller group, we aim to improve 
interaction, to exchange ideas more freely, and to recapture 
the rapid pace of innovation that FreeBSD had in its earlier 
days. 

 

IV. CONCEPTS 

A. Non-uniform Memory Access 
The illusion of the symmetric multiprocessor (SMP) 

hardware model where memory access costs are uniform 
throughout the memory space that hardware designers have 
implemented in the past for the benefit of systems people to 
simplify system software is getting harder to maintain as 
processor speeds continue to increase faster than memory or 
I/O bus speeds. In fact, already the Intel Itanium and the AMD 
64-bit processors are decidedly NUMA in nature. 

The SMP software model where any processor can field 
any interrupt and any processor can run any available process 
has severe cache performance penalties when run on a NUMA 
architecture because modern CPUs only run well out of cache. 
SMP systems usually have to resort to some sort of scheduler 
modifications to gain cache affinity and run reasonably well. 

Rather than starting with a SMP viewpoint and then trying 
to match it to NUMA reality, DragonFlyBSD starts out with a 
NUMA-centric view of the world and explicitly partitions the 
workload among multiple processors.  For threads, this show 
up in the form of guarantees that a running thread will never 
be pre-empted by another processor nor will it ever be pre-
empted by a non-interrupt thread.  This means code can be 
written to effectively utilize and cache per-cpu global data 
without obtaining any locks.  We shall see later on how the 
network subsystem takes advantage of this to explicitly 
partition TCP connections among multiple processors. 

B. Partitioning and replication 
DragonFlyBSD adopts a similar approach to the IBM K42 

research operating system [2] in preferring the techniques of 
partitioning and replication along with lock-free 
synchronization techniques [3][27] over mutex locking and 
other traditional forms of SMP concurrency control.  Unlike 
K42 which was written in C++, provides a Linux application 
environment [4], and only runs on 64-bit processor 
architectures, DragonFlyBSD applies these techniques directly 
to a BSD kernel running on both 32-bit as well as 64-bit 
processor architectures. 

C. Application-specific customization 
Much of the OS research for the past 10 years has dealt with 

application-specific customizations [5][6] and the huge 
performance benefits associated with closer integration 
between user-land and OS facilities. For example, by 
exploiting extensibility, the Exokernel project found in [11] a 
2x improvement in web-server performance.  For a filesystem 
implemented in user-land, it found no performance 
degradation on most operations and even a 4x improvement 
on one operation. To allow for a similar degree of application-
specific customization, DragonFlyBSD plans to export the 
message passing facility to user-land.  Because both kernel 
and user-land threads are based on the same underlying 
LWKT infrastructure, there is no appreciable difference 
between passing a message to a user-land thread versus a 
kernel thread. 

 

V. INFRASTRUCTURE 

A.  Lightweight Kernel Threads 
The Lightweight Kernel Threads (LWKT) system 

decouples the traditional Unix notions of an execution context 
from a VM address space.  This is similar to what many other 
systems such as Solaris [8] and FreeBSD [9] have done as part 
of their MP and threads support. The API for the LWKT 
system is shown in Table I. 

The LWKT system has a number of features designed to 
remove or reduce contention between processors: 

• Each processor has its own self-contained threads 
scheduler. Threads are tied to a processor and can 
only move under special circumstances. 

• A thread can only be pre-empted by an interrupt 
thread. Both fast interrupts, where the interrupt is 
handled in the current thread context, and threaded 
interrupts, where the LWKT scheduler switches to 
the interrupt thread and back when it’s done, are 
supported by the LWKT system. 

Cross-processor scheduling is implemented via 
asynchronous inter-processor interrupts.  Because these 
messages can be batched for a given interrupt, the system 
exhibits graceful degradation under load. 

A lot of work went into separating the LWKT scheduler 
from the user process scheduler. The LKWT thread scheduler 
is MP-safe and utilizes a fast per-cpu fixed-priority round-
robin scheme with a well-defined API for communicating 
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with other processors’ schedulers. The traditional BSD multi-
level scheduler is implemented on top of the threads 
scheduler. Additionally, the LWKT subsystem provides a 
clean API for implementing alternative user process 
schedulers if desired. 

B. Message passing system 
The message passing system is comprised of ports on which 

threads send and receive messages. The API for the message 
passing system is shown in Table II. 

Cross-processor message passing is currently implemented 
with a software crossbar switch and a lock-free ring buffer.  
This extends the lock-free path all the way down from the 
kernel subsystems to the messaging layer. 
 

VI. NETWORK SUBSYSTEM 
Previous efforts on speeding up networking can be 

classified into two categories, algorithmic enhancements to 
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TABLE II 
SSAGING API 

Description 

es msg with command. The reply port is 
e message port for the current thread. 

kt_initmsg(lwkt_msg_t msg, int cmd) 
message synchronously. 

kt_sendmsg(lwkt_port_t port, lwkt_msg_t 

message asynchronously. 

_domsg(lwkt_port_t port, lwkt_msg_t 

 reply to the message. 

kt_replymsg(lwkt_msg_t msg, int error) 
e the next message from the port's 
e queue, return NULL if no messages are 
. The calling thread must own the port. 

kt_getport(lwkt_port_t port) 
or a message to arrive on a port. 

kt_waitport(lwkt_port_t port, 
sg_t msg) 
e a port for use and assign it to the 
d thread. 

kt_initport(lwkt_port_t port, thread_t td) 
es msg with a port and command. 

kt_initmsg_rp(lwkt_msg_t msg, 
rt_t rport, int cmd) 

ssage flags are all cleared except for 
ASYNC, which retains the old setting, 
GF_DONE, which is always set. The 
e port is reset to the passed in value. 

kt_reinitmsg(lwkt_msg_t msg, 
rt_t rport) 
 message onto the port. 

_beginmsg(lwkt_port_t port, lwkt_msg_t 

 message onto the port. 

_forwardmsg(lwkt_port_t port, 
sg_t msg) 
or reply to message. 

_waitmsg(lwkt_msg_t msg) 
the message. 

kt_abortmsg(lwkt_msg_t msg) 
TABLE I 
WKT API 

Description 

e a new thread on cpu. Called by 
eate(). 

t lwkt_alloc_thread(struct thread *td, 
u) 
ates thread. 

kt_free_thread(thread_t td) 
 new thread. 

_create(void (*func)(void *), void *arg, 
 thread **tdp, thread_t template, 
flags, int cpu, const char *fmt, ...) 
 a thread. 

kt_exit(void) 
to the next runnable thread on this 

or. 

kt_switch(void 
 equal or higher priority threads. 

kt_yield(void) 
n the specified wait queue until signaled. 

wkt_block(lwkt_wait_t w, const char 
) 
 wait queue. 

kt_signal(lwkt_wait_t w, int gencnt) 
 a thread's priority above the highest 
 interrupting priority. Synchronous 
g and blocking are allowed while in a 

section. 

t_enter(void) 
ritical section. 

t_exit(void) 
and advantages accrued from 
ether in hardware or software or 
on among the two. Under the first 
hancements, DragonFlyBSD has 
the more recent networking 
NewReno [16] set of corrections, 
sizes on connection startup [17], 

ous retransmits [18], right-edge 
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recovery, also known as Limited Transmit [19], and early 
retransmit of lost data [20].  Collectively, these greatly 
improve network performance under a range of real-life 
network situations.  For example, Balakrishnan et al. found in 
[30] that under the conditions where Limited Transmit applies, 
NewReno plus Limited Transmit is more than twice as fast as 
SACK. Additional algorithmic improvements are planned for 
high-speed networking as they come down the standards track 
[21][22][23][24]. 

On the implementation side, DragonFlyBSD has made a 
number of improvements to clean up the code and speed up 
network operations. For example, UDP transmissions no 
longer need to do a temporary pseudo-connect, a major 
bottleneck which Partridge had identified to be one third of 
the cost of UDP transmissions [28][29]. TCP connection setup 
through the syncache no longer does a number of relatively 
expensive processor priority level changes and some 
unnecessary allocation failure checks and their attendant 
recovery code have been removed.  DragonFlyBSD also takes 
full advantage of hardware support when available. For 
example, it supports segmenting TCP packets in hardware1. 
But perhaps the most radical work has been done on taking 
advantage of multiple processors. 

The work to distribute network processing across multiple 
processors was carried out in several stages.  The first stage 
was to create per-protocol handling threads.  While the run-to-
completion style of protocol processing [12][13] may have 
been in vogue several years ago, now, the key to getting 
modern processors to run fast is definitely I-cache footprint 
[14] and sending messages to protocol threads allows for a 
form of cohort scheduling [15] where protocol processing 
occurs in batches, helping to improve cache locality. 

So, the network subsystem uses messaging extensively. The 
bottom half of the kernel, the interrupt thread, sends a 
message to the protocol thread to hand off an incoming 
packet. From the top-half of the kernel, system calls made by 
user processes are turned into messages and dispatched to the 
appropriate protocol thread.  Because the top-half and the 
bottom-half of the kernel use the same method for selecting 
which protocol thread to dispatch a request to, access to a 
given connection is effectively serialized by this process and 
no locks are required for synchronization.  In addition, 
because a protocol thread is started on each processor for 
TCP, two or more TCP connections can be processed in 
parallel. Furthermore, Selahi found in [31] that this form of 
parallelism scales better than the SMP locking approach as the 
number of processor increases.  

Protocol thread management is delegated to the individual 
protocol module, so the rest of the kernel and networking 
stack does not need to know how many threads nor which 
processor those threads were bound to. There is a function 
pointer that the generic network dispatch routine calls to 

determine which protocol thread to dispatch a packet to.  
Figure I shows the code for the dispatch function for the IP 
protocol.  The generic network dispatch code calls this routine 
on receipt of an IP packet.  Note how each protocol has 
control over which type of traffic it wishes to distribute to 
multiple processors and how.  The UDP dispatch function 
currently uses the same demultiplexing logic as TCP for non-
multicast UDP packets, but it could just as readily do round-
robin, which would implement the hybrid IPS strategy 
described by Selahi in [31]. 

 

 
 
          FIGURE I 
 
Thread creation is done during protocol initialization and 

each protocol has control over how many threads it wishes to 
create. At the moment, due to time constraints and 
prioritization of developer resources, DragonFlyBSD only 
creates multiple protocol processing thread for the widely 

static __inline int 
INP_MPORT_HASH(in_addr_t src, in_addr_t dst, in_port_t sport, 
in_port_t dport) 
{ 
 return ((src ^ sport ^ dst ^ dport) & ncpus2_mask); 
} 
 
/* 
 * Map a packet to a protocol processing thread. 
 */ 
lwkt_port_t 
ip_mport(struct mbuf *m) 
{ 
 struct ip *ip = mtod(m, struct ip *); 
 int iphlen; 
 struct tcphdr *th; 
 struct udphdr *uh; 
 lwkt_port_t port; 
 int cpu; 
 
 iphlen = ip->ip_hl << 2; 
 
 switch (ip->ip_p) { 
 case IPPROTO_TCP: 
  th = (struct tcphdr *)((caddr_t)ip + iphlen); 
  cpu = INP_MPORT_HASH(ip->ip_src.s_addr, ip->ip_dst.s_addr, 
      th->th_sport, th->th_dport); 
  port = &tcp_thread[cpu].td_msgport; 
  break; 
 case IPPROTO_UDP: 
  uh = (struct udphdr *)((caddr_t)ip + iphlen); 
  if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 
      in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) { 
   cpu = 0; /* multicast data structures not parallelized yet */ 
  } else { 
   cpu = INP_MPORT_HASH(ip->ip_src.s_addr, 
       ip->ip_dst.s_addr, uh->uh_sport, uh->uh_dport); 
  } 
  port = &udp_thread[cpu].td_msgport; 
  break; 
 default: 
  port = &netisr_cpu[0].td_msgport; 
  break; 
 } 
 
 return (port); 
} 

 
1 “The performance gains offered by TCP Segmentation Offload (TSO) 

were so substantial in the Microsoft operating system that Intel took advantage 
of them in the Linux environment. … Intel has found a 60% reduction in CPU 
utilization and an increase in throughput.” [32] 
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used TCP and UDP protocols. However, as illustrated by 
Figure I, the design allows for incremental deployment of MP 
support, so other protocols can readily be distributed as 
needed.  This is in stark contrast to the all-or-nothing 
requirement enforced by the SMP locking approach [33]. 

 

VII. STATUS 
Much of the infrastructure, including the lightweight 

threads and messaging system, has been completed, and is in 
use throughout the rest of the system. Additional facilities 
such as the user-land messaging are close to completion --- an 
early form has been committed to the source repository. 

Work is progressing on the individual subsystems. A new 
name cache has been written. Portions of the device driver 
framework have been converted to message passing style. The 
network stack already distributes packets to protocol threads 
running on multiple processors, from both the lower-half 
interrupt handler and the upper-half system call handling 
code.  

The system is available today from the project web site and 
its mirror web sites.  It runs reliably, and, in preliminary 
testing, performs comparably to its FreeBSD 4 predecessor 
and noticeably better than FreeBSD 5. The first formal release 
of DragonFlyBSD is scheduled for June of 2004. 

 

VIII. CONCLUSION 
The DragonFlyBSD operating system applies recent 

concepts in operating system research to the FreeBSD 4 
operating system. By building base infrastructure facilities and 
through careful redesign of the API between traditional kernel 
modules, we hope to bring the advantages of multiprocessing 
and other more recent advances to BSD, while maintaining or 
improving upon the stability and high performance of the 
traditional monolithic kernel. 
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