FreeBSD support for Stanford NetFPGA

Wojciech A. Koszek wkoszek@FreeBSD.org 2009.09.17

Work was done as a part of the internship at:

Helsinki Institute of Information Technology <<u>http://www.HIIT.fi</u>>

> Ericsson Nomadic Lab <http://www.ericsson.com>

> > Helsinki, Finland

Code I'm going to discuss:

http://people.freebsd.org/~wkoszek/netfpga

netfpga-devel@ mailing list has this code as well

Very short introduction to FPGAs

Physically, FPGA processor is just a chip

PHYSICAL PINS

PHYSICAL PINS

FPGA PROCESSOR PHYSICAL PINS

PHYSICAL PINS

FPGA processor is just a bunch of digital logic blocks

Each digital logic block can be programmed to perform specific action on its inputs

LOGIC EXPRESSION

Block functionality and block connections can be changed at will with **Hardware Description** Language like Verilog

Physical connections between HDL's names and physical PINs are specified in separate **User Constraints File** (UCF) file

HDL (Verilog/VHDL)

USER CONSTRAINT FILE

Verification and synthesis

Bit Stream File

Examples of cool stuff people do in Verilog right now

Accelerated computations

- Cryptography
- Compression
- Complete Systems-on-Chip
 - CPU with MMU
- Accelerated Networking

FPGA chip can perform specific task much, much faster than conventional CPUs

Possibility of offloading main CPU

Computer does its job with less power consumption

FPGA work in FreeBSD

Xilinx ISE WebPack (IDE for Verilog) used to work for me year ago on FreeBSD

(Linux emulation layer)

FPGA processor programming used to work for me as well

With xc3sprog project tools, I was able to program Xilinx Spartan 3 Starter Kit

WebPACK 10.1 with recent FreeBSD-CURRENT

🛛 <u>F</u> ile <u>E</u> dit <u>V</u> iew P <u>r</u> oject <u>S</u> ource <u>P</u> rocess <u>W</u> indow <u>H</u> elp			20					8 ×
] 🔊 🖩 🕼 🖉 🖻 🗶 🗞 🖷 🖉 🖉 🖉	(🔎 🖸 🕅 🗮 🖉 🖉 🙀	A 🐹	_ (i 🖉 🖉] 🔯 🗶 📌 🕱	# # #	9		
×.	🔀 FPGA Design Summary	serial Project Status						
Sources for: Implementation	- Design Overview	Design Overview			P	rogramming File	Generated	4
🖻 serial	🖹 Summary	Module Name:	uart to led	• Errors:		lo Errors		
⊡	IOB Properties	Tamet Device: vc3:500e-4fr320		• Warnings:	Warnings: No		No Warnings	
□· <mark>V</mark> wart_to_led (serial.v)	E Timing Constraints	Desduct	ISE 10.1 WohBACK	Routing Results:		All Signals Completely		-
	- Pinout Report	Version:	ISE TO.T - WEDFACK	• Noticing h	esuits.	outed	etety	
	🔄 🔚 Clock Report	Design Goal:	Balanced	• Timing	A	I Constraints Me	et	-1
	Errors and Warnings			Constraints:				
	Synthesis Messages	Design	Xilinx Default	• Final Timi	ng O	(Timing Report)		
	- Infansiation Messages	Strategy:	(unlocked)	Score:				4
Sources REFiles Spanchote RU Invarias	- Place and Route Messages							-1
	📄 Timing Messages	serial Partuton Sum					E	
× ×	📄 Bitgen Messages	No partition information was found.						
Processes for: uart_to_led	- E All Current Messages	Device Utilization Summary						ă I
Add Existing Source	Project Properties	Logic Utilization		Lauon Summary	Available	Utilization	Hata(a)	
Create New Source		Number of Slice Flim Flore		USeu	Available 0.212		NULE(S)	-
Design Utilities		Louis Distribution			3,312	. 176		-
User Constraints Enable Message Filtering				4.050			_	
🗄 🔃 🚱 Synthesize - XST	Enhanced Design Summary Contents	Number of Slices containing only related logic			4,656) 1%		-
⊞ 🧞 🚱 Implement Design	Show Partition Data			i logic 1	1	100%		-
Configure Terrat Device	- D Show Errors	Number of Slices containing unrelated logic		igic U	1	0%		_
H- Calo Conligure Target Device	Show Warnings	Number of bonded <u>IOBs</u>		4	232	2 1%		_
	Show Clock Report	Number of BUFGMUXs		1	24	4%		
		Deuformance Ourment						-1
		Performance Su			amary		Direct	
[®] ⊈ Processes	J	Final Timing Scol	re: U	ŀ	nout Data:	<u>PI</u>	nout	
	🖉 Design Summary							
Started : "Launching Design Summary".								 I I
📋 Console 🛛 🙆 Errors 🔥 Warnings 🔂 Tcl Shell 🛛 🙀 F	ind in Files							
							LO	C

NetFPGA card

Yet another network adapter?!

.well, sort of:

- 4 ports of Gigabit Ethernet handled by Broadcom 5464SX
- 2 high speed, serial I/O connectors
- 64MB of DDR2 DRAM, 4.5MB of SRAM
- PCI interface

...but FPGA processors are present as well

How does it look like in practice?

NetFPGA: 3 puzzles

``Firmware'': functionality
 provider
 (bitstream)

Userspace tools: for firmware (bitstream) upload

Kernel driver: low-level glue

Broadcom PHY deals with physical aspects of the Ethernet

This chip doesn't have documentation available publicly :-(

Broadcom chip is tied to Xilinx Virtex II FPGA processor

Processor implements Ethernet MAC functionality (MAC this is provided by Xilinx)

The rest of the functionality comes from the designer

My work was based on ready-to-use reference design called ``4 port 1Gbit Ethernet NIC"

PCI communication is handled by separate, smaller FPGA chip

NetFPGA naming

CPCI: small FPGA (Spartan2) responsible for PCI interface

CNET: BIG FPGA for Ethernet control

Packet transmission in the NetFPGA world

Idle state

Network

NetFPGA

OS

Data is being sent to the card

Network

NetFPGA

OS

Interrupt is delivered

OS **NetFPGA** Network

"DATA AVAILABLE"

In order to "see", which port has a data available, you read a register

You get the transfer length this way too

DMA transfer is started

Network

NetFPGA

Data is copied into the single linear buffer

Please note we don't have a direct access to hardware rings and descriptors

NetFPGA programming
NetFPGA programming (Linux)

Current utilities in Linux

- Read card's memory chunk
- Write to the card
- Program the card
- Reprogram CPCI

...utilities:

readreg writereg nf2 download cpci reprogram.pl

NetFPGA Linux driver

In Linux driver:

PCI registers saved from userspace :-(

Additional dependency on user-space tools

NetFPGA driver is 'monolithic'

CPCI/CNET programming is tied to Ethernet port structures

Use of ifnet-specific ioctl()s

Other problems

See netfpga-devel@ mailing list

FreeBSD driver design

Driver is BSD-licensed

Driver has two parts

Programming (/dev/...) interface Ethernet (``ifconfig") layer

Card itself appears to NEWBUS as

``NetFPGA controller''
Later called (NFC)

It's up to the controller to export CPCI/CNET interface Each NFC has 4 Ethernet
 ports, later called
 `NetFPGA ports'' (NFP)

Appearance of NetFPGA in the FreeBSD (devinfo -rv)

NFC

Programming interface appears as separate device

/dev/netfpga[0-9]+

You just send ioctl() commands there

ioctl() handler detects the fact of ``Programming"

It saves registers and restores them once device is being closed

In FreeBSD, NFC also exports string with register offsets via sysctl() interface The plan is to fight with quite dynamic nature of HDL specifications and stay away from ABI breakages

nf_read_reg(``REGISTER'')

instead of

nf_read_reg(REGISTER)

It would be nice to be able to enable Ethernet interface layer only when there's Ethernet support in a bitstream

Any ideas for "Ethernet" detection?

NFPS

NFPs are handled by separate module (driver)

NFPs are started from NFC attach routine with:

bus_generic_attach()

Every NFP is visible to the system as Ethernet interface

nf2c0: flags=8843<UP,BROADCAST,RUNNING, SIMPLEX,MULTICAST> metric 0 mtu 1500 options=28<VLAN_MTU,JUMBO_MTU> ether 00:6e:66:32:63:30 inet 10.0.0.1 netmask 0xff000000 broadcast 10.255.255.255 media: Ethernet autoselect (none)

NetFPGA programming in FreeBSD

One program - nfutil(8) deals with CPCI reprogramming, CNET programming and register access nfutil(8) is built on top of the *libnetfpga*, library for NetFPGA operations nfutil(8) will probably have to provide some argv[0] tricks in order to mimic Linux utilities Right now nfutil(8) has hierarchical commands:

nfutil image write <file>

nfutil cpci write <file>

nfutil reg read <register>

There's is libcla, library for hierarchical command handling

...not really important and probably has to be thrown away

<file> arguments point to bitstream files

Bitstream handling is done with libxbf, library for Xilinx Bitstream File handling
Some numbers

Non-NetFPGA performance

Broadcom (FreeBSD) to Intel (Linux) performance

NetFPGA performance (Linux)

NetFPGA driver performance (Linux)

NetFPGA performance (FreeBSD)

ENOTYET :-(

Problems

Minimum DMA transfer is 60 bytes

I could get handling of this limitation wrong

I could get software mitigation of typical ring/descriptors primitives wrong

(There's no access to hardwareassisted RX/TX of packets)

Linux driver has more than one buffer for transmission but only one for receiving...

Reset of the PHY chip seems to take some ``undeterministic amount of time"

No Broadcom chip specs :-(

I now got some support about MAC/PHY/CNET reset order

No hardware to test :-(

Problems with new register system made it impossible to work with latest NetFPGA release

I used 1.2.5 release

RFC

NetFPGA comes with broken firmware

New firmware has to be uploaded just after computer boot

NetFPGA firmware

- Licensing
 - NetFPGA code and Verilog files: BSD license
 - MAC IP Core from Xilinx:
 - Should be OK to redistribute
- CPCI reprogramming could happen as a part of driver attach routine:
 - CPCI image is relatively small

Summary

FreeBSD (very) experimental support is here...

- Card is detected and can be programmed
- Programming utilities are here
- Basic network functionality works
 - Ping program is able to transmit/receive packets
 - Basic benchmarking works

Future

Plans

- Bring NetFPGA support to the FreeBSD source code base
 - Work on stability
 - Work on PERFORMANCE

Being better than Linux would be nice!

FreeBSD/NetFPGA out-of-box?

Card driver (netfpga.ko)

Port driver (if_nf.ko)

How do we handle unregistered PCI Vendor and PCI Device numbers?

Other plans?

Getting an access to the FPGA hardware at home?

2 x Future

Support for NetFPGA-NG

(planned release: somewhere in 2010)

NetFPGA-NG:

4x10Gbit

Big FPGA processor (Virtex 5)

Maybe improved interrupt policy?

Getting support for more FPGA-based accelerators

Special THANKS... Pekka Nikander (Ericsson) Jussi Kangasharju (HIIT)

Code I talked about:

http://people.freebsd.org/~wkoszek/netfpga

netfpga-devel@ mailing list has this code as well

This presentation will be available on:

http://FreeBSD.czest.pl/~wkoszek/netfpga/

and

http://people.FreeBSD.org/~wkoszek/netfpga/

The End

Wojciech A. Koszek wkoszek@FreeBSD.org 2009.09.17