

FreeBSD support for
Stanford NetFPGA

Wojciech A. Koszek
wkoszek@FreeBSD.org

2009.09.17

mailto:wkoszek@FreeBSD.org

Work was done as a part of
the internship at:

Helsinki Institute of Information Technology
<http://www.HIIT.fi>

Ericsson Nomadic Lab
<http://www.ericsson.com>

 Helsinki, Finland

http://www.HIIT.fi/
http://www.ericsson.com/

Code I'm going to
discuss:

http://people.freebsd.org/~wkoszek/netfpga

netfpga-devel@ mailing list has this code
as well

http://people.freebsd.org/~wkoszek/netfpga

Very short
introduction to

FPGAs

Physically, FPGA
processor is just a chip

FPGA
PROCESSOR

PHYSICAL PINS

PHYSICAL PINS

P
H

Y
S

IC
A

L
P

IN
S

P
H

Y
S

IC
A

L
P

IN
S

FPGA processor is just a
bunch of digital logic blocks

I/O
buffer

LOGIC

MUL

Each digital logic block can be
programmed to perform specific

action on its inputs

LOGIC EXPRESSION

Block functionality and block
connections can be
changed at will with

Hardware Description
Language like Verilog

Physical connections between
HDL's names and physical PINs
are specified in separate User

Constraints File (UCF) file

HDL
(Verilog/VHDL) USER

CONSTRAINT FILE

Verification and synthesis

Bit Stream File

Examples of cool stuff
people do in Verilog right

now
 Accelerated computations

 Cryptography
 Compression

 Complete Systems-on-Chip
 CPU with MMU

 Accelerated Networking

FPGA chip can perform
specific task much, much
faster than conventional

CPUs

Possibility of off-
loading main CPU

Computer does its job with
less power consumption

FPGA work in FreeBSD

Xilinx ISE WebPack
(IDE for Verilog)

used to work for me year ago
on FreeBSD

(Linux emulation layer)

FPGA processor
programming used to
work for me as well

With xc3sprog project tools, I was
able to program Xilinx Spartan 3

Starter Kit

WebPACK 10.1 with recent
FreeBSD-CURRENT

NetFPGA card

Yet another network
adapter?!

..well, sort of:
 4 ports of Gigabit Ethernet
 handled by Broadcom 5464SX

 2 high speed, serial I/O
 connectors

 64MB of DDR2 DRAM, 4.5MB of
 SRAM

 PCI interface

...but FPGA
processors are
present as well

How does it look like
in practice?

NetFPGA: 3 puzzles

 ``Firmware'': functionality
 provider
 (bitstream)

Userspace tools: for firmware
 (bitstream)
 upload

 Kernel driver: low-level glue

Broadcom PHY deals with
physical aspects of the Ethernet

This chip doesn't have
documentation available publicly :-(

Broadcom chip is tied to Xilinx
Virtex II FPGA processor

Processor implements Ethernet MAC
functionality (MAC this is provided by Xilinx)

The rest of the functionality
comes from the designer

My work was based on ready-to-use reference
design called ``4 port 1Gbit Ethernet NIC''

PCI communication is
handled by separate,
smaller FPGA chip

NetFPGA naming

CPCI: small FPGA (Spartan2)
 responsible for PCI
 interface

CNET: BIG FPGA for Ethernet
 control

Packet transmission
in the NetFPGA world

Idle state

 OSNetFPGANetwork

Data is being sent to the
card

OSNetFPGANetwork

Interrupt is delivered

OSNetFPGANetwork

„DATA AVAILABLE”

In order to „see”, which port has a
data available, you read a register

OSNetFPGANetwork

You get the transfer length this way too

DMA transfer is started

OSNetFPGANetwork

Data is copied into the
single linear buffer

Please note we don't have a direct
access to hardware rings and

descriptors

NetFPGA
programming

NetFPGA programming
(Linux)

SAVE PCI REGISTERS

Upload REPROGRAMMER bitstream

Upload CPCI image

Upload CNET image

 GO!

Restore PCI registers

USER SPACE

Current utilities in Linux
 Read card's memory chunk
 Write to the card
 Program the card
 Reprogram CPCI

..utilities:
 readreg
 writereg
 nf2_download
 cpci_reprogram.pl

NetFPGA Linux
driver

In Linux driver:

PCI registers saved
from userspace :-(

Additional dependency
on user-space tools

NetFPGA
driver is

'monolithic'

●CPCI/CNET programming is
tied to Ethernet port

structures
●

●Use of ifnet-specific ioctl()s

Other problems
See netfpgadevel@ mailing list

FreeBSD driver
design

●

●

Driver is BSD-licensed

Driver has two parts

 Programming (/dev/...) interface
 Ethernet (``ifconfig'') layer

Card itself appears to
NEWBUS as

``NetFPGA controller''

Later called (NFC)

It's up to the
controller to export
CPCI/CNET interface

Each NFC has 4 Ethernet
ports, later called

``NetFPGA ports'' (NFP)

NFC

NFP0 NFP1 NFP2 NFP3

PHY0 PHY1 PHY2 PHY3

Appearance of NetFPGA in the
FreeBSD (devinfo -rv)

PCI

NFC

NFP [0-3]

NFC

Programming interface
appears as separate

device

/dev/netfpga[0-9]+

 You just send ioctl() commands
there

ioctl() handler detects the
fact of ``Programming”

It saves registers and restores
them once device is being

closed

In FreeBSD, NFC also exports
string with register offsets

via sysctl() interface

The plan is to fight with
quite dynamic nature of HDL
specifications and stay away

from ABI breakages

nf_read_reg(``REGISTER'')

instead of

nf_read_reg(REGISTER)

 It would be nice to be able
to enable Ethernet

interface layer only when
there's Ethernet support in

a bitstream

Any ideas for
„Ethernet”
detection?

NFPs

NFPs are handled by
separate module

(driver)

NFPs are started from
NFC attach routine with:

 bus_generic_attach()

Every NFP is visible to the system
as Ethernet interface

 .

nf2c0: flags=8843<UP,BROADCAST,RUNNING,
 SIMPLEX,MULTICAST> metric 0 mtu 1500

options=28<VLAN_MTU,JUMBO_MTU> ether
00:6e:66:32:63:30
inet 10.0.0.1 netmask 0xff000000
broadcast 10.255.255.255 media:
Ethernet autoselect (none)

NetFPGA
programming in

FreeBSD

One program – nfutil(8) deals
with CPCI reprogramming,

CNET programming and
register access

nfutil(8) is built on top of
the libnetfpga, library for

NetFPGA operations

nfutil(8) will probably have
to provide some argv[0]
tricks in order to mimic

Linux utilities

Right now nfutil(8) has
hierarchical commands:

nfutil image write <file>

nfutil cpci write <file>

nfutil reg read <register>

There's is libcla, library
for hierarchical

command handling

...not really important and probably
has to be thrown away

<file> arguments point to
bitstream files

Bitstream handling is done
with libxbf, library for Xilinx

Bitstream File handling

Some numbers

Non-NetFPGA performance

NetFPGA performance (Linux)

NetFPGA performance
(FreeBSD)

ENOTYET :-(

Problems

Minimum DMA transfer is
60 bytes

I could get handling of this
limitation wrong

I could get software mitigation of
typical ring/descriptors primitives

wrong

(There's no access to hardware-
assisted RX/TX of packets)

Linux driver has more than
one buffer for transmission
but only one for receiving...

Reset of the PHY chip seems
to take some

``undeterministic amount of
time”

No Broadcom chip specs :-(

I now got some support about
MAC/PHY/CNET reset order

No hardware to test :-(

Problems with new register
system made it impossible to

work with latest NetFPGA
release

I used 1.2.5 release

RFC

NetFPGA comes with
broken firmware

New firmware has to be
uploaded just after

computer boot

NetFPGA firmware
 Licensing

 NetFPGA code and Verilog files:
BSD license

 MAC IP Core from Xilinx:
 Should be OK to redistribute

 CPCI reprogramming could happen
as a part of driver attach routine:
 CPCI image is relatively small

Summary

FreeBSD (very) experimental
support is here...

 Card is detected and can be
programmed

 Programming utilities are here
 Basic network functionality works

 Ping program is able to
transmit/receive packets

 Basic benchmarking works

Future

Plans
 Bring NetFPGA support to the
 FreeBSD source code base
 Work on stability
 Work on PERFORMANCE

 Being better than Linux
 would be nice!

FreeBSD/NetFPGA
out-of-box?

Card driver (netfpga.ko)

Port driver (if_nf.ko)

How do we handle
unregistered PCI Vendor and

PCI Device numbers?

Other plans?

Getting an access to
the FPGA hardware at

home?

2 x Future

Support for
NetFPGA-NG

(planned release: somewhere in 2010)

NetFPGA-NG:
4x10Gbit

Big FPGA processor (Virtex 5)

Maybe improved interrupt policy?

Getting support for
more FPGA-based

accelerators

Special THANKS...
 Pekka Nikander (Ericsson)
 Jussi Kangasharju (HIIT)

Code I talked about:

http://people.freebsd.org/~wkoszek/netfpga

netfpga-devel@ mailing list has this code
as well

http://people.freebsd.org/~wkoszek/netfpga

This presentation will
be available on:

http://FreeBSD.czest.pl/~wkoszek/netfpga/

and

http://people.FreeBSD.org/~wkoszek/netfpga/

http://FreeBSD.czest.pl/~wkoszek/netfpga/

Q/A

The End

Wojciech A. Koszek
wkoszek@FreeBSD.org

2009.09.17

mailto:wkoszek@FreeBSD.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

