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A Case Study: SQL database performance

Why Database?

I Off-the-shelf benchmark (sysbench;
/usr/ports/benchmarks/sysbench/)

I Seems to be a reasonable benchmark (as opposed to
super-smack; 1-byte I/O!)

I FreeBSD did not perform well compared to Linux; excellent
motivator for performance improvements

What Database?

I mySQL 5.0.37 (thread-based)

I PostgreSQL 8.2.4 (process-based + SysV IPC)
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Configuration details

I amd64 system, 4*dual-core 2.2GHz CPUs

I 3GB RAM (working set fits in RAM)
I sysbench OLTP test

I Complex transaction-based queries
I Read-only; no disk access to avoid benchmarking disk

performance

I multithreaded benchmark client

I clients and servers on the same system

I communication via UNIX domain socket

I 2 minute runs, after a warm-up run with 8 clients.
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MySQL: Progress in FreeBSD 5.x and 6.x
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MySQL: The competition (FreeBSD vs Linux)
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MySQL: Progress in FreeBSD 7.0 through February 2007
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MySQL: Where we are today
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Linux: Blame it on malloc? glibc vs tcmalloc

Source: http://ozlabs.org/∼anton/linux/sysbench/
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Linux: Not the whole story?

I Some reports on LKML of difficulty reproducing the tcmalloc
result on 8-core systems

I tcmalloc claimed not to be a good general-purpose allocator
I A process-global semaphore acquired by all linux futex

operations.
I Agrees with the asymptotically single-threaded performance

measured on amd64

...not our problem!
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MySQL: jemalloc vs phkmalloc
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PostgreSQL
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Progress since BSDCan 2006 (highlights)

I More efficient lock profiling
I Still very inefficient; explore a worker thread model?

I UNIX domain socket locking; fine-grained locking for better
concurrency

I Experimental scheduler locking work (on-going)

I reader-writer (rw) locks (non-sleepable)

I Optimized sx locks (sleepable); now an efficient low-level
primitive

I File descriptor locking; home-brewed msleep lock → sx
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Progress since BSDCan 2006 II

I ULE 2.0. Now significantly out-performing 4BSD on the SMP
workloads that have been benchmarked.

I A remaining performance anomaly: poor CPU affinity at
intermediate loads on dual-core systems

I Benchmarking on other workloads required

I Giant pushdown

I Network stack optimization and regularization
I libthr is now the default thread library in 7.0 (finally!)

I Should also be default on 6.x

I CAM subsystem locking (scottl)
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Conclusion of the SMPng project

The SMPng project was launched in June 2000 and was a major
focus of development in FreeBSD 5.x and above.

“The goal of the SMPng Project is to decompose the
Giant lock into a number of smaller locks, resulting in
reduced contention (and improved SMP performance).”

The SMPng project was formally concluded in February 2007 after
achieving this goal.
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Remnants of the Giant lock

The FreeBSD 7.0 kernel is mostly Giant-free. Remaining
Giant-locked systems are:

I TTY locking. In most configurations the Giant lock has now
effectively devolved onto a Giant TTY lock.

I Some drivers (some CAM SIMs, pseudo-devices)

I Some filesystems (MSDOS, SMB, NFSv4, . . .)

I Some network protocols (IPX over IP, IPv6 ND6/MLD6,
netatm, . . .)

I newbus (scottl; work in progress)

I USB, Firewire

I Parts of VM (contigmalloc, . . .)

I Some scattered use elsewhere: sysctls, file operations,
sysarch(), . . .

See http://wiki.freebsd.org/SMPTODO for the up-to-date list
of Giant-locked code and project ownership.
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Danish axe time!
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Legacy Giant-locked code to be removed in 7.0

I KAME IPSec; in favour of Fast IPSec (gnn, bz)

I I4B ISDN stack (rwatson)

I Legacy drivers: an arl awi cnw ce cp cs ctau cx en ex fe hfa idt
ie if ic oltr mn pcf pdq ray sbni sbsh snc sr tx wl xe (rwatson)

I netatm? (rwatson, Skip Ford)
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Future work I: locking primitives

Legacy/home-grown locking primitives
I lockmgr

I Proof of concept from ups
I 1000 concurrent stat calls of the same file on an 8-core:

reduces system time by 95% and real time by 82%.
I lockmgr to be rewritten by Attilio Rao for Google SoC 2007

I Any others lurking?
I msleep() is a pessimal synchronization/serialization primitive!

I Lesson of SMPng: when the lock owner is running on
another CPU it is almost always much better to spin instead
of always going to sleep immediately.

I Use standard primitives instead of rolling your own.

I Consolidation of primitives; too many?
I sema()
I msleep()/tsleep()/wakeup()/. . .→ cv *()?
I . . .?
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Future work II: General

I Look for opportunities for shared locking - but profile
carefully!

I e.g. namei() is an “obvious” candidate for using a rwlock, but
this slows it down significantly.

I probably because it exposes lockmgr to concurrent access.

I select() locking (giant select lock)
I How can it be optimized? This is the major remaining source

of lock contention/wait time for the SQL benchmarks
(contended on 50-75% of acquisitions)

I SysV IPC; POSIX advisory locks
I Sanitize, explore finer-grained locking

I Remove non-MPSAFE subsystem crutches
I VM

I vm page queue mutex is heavily contended
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Future work III: Filesystem and Scheduler

Filesystem work
I More MPSAFE filesystems needed

I MSDOS: Brian Chu, Google SoC 2007

I Shared lookups for UFS
I Enables other work: rwlock for namei()

Scheduler
I scheduler lock is abused for non-scheduler purposes (rusage,

ldt, vmmeter, timers)
I //depot/user/attilio/attilio schedlock

I global scheduler lock appears to be a barrier to scaling on ≥ 8
CPUs.

I WIP to explore per-CPU scheduler locks with ULE; jeffr,
attilio
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Future work IV: Network stack

I Explore methods for improving parallelism in network
processing

I Driver work
I e.g. bce driver performs poorly with concurrent send/receive
I others not yet evaluated

I multiple netisr worker threads
I e.g. loopback transport; very easy to saturate a single netisr

I important for services that cannot use unix domain socket for
local transport

I Optimization work to support 10ge (kmacy)
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New SMP Objectives: consolidation and optimization

1. Identify additional workloads to be optimized.
I You can help! We need to identify good benchmarks

modelling real-world performance cases.
I Ideally should be simple to set up and operate.
I If you have a test case I will be happy to work with you to

profile it.

2. Consolidate performance on 8-core systems without regressing
performance on < 8 CPU cores

3. Ready to push scaling upwards to 16 and 32-core systems
I ...but need access to hardware
I sun4v? Not currently stable.
I Need access to 16-core amd64 hardware
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An empirical observation

The scaling of FreeBSD n.x appears to be governed by

NCPUs ∼ 2n−4, n ≥ 4
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