
Scalability Update, 2007

Kris Kennaway
The FreeBSD Project
kris@FreeBSD.org

May 17, 2007

Progress on FreeBSD SMP performance and scalability since
BSDCan Dev Summit 2006

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Outline

1. A case study: SQL database performance

2. Major SMP changes since May 2006

3. Remnants of the Giant lock

4. Future work and new SMP goals

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

A Case Study: SQL database performance

Why Database?

I Off-the-shelf benchmark (sysbench;
/usr/ports/benchmarks/sysbench/)

I Seems to be a reasonable benchmark (as opposed to
super-smack; 1-byte I/O!)

I FreeBSD did not perform well compared to Linux; excellent
motivator for performance improvements

What Database?

I mySQL 5.0.37 (thread-based)

I PostgreSQL 8.2.4 (process-based + SysV IPC)

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Configuration details

I amd64 system, 4*dual-core 2.2GHz CPUs

I 3GB RAM (working set fits in RAM)
I sysbench OLTP test

I Complex transaction-based queries
I Read-only; no disk access to avoid benchmarking disk

performance

I multithreaded benchmark client

I clients and servers on the same system

I communication via UNIX domain socket

I 2 minute runs, after a warm-up run with 8 clients.

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

MySQL: Progress in FreeBSD 5.x and 6.x

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

Concurrency (# client threads)

5.5-4bsd-c_r
5.5-4bsd-kse
6.2-4bsd-kse
6.2-4bsd-thr

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

MySQL: The competition (FreeBSD vs Linux)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

Concurrency (# client threads)

5.5-4bsd-c_r
5.5-4bsd-kse
6.2-4bsd-kse
6.2-4bsd-thr
linux 2.6.19

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

MySQL: Progress in FreeBSD 7.0 through February 2007

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

Concurrency (# client threads)

5.5-4bsd-c_r
5.5-4bsd-kse
6.2-4bsd-kse
6.2-4bsd-thr
linux 2.6.19

7.0-4bsd-thr-feb9
7.0-ule-thr-feb9

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

MySQL: Where we are today

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

Concurrency (# client threads)

5.5-4bsd-c_r
5.5-4bsd-kse
6.2-4bsd-kse
6.2-4bsd-thr
linux 2.6.19

7.0-4bsd-thr-feb9
7.0-ule-thr-feb9

7.0-4bsd-thr-may13
7.0-ule-thr-may13

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Linux: Blame it on malloc? glibc vs tcmalloc

Source: http://ozlabs.org/∼anton/linux/sysbench/

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Linux: Not the whole story?

I Some reports on LKML of difficulty reproducing the tcmalloc
result on 8-core systems

I tcmalloc claimed not to be a good general-purpose allocator
I A process-global semaphore acquired by all linux futex

operations.
I Agrees with the asymptotically single-threaded performance

measured on amd64

...not our problem!

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

MySQL: jemalloc vs phkmalloc

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

Concurrency (# client threads)

7.0-ule-thr-may13
7.0-ule-thr-phkmalloc-may13

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

PostgreSQL

 0

 1000

 2000

 3000

 4000

 5000

 2 4 6 8 10 12 14 16 18 20

T
ra

ns
ac

tio
ns

/s
ec

Concurrency (# client threads)

5.5-4bsd
6.2-4bsd

7.0-4bsd-cvs-may13
7.0-ule-cvs-feb01

7.0-ule-cvs-may13
7.0-ule-phkmalloc-may13

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Progress since BSDCan 2006 (highlights)

I More efficient lock profiling
I Still very inefficient; explore a worker thread model?

I UNIX domain socket locking; fine-grained locking for better
concurrency

I Experimental scheduler locking work (on-going)

I reader-writer (rw) locks (non-sleepable)

I Optimized sx locks (sleepable); now an efficient low-level
primitive

I File descriptor locking; home-brewed msleep lock → sx

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Progress since BSDCan 2006 II

I ULE 2.0. Now significantly out-performing 4BSD on the SMP
workloads that have been benchmarked.

I A remaining performance anomaly: poor CPU affinity at
intermediate loads on dual-core systems

I Benchmarking on other workloads required

I Giant pushdown

I Network stack optimization and regularization
I libthr is now the default thread library in 7.0 (finally!)

I Should also be default on 6.x

I CAM subsystem locking (scottl)

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Conclusion of the SMPng project

The SMPng project was launched in June 2000 and was a major
focus of development in FreeBSD 5.x and above.

“The goal of the SMPng Project is to decompose the
Giant lock into a number of smaller locks, resulting in
reduced contention (and improved SMP performance).”

The SMPng project was formally concluded in February 2007 after
achieving this goal.

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Remnants of the Giant lock

The FreeBSD 7.0 kernel is mostly Giant-free. Remaining
Giant-locked systems are:

I TTY locking. In most configurations the Giant lock has now
effectively devolved onto a Giant TTY lock.

I Some drivers (some CAM SIMs, pseudo-devices)

I Some filesystems (MSDOS, SMB, NFSv4, . . .)

I Some network protocols (IPX over IP, IPv6 ND6/MLD6,
netatm, . . .)

I newbus (scottl; work in progress)

I USB, Firewire

I Parts of VM (contigmalloc, . . .)

I Some scattered use elsewhere: sysctls, file operations,
sysarch(), . . .

See http://wiki.freebsd.org/SMPTODO for the up-to-date list
of Giant-locked code and project ownership.

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Danish axe time!

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Legacy Giant-locked code to be removed in 7.0

I KAME IPSec; in favour of Fast IPSec (gnn, bz)

I I4B ISDN stack (rwatson)

I Legacy drivers: an arl awi cnw ce cp cs ctau cx en ex fe hfa idt
ie if ic oltr mn pcf pdq ray sbni sbsh snc sr tx wl xe (rwatson)

I netatm? (rwatson, Skip Ford)

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Future work I: locking primitives

Legacy/home-grown locking primitives
I lockmgr

I Proof of concept from ups
I 1000 concurrent stat calls of the same file on an 8-core:

reduces system time by 95% and real time by 82%.
I lockmgr to be rewritten by Attilio Rao for Google SoC 2007

I Any others lurking?
I msleep() is a pessimal synchronization/serialization primitive!

I Lesson of SMPng: when the lock owner is running on
another CPU it is almost always much better to spin instead
of always going to sleep immediately.

I Use standard primitives instead of rolling your own.

I Consolidation of primitives; too many?
I sema()
I msleep()/tsleep()/wakeup()/. . .→ cv *()?
I . . .?

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Future work II: General

I Look for opportunities for shared locking - but profile
carefully!

I e.g. namei() is an “obvious” candidate for using a rwlock, but
this slows it down significantly.

I probably because it exposes lockmgr to concurrent access.

I select() locking (giant select lock)
I How can it be optimized? This is the major remaining source

of lock contention/wait time for the SQL benchmarks
(contended on 50-75% of acquisitions)

I SysV IPC; POSIX advisory locks
I Sanitize, explore finer-grained locking

I Remove non-MPSAFE subsystem crutches
I VM

I vm page queue mutex is heavily contended

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Future work III: Filesystem and Scheduler

Filesystem work
I More MPSAFE filesystems needed

I MSDOS: Brian Chu, Google SoC 2007

I Shared lookups for UFS
I Enables other work: rwlock for namei()

Scheduler
I scheduler lock is abused for non-scheduler purposes (rusage,

ldt, vmmeter, timers)
I //depot/user/attilio/attilio schedlock

I global scheduler lock appears to be a barrier to scaling on ≥ 8
CPUs.

I WIP to explore per-CPU scheduler locks with ULE; jeffr,
attilio

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

Future work IV: Network stack

I Explore methods for improving parallelism in network
processing

I Driver work
I e.g. bce driver performs poorly with concurrent send/receive
I others not yet evaluated

I multiple netisr worker threads
I e.g. loopback transport; very easy to saturate a single netisr

I important for services that cannot use unix domain socket for
local transport

I Optimization work to support 10ge (kmacy)

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

New SMP Objectives: consolidation and optimization

1. Identify additional workloads to be optimized.
I You can help! We need to identify good benchmarks

modelling real-world performance cases.
I Ideally should be simple to set up and operate.
I If you have a test case I will be happy to work with you to

profile it.

2. Consolidate performance on 8-core systems without regressing
performance on < 8 CPU cores

3. Ready to push scaling upwards to 16 and 32-core systems
I ...but need access to hardware
I sun4v? Not currently stable.
I Need access to 16-core amd64 hardware

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

An empirical observation

The scaling of FreeBSD n.x appears to be governed by

NCPUs ∼ 2n−4, n ≥ 4

Kris Kennaway The FreeBSD Project kris@FreeBSD.org Scalability Update, 2007

