
Cross build in the FreeBSD ports tree

Baptiste Daroussin
bapt@FreeBSD.org

EuroBSDCon 2014
Sofia - Bulgaria

September 28, 2014

bapt@FreeBSD.org

Goals

I Building packages for Tiers-2 arches

I Building packages for low power machines

I Building boostrap packages for non self hosting languages

I Building ”emulation” ports (aka linuxulator)

Easier way: qemu user emulation

I binary image activator

I 18k packages sucessfully build for armv6 (thanks sbruno!)

I Requires no particular modification of the ports tree beside

I qemu-bsd-user is still buggy and fragile

I slow

Easier way: qemu user emulation

I binary image activator

I 18k packages sucessfully build for armv6 (thanks sbruno!)

I Requires no particular modification of the ports tree beside

I qemu-bsd-user is still buggy and fragile

I slow

Hybrid way: qemu user emulation + native cross tools

I use qemu-bsd + binary image activator

I native cross toolchain

I qemu-bsd-user is still buggy and fragile

I still slow

Hybrid way: qemu user emulation + native cross tools

I use qemu-bsd + binary image activator

I native cross toolchain

I qemu-bsd-user is still buggy and fragile

I still slow

The one true way: cross compilation

I Faster

I Simpler

I Easier to use for regular users

I overhead some ports are built twice

The one true way: cross compilation

I Faster

I Simpler

I Easier to use for regular users

I overhead some ports are built twice

Build systems

I Good Players:

I autotools: really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools:

really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box

... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...

I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...
I cmake

I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players

I scons
I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons

I The cusom home made build systems
I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems

I ./please build me.sh

Build systems

I Good Players:
I autotools: really works out of box ... when used correctly...
I cmake
I /usr/share/mk/* (somehow)

I The bad players
I scons
I The cusom home made build systems
I ./please build me.sh

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly

I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly

I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly

... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost

I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(

I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf

(fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)

I Working patches available for very very long still not fully in
python 3.3

I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK

I Cross build friendly ... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly

... It really is!

Main complications

I Perl
I Cross build friendly
I by requiring a ssh connection to a target server ...

I Python
I Cross build friendly ... almost
I try to run the built python instead of a native one :(
I FreeBSD ports wtf (fixed now thanks python@)
I Working patches available for very very long still not fully in

python 3.3
I Python 3.4?

I OpenJDK
I Cross build friendly ... It really is!

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler

I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2

... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler

I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches

I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang

I binutils
I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing

I Cross build friendly for all ... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all

... but gas

Toolchains

I Clang
I a cross build friendly compiler
I number of targets very limited (only sane arm on FreeBSD)

I GCC
I gcc 4.2 ... real world needs a modern compiler
I FreeBSD people never upstream lots of patches
I Not really a cross build friendly compiler

I No consistent behaviour between gcc and clang
I binutils

I FreeBSD patches for arm were missing
I Cross build friendly for all ... but gas

Making a cross building environment

I make xdev

I Create a sysroot
I Create a cross build toolchain
I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time ...requires fixing our *.S

files
I create a ports cross building aware version of freebsd ...

requires upstreaming our patches

Making a cross building environment

I make xdev
I Create a sysroot
I Create a cross build toolchain

I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time ...requires fixing our *.S

files
I create a ports cross building aware version of freebsd ...

requires upstreaming our patches

Making a cross building environment

I make xdev
I Create a sysroot
I Create a cross build toolchain
I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time

...requires fixing our *.S
files

I create a ports cross building aware version of freebsd ...
requires upstreaming our patches

Making a cross building environment

I make xdev
I Create a sysroot
I Create a cross build toolchain
I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time ...requires fixing our *.S

files

I create a ports cross building aware version of freebsd ...
requires upstreaming our patches

Making a cross building environment

I make xdev
I Create a sysroot
I Create a cross build toolchain
I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time ...requires fixing our *.S

files
I create a ports cross building aware version of freebsd

...
requires upstreaming our patches

Making a cross building environment

I make xdev
I Create a sysroot
I Create a cross build toolchain
I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time ...requires fixing our *.S

files
I create a ports cross building aware version of freebsd ...

requires upstreaming our patches

Making a cross building environment

I make xdev
I Create a sysroot
I Create a cross build toolchain
I Inconsistent over versions
I gcc/clang problems

I Use clang
I clang from base is available and recent enough
I fall back on clang from ports otherwise
I use binutils from ports all the time ...requires fixing our *.S

files
I create a ports cross building aware version of freebsd ...

requires upstreaming our patches

Making a cross building environment (create the sysroot)

I $make sysroot:
make: don’t know how to make sysroot. Stop

I any way manually that is easy
TARGET?= arm

TARGET_ARCH?= armv6

XCFLAGS= isystem ${WRKDIR}/tmp/usr/include -L${WRKDIR}/tmp/usr/lib \

--sysroot=${WRKDIR}/tmp/ -B${LOCALBASE}/arm-gnueabi-freebsd/bin \

-B/usr/bin \

-target armv6-gnueabi-freebsd10.0

XMAKE_ENV= PATH=${LOCALBASE}/arm-gnueabi-freebsd/bin:/usr/bin:/usr/sbin:/bin \

WITHOUT_PROFILE=yes __MAKE_CONF=/dev/null SRCCONF=/dev/null \

NO_FSCHG=yes MAKEOBJDIRPREFIX=${WRKDIR}/obj \

TARGET=${TARGET} TARGET_ARCH=${TARGET_ARCH} \

MACHINE=${TARGET} MACHINE_ARCH=${TARGET_ARCH} \

_SHLIBDIRPREFIX=${WRKDIR}/tmp \

CC="${CC} ${XCFLAGS}" \

CPP="${CPP} ${XCFLAGS}" \

CXX="${CXX} ${XCFLAGS}" \

NO_WERROR=yes NO_WARNS=yes

NOFUN= -DNO_FSCHG MK_HTML=no MK_INFO=no -DNO_LINT \

MK_MAN=no MK_NLS=no -DNO_PROFILE \

MK_KERBEROS=no MK_RESCUE=no MK_TESTS=no -DNO_WARNS

cd ${WRKSRC}/lib/ncurses/ncurses ; \

MAKEOBJDIRPREFIX=${WRKDIR}/obj make build-tools

cd ${WRKSRC}; \

mtree -R uid,gid -deU -f etc/mtree/BSD.root.dist -p ${WRKDIR}/tmp >/dev/null ; \

mtree -R uid,gid -deU -f etc/mtree/BSD.usr.dist -p ${WRKDIR}/tmp/usr >/dev/null ; \

mtree -R uid,gid -deU -f etc/mtree/BSD.include.dist -p ${WRKDIR}/tmp/usr/include >/dev/null ; \

setenv -i ${XMAKE_ENV} WITHOUT_MAN=yes -f Makefile.inc1 par-includes libraries \

DESTDIR=${WRKDIR}/tmp

Making a cross building environment (create the sysroot)

I $make sysroot:
make: don’t know how to make sysroot. Stop

I any way manually that is easy

TARGET?= arm

TARGET_ARCH?= armv6

XCFLAGS= isystem ${WRKDIR}/tmp/usr/include -L${WRKDIR}/tmp/usr/lib \

--sysroot=${WRKDIR}/tmp/ -B${LOCALBASE}/arm-gnueabi-freebsd/bin \

-B/usr/bin \

-target armv6-gnueabi-freebsd10.0

XMAKE_ENV= PATH=${LOCALBASE}/arm-gnueabi-freebsd/bin:/usr/bin:/usr/sbin:/bin \

WITHOUT_PROFILE=yes __MAKE_CONF=/dev/null SRCCONF=/dev/null \

NO_FSCHG=yes MAKEOBJDIRPREFIX=${WRKDIR}/obj \

TARGET=${TARGET} TARGET_ARCH=${TARGET_ARCH} \

MACHINE=${TARGET} MACHINE_ARCH=${TARGET_ARCH} \

_SHLIBDIRPREFIX=${WRKDIR}/tmp \

CC="${CC} ${XCFLAGS}" \

CPP="${CPP} ${XCFLAGS}" \

CXX="${CXX} ${XCFLAGS}" \

NO_WERROR=yes NO_WARNS=yes

NOFUN= -DNO_FSCHG MK_HTML=no MK_INFO=no -DNO_LINT \

MK_MAN=no MK_NLS=no -DNO_PROFILE \

MK_KERBEROS=no MK_RESCUE=no MK_TESTS=no -DNO_WARNS

cd ${WRKSRC}/lib/ncurses/ncurses ; \

MAKEOBJDIRPREFIX=${WRKDIR}/obj make build-tools

cd ${WRKSRC}; \

mtree -R uid,gid -deU -f etc/mtree/BSD.root.dist -p ${WRKDIR}/tmp >/dev/null ; \

mtree -R uid,gid -deU -f etc/mtree/BSD.usr.dist -p ${WRKDIR}/tmp/usr >/dev/null ; \

mtree -R uid,gid -deU -f etc/mtree/BSD.include.dist -p ${WRKDIR}/tmp/usr/include >/dev/null ; \

setenv -i ${XMAKE_ENV} WITHOUT_MAN=yes -f Makefile.inc1 par-includes libraries \

DESTDIR=${WRKDIR}/tmp

Making a cross building environment (create the sysroot)

I $make sysroot:
make: don’t know how to make sysroot. Stop

I any way manually that is easy
TARGET?= arm

TARGET_ARCH?= armv6

XCFLAGS= isystem ${WRKDIR}/tmp/usr/include -L${WRKDIR}/tmp/usr/lib \

--sysroot=${WRKDIR}/tmp/ -B${LOCALBASE}/arm-gnueabi-freebsd/bin \

-B/usr/bin \

-target armv6-gnueabi-freebsd10.0

XMAKE_ENV= PATH=${LOCALBASE}/arm-gnueabi-freebsd/bin:/usr/bin:/usr/sbin:/bin \

WITHOUT_PROFILE=yes __MAKE_CONF=/dev/null SRCCONF=/dev/null \

NO_FSCHG=yes MAKEOBJDIRPREFIX=${WRKDIR}/obj \

TARGET=${TARGET} TARGET_ARCH=${TARGET_ARCH} \

MACHINE=${TARGET} MACHINE_ARCH=${TARGET_ARCH} \

_SHLIBDIRPREFIX=${WRKDIR}/tmp \

CC="${CC} ${XCFLAGS}" \

CPP="${CPP} ${XCFLAGS}" \

CXX="${CXX} ${XCFLAGS}" \

NO_WERROR=yes NO_WARNS=yes

NOFUN= -DNO_FSCHG MK_HTML=no MK_INFO=no -DNO_LINT \

MK_MAN=no MK_NLS=no -DNO_PROFILE \

MK_KERBEROS=no MK_RESCUE=no MK_TESTS=no -DNO_WARNS

cd ${WRKSRC}/lib/ncurses/ncurses ; \

MAKEOBJDIRPREFIX=${WRKDIR}/obj make build-tools

cd ${WRKSRC}; \

mtree -R uid,gid -deU -f etc/mtree/BSD.root.dist -p ${WRKDIR}/tmp >/dev/null ; \

mtree -R uid,gid -deU -f etc/mtree/BSD.usr.dist -p ${WRKDIR}/tmp/usr >/dev/null ; \

mtree -R uid,gid -deU -f etc/mtree/BSD.include.dist -p ${WRKDIR}/tmp/usr/include >/dev/null ; \

setenv -i ${XMAKE_ENV} WITHOUT_MAN=yes -f Makefile.inc1 par-includes libraries \

DESTDIR=${WRKDIR}/tmp

Changes to the ports infrastructure

Variable set when cross building

I HCC/HCXX (host compiler)

I CC/CXX (set to the cross compiler + special flags)

I STRIP CMD to the cross binutils version

I ABI FILE=${X SYSROOT}/usr/lib/crt1.o

I PKG CONFIG SYSROOT DIR=”${X SYSROOT}”

Changes to the ports infrastructure

Behaviour changed

I LIB DEPENDS BUILD DEPENDS are built twice: native and
target

I native are installed on the host

I target are installed to the sysroot

I Automatically add dependencies to sysroot (if not provided)
and toolchain

tweaks have to be done ports by ports

Changes to the ports infrastructure

Behaviour changed

I LIB DEPENDS BUILD DEPENDS are built twice: native and
target

I native are installed on the host

I target are installed to the sysroot

I Automatically add dependencies to sysroot (if not provided)
and toolchain

tweaks have to be done ports by ports

Ports tweak

Perl

I perl-cross (unofficial)

I provide config.h per supported architecture/freebsd version

Python

I patch python 2.7 to 3.3 to use native python

I check python 3.4

Scons

I impossible to get a global solution

I use a saner build system

Ports tweak

Perl

I perl-cross (unofficial)

I provide config.h per supported architecture/freebsd version

Python

I patch python 2.7 to 3.3 to use native python

I check python 3.4

Scons

I impossible to get a global solution

I use a saner build system

Ports tweak

Perl

I perl-cross (unofficial)

I provide config.h per supported architecture/freebsd version

Python

I patch python 2.7 to 3.3 to use native python

I check python 3.4

Scons

I impossible to get a global solution

I use a saner build system

Ports point of view

Without sysroot

cd devel/pkgconf

make X_BUILD_FOR=armv6-gnueabi-freebsd10.0 package

With sysroot

cd devel/pkgconf

make X_BUILD_FOR=armv6-gnueabi-freebsd10.0 \

X_SYSROOT=/path/to/sysroot package

Limitations

I ports requiring a different compiler than the default are not
supported (meaning openmp and non libc++ ports ports
using C nested functions)

I plateforms using gcc as a default compiler doesn’t work

Thank you!
Questions ?

