
Native SeND kernel API for *BSD

Ana Kukec
University of Zagreb

anchie@fer.hr

Bjoern A. Zeeb
The FreeBSD Project

bz@FreeBSD.org

ABSTRACT
In the legacy world of Internet Protocol Version 4 (IPv4), the
link layer protocol, the Address Resolution protocol (ARP)
is known to be vulnerable to spoofing attacks, but has never-
theless been in use entirely unsecured. The Neighbor Discov-
ery Protocol (NDP), which in the IPv6 world roughly corre-
sponds to IPv4 ARP, is vulnerable to a similar set of threats
if not secured. The Secure Neighbor Discovery (SeND) ex-
tensions counter security threats to NDP by offering proof
of address ownership, message protection, and router autho-
rization. The current lack of robust support for SeND within
BSD operating system family and drawbacks in the exist-
ing reference SeND implementation limits its deployment.
We illustrate the protocol enhancements and their imple-
menation by rehashing the known problem scenarios with
unsecured NDP and providing the short information about
SeND. We then describe the design and implementation of
a new, BSD licensed, kernel-userspace API for SeND, which
mitigates the overhead associated with the reference imple-
mentation in FreeBSD, and which aims to improve portabil-
ity to other BSD-derived operating systems.

1. INTRODUCTION
IP version 6 (IPv6) [7] has been designed as the successor to
IP version 4 (IPv4). Unlike the common opinion that IPv6 is
primarly the solution for the problem of the shortage of pub-
lic IPv4 addresses, there are many other changes from IPv4
to IPv6 such as the hedaer format simplification, improved
support for extensions and options, flow labeling capability,
and authentication and privacy capabilities. However, the
most significant changes are not in the IP protocol itself, but
in the supporting protocols and mechanisms that were de-
veloped along with it, for example the ones that are related
to the communication between link local devices.

The communication between IPv4 link local devices is sup-
ported by two protocols:

1. Address Resolution Protocol (ARP) that determines a
host’s link layer address [17], and

2. Internet Control Message Protocol version 4 (ICMP)
that is a messaging system and an error reporting pro-
tocol for the IPv4 network layer [18].

ICMP provides various functionalities through the use of
ICMP messages, where two important functionalities for the

link local communication are ICMP Router Discovery and
ICMP Redirect. ICMP Router Discovery messages [6] deal
with the configuration of IP hosts with the IP addresses
of neighboring routers, using ICMP Router Advertisement
messages and ICMP Router Solicitation messages. Since
Router Advertisements are used by routers only to adver-
tise their existance and not their location, there is a sepa-
rate mechanism that uses ICMP Redirect messages to en-
able routers to convey the information about the optimal,
alternate route to hosts. There is also a certain number of
ICMP based algorithms that support the IPv4 communica-
tion between link local hosts that are recommended for IPv4,
but they are not required and widely adopted. [4] defines
some possible approaches to solve Dead Gateway Detection,
a scenario in which the IP layer must detect the next-hop
gateway failure and choose an alternate gateway, but there
is no widely accepted IPv4 suite protocol for it.

Even though previously mentioned features work properly
in IPv4, they were developed in an ad hoc manner. They
consist of a great number of different protocols, mechanisms,
algorithms, and Internet Standards. Both the nowadays In-
ternet use case scenarios and security threat analysis are
pointing out their various limitations and the need for the
enhancements.

IPv6 Neighbor Discovery Protocol (NDP) [15] is a single
protocol that corresponds to the combination of all previ-
ously mentioned protocols (ARP, ICMP Router Discovery,
ICMP Redirect, and various recommended ICMP mecha-
nisms). Most of the Neighbor Discovery Protocol functional-
ities are based on the five ICMPv6 control messages (Router
Solicitation and Advertisement, Neighbor Solicitation and
Advertisement, and Redirect). Router Solicitation is sent by
hosts as the request for Router Advertisement. Router Ad-
vertisement is sent by routers periodically or as a response
to Router Solicitation, to advertise the link local prefix and
other options. Neighbor Solicitation is sent by IPv6 hosts
to find out a neighbor’s link layer address or to verify that
a node is still reachable. Neighbor Advertisement is sent
by IPv6 hosts as a response to Neighbor Solicitation or to
propagate the link layer address change. Redirect is sent by
routers to inform hosts of the better first-hop destination.

Neighbor Discovery Protocol functionalities are classified into
two groups: host-host functionalities and host-router func-
tionalities. Host-router functionalities enable the host to
locate routers on the link local network (router discovery),

to differentiate between the link local network and distant
networks (prefix discovery), to find out the parameters of
the link local network and neighboring routers (parameter
discovery), and to autoconfigure their IPv6 address based
on the information provided by a router. Host-host func-
tionalities include the address resolution (ARP functional-
ity in IPv4), the next-hop determination based on the data-
gram’s IP destination address, the determination whether
the host is directly reachable (neighbor unreachability de-
tection), and the determination of whether the choosed ad-
dress already exists in the link local network (duplicate ad-
dress detection). NDP function that does not belong in
neither of two previously mentioned groups is the Redirect
function. The Renumbering functionality, a mechanism that
takes care of the renumbering based on the Router Adver-
tisement messages containing the prefix, sent in a timely
manner. The Renumbering mechanism is derived from the
combined use of the neighbor discovery and the address
autoconfiguration. The Neighbor Discovery Protocol com-
bines all functionalities of IPv4 supporting protocols for the
communication between link local devices, but also provides
many enhancements and improvements over the mentioned
set of protocols. The typical example of one such enhance-
ment is the Neighbor Unreachability Detection [15] (NUD)
that is one of the fundamental Neighbor Discovery Protocol
parts. IPv4 Dead Gateway Detection [17] (DGD) is similar
to Neighbor Unreachability Detection in IPv6, but addresses
just a subset of the problems that Neighbor Unreachabil-
ity Detection deals with. IPv4 Dead Gateway Detection
is a simple fail-over mechanism that changes host’s default
gateway to the next configured default gateway. There is
no possibility to distinguish whether the link local or a re-
mote gateway has failed, or to get any detailed reachability
information. Thus there is no possibility for the fail-back to
the previous router. Neighbor Unreachability Detection is
enhanced mechanism that allows the node to track the de-
tailed reachability information about its neighbor, either the
link local host or the router. Based on the use of ICMPv6
messages, it enables the host to fail-back to the previous
router, to make use of the inbound load balancing in case
of replicated interfaces, to inform the neighbors about the
change of its link layer address.

Both IPv4 protocols supporting the link local communica-
tion and the Neighbor Discovery Protocol, if not secured,
are vulnerable and affected by the similar set of threats.
The initial Neighbor Discovery Protocol specification pro-
posed the use of IPsec, specifically IP Authentication Header
(AH) [9] and IP Encapsoluationg Security Payload [10], for
the protection, by authentication the packet exchanged to
overcome the shortcomings. Unlike the Neighbor Discov-
ery Protocol that can be secured with the Secure Neigh-
bor Discovery (SeND), one of the significant shortcomings
of the IPv4 protocols supporting the link local communi-
cation, such as the Address Resolution Protocol and other
ICMP-based mechanisms, is that there is no standardized,
widely adopted enhancement for securing them.

The next section discusses the main threats associated to
the Neighbor Discovery Protocol, illustrating the real world
attacks that have never been solved for IPv4, but are solved
for IPv6. It will further explain why the inital proposal for
the Neighbor Discovery Protocol protection with IPsec was

Figure 1: Attack on Address Resolution

Figure 2: Redirect Attack

abandoned in favour of SeND.

2. BACKGROUND
2.1 Neighbor Discovery Protocol (NDP) threats
The Neighbor Discovery Protocol trust models and threats
are well known and clearly described in [16]. It illustrates
the following attacks:

• Attack on Address Resolution (Figure 1),

• Redirect Attack (Figure 2),

• Duplicate Address Detection (DAD) Attack (Figure
3),

• First-Hop Router Spoofing Attack (Figure 4),

• Address Configuration Attack (Figure 5).

The Neighbor Discovery Protocol [15] offers some basic pro-
tection mechanisms. For example it introduces the limita-
tion for the IPv6 source address to be either the unspecified
address (::/128) or a link-local address, or puts the limita-
tion on the hop limit to be set to 255, trying to limit source
address spoofing by making sure that packet is coming from
a host on a directly connected network. However, the pro-
tection shield offered by the Neighbor Discovery Protocol
itself is not enough to encounter most of the known threats.
This is due the fact that Neighbor Discovery Protocol as it
is, is not able to offer any authentication, message protection
or router authorization capabilities.

Figure 3: DAD Attack

Figure 4: First-Hop Router Spoofing Attack

Figure 5: Address Configuration Attack

2.2 Neighbor Discovery Protocol and IPsec
The initial Neighbor Discovery Protocol specification pro-
posed the use of IPsec Authentication Header (AH) to en-
counter known threats. This approach appeared to be prob-
lematic. Theoretically, in the IPv6 architecture, it is possi-
ble to secure all IP packets, including ICMPv6 and Neigh-
bor Discovery messages, even the ones sent to multicast ad-
dresses. Packets that are supposed to be secured are filtered
based on the Security Policy Database, and then protected
based on Security Associations maintained automatically by
the Internet Key Exchange protocol (IKE). But here we end
up with the chicken-and-egg bootstraping problem [1]. IKE
is not able to establish a Security Association between the
local hosts because in order to send the IKE UDP message it
would have had to send the Neighbor Solicitation message,
which would have required the Security Association which
does not exist. Even if we decide to use a manual configura-
tion for Security Associations, which solves the bootstrap-
ping problem, we would be faced with the problem of main-
taining an enormous number of Security Associations, espe-
cially when considering multicast links (Neighbor Discovery
and Address Autconfiguration use a few fixed multicast ad-
dresses plus a range of 16 million ”solicited node” multicast
addresses). Even in scenarios with only a small fraction of
the theoretically maximum number of addresses, which ap-
pear to be very common in case of the local communication,
statically preconfigured Security Associations make the use
of IPsec impractical.

2.3 Secure Neighbor Discovery (SeND)
Neighbor Discovery needed a different approach to encounter
threats, a cryptographic extension to the basic protocol that
will not require the excessive manual keying. To solve the
problem IETF SeND working group that was chartered in
2002 defined the initial SeND specification which was re-
cently updated by [15]. The important thing to notice is
that Secure Neighbor Discovery is not a new protocol, but
just a set of enhancements to the Neighbor Discovery Pro-
tocol. It is based on four new Neighbor Discovery options
prepending the normal Neighbor Discovery message options,
and two new messages.

Secure Neighbor Discovery enhances the Neighbor Discovery
Protocol with the following three additional features:

1. address ownership proof,

2. message protection,

3. router authorization.

The addres ownership proof prevents the attacker from steal-
ing the IPv6 address, which is a fundamental problem for
the router discovery, duplicate address detection and ad-
dress resolution mechanisms. This feature is based on IPv6
addresses known as Cryptographically Generated Addresses
(CGAs). CGA is a mechanism that binds the public com-
ponent of a public-private key pair to an IPv6 address. It is
generated as a one-way hash of the four input values: a 64-
bit subnet prefix, the public key of the address owner, the
security parameter (sec) and a random nonce (modifier).

CGA(128) = Prefix(64)|IID(64)

IID(64) = hash(prefix, pubkey, sec, modifier)

The detailed description of the CGA generation procedure
is described in [2].

The owner of the CGA address sends the all CGA Param-
eters, including all required input data for the CGA gener-
ation together with the CGA address to the verifier. The
CGA verification consists of the re-computation and com-
parison of received CGA value based on the received CGA
parameters, including the public key. However, the hash of
the public key itself offers no protection at all, if it is not
used in combination with the digital signature produced us-
ing the corresponding private key. When using CGAs in
Secure Neighbor Discovery, the sender signs the message
with the private key that is possessed only by him, and that
is the key related to the public key used in CGA’s inter-
face identifier generation. This prevents an attacker from
spoofing a cryptographically generated address. All the in-
formation about the CGA parameters, such as the public
key used for the CGA verification, are exchanged within the
new Neighbor Discovery Protocol option - the CGA option.
The impact of the collision attacks in CGAs is described
in [3]. Attacks against the collision-free property of hashes
are known, but their characteristic is that they deal with
the non-repudiation features. The attacker would be able to
create two different messages that result in the same hash,
and then use them interchangeably. The important thing to
notice is that both messages must be produced by the at-
tacker. Since the usage of CGAs in SeND does not include
the provision of the non-repudiation capabilities, it is not
affected by the hash collision attacks.

SeND offers message protection in terms of the message in-
tegrity protection of all messages relating to neighbor and
router discovery, using the new Neighbor Discovery option
called RSA option. It contains a public key digital signa-
ture calculated over the message, and thus protects the in-
tegrity of the message and authenticates the identity of the
sender. Secure Neighbor Discovery message that the sender
signs with its private key includes the link layer information,
which creates the secure binding between the IP address and
link layer anchor. In such a way, Secure Neighbor Discovery
allows for the verification with the signer’s public key that
the host’s IP address is bound to the trustworthy lower layer
anchor. The public key trust is achieved either through the
CGA address ownership proof (in the neighbor discovery
procedure), or through the X.509 certificate chain (in the
router discovery procedure), or both. SeND also defines the
Timestamp and Nonce options to protect messages from re-
ply attacks, and to ensure the request/response correlation.

The router authorization feature introducies two novelties
to Neighbor Discovery:

1. it authorizes routers to act as default gateways for a
certain local network, and

2. specifies prefixes that an authorized router may adver-
tise on this certain link.

A new host on the link can easily configure itself using the in-
formation learned by the router, while in the same time there

is no way a host can tell from the Neighbor Discovery infor-
mation, that the router is actually an authorized router. If
the link is unsecured, the router might be a rogue router. At
the moment when the host should verify whether the router
is a valid one, the host is not able to do so since it is not
able to communicate with the off-link hosts. To solve this
situation, SeND introduces two new messages: Certification
Path Solicitation message and Certification Path Advertise-
ment message. The first one is sent by newly connected host
to the router. The second one is the response sent by the
router, and contains the certificate chain that contains the
certification path, that the host uses to validate the router.
The certificate path consists of the Router Authorization
Certificate that authorizes a specific IPv6 node to act as
a router, followed by intermediate certificates that lead to
the trust anchor trusted both by the router and the host.
Trust between the router and the hosts is achieved through
the third party - the trust anchor (X.509 Certification Au-
thority) [5]. The Router Authorization Certificate contains
the information about the prefix that he is authorized to
advertize.

3. IMPLEMENTATION
Neighbor Discovery Protocol is widely supported by many
modern operating systems, since the NDP support is manda-
tory for IPv6 network stacks. The code resides mainly in ker-
nel. However, there are very few Secure Neighbor Discovery
implementations. None of the contemporary open source
operating systems ships with built-in support for SeND.

3.1 Existing SeND implementations
The open-source SeND reference implementation (send-0.2),
originally developed by NTT DoCoMo, works on Linux and
FreeBSD. On FreeBSD, this implementation uses a Berkley
Packet Filter (BPF) interface embedded in a netgraph node
(ng bpf) to divert SeND traffic from kernel to an userland
daemon, and vice versa. This approach has two major draw-
backs. First, all network traffic (both SeND and non-SeND)
has to traverse through a ng bpf filtering node (and through
the netgraph subsystem in general), which introduces sig-
nificant processing overhead, effectively prohibiting produc-
tion deployment of SeND in high-speed networking environ-
ments. And second, the current send-0.2 implementation
depends on the netgraph subsytem, which is available only
in FreeBSD and DragonFlyBSD, making in send-0.2 imple-
mentation being unusable on other BSD-derived operating
systems, such as NetBSD, OpenBSD or Mac OS X.

Figure 6 illustrates the design of DoCoMo’s SeND imple-
mentation for FreeBSD. The communication between the
Neighbor Discovery stack implemented in kernel and the
Secure Neighbor Discovery daemon flows through the chain
of netgraph nodes: ng ether, ng bpf and ng socket.

Packets that are incoming from the interface’s point of view
are protected with Secure Neighbor Discovery options (CGA
option, RSA Signature option, Timestamp and Nonce op-
tion). Before the kernel will be able to process them in its
Neighbor Discovery stack the packet must be validated and
the Secure Neighbor Discovery options which are all unkown
to kernel must be stripped of. Initially, all incoming packets
arrive to the ng ether ”lower” hook, which is a connection
to the raw Ethernet device and from there on to the ng bpf

Figure 6: NTT DoCoMo’s send02 using netgraph
nodes and BPF

”tolower” hook. That netgraph node will filter out the in-
coming packets that are protected by SeND options and pass
these packets through an ng socket ”out” hook to the SeND
daemon in user space, rather than passing them on inside
the kernel for normal upper layer processing.

In userland, Secure Neighbor Discovery options are checked.
Upon sucessfull validation all Secure Neighbor Discovery op-
tions are removed, and injected back to kernel, through the
ng socket ”out” hook, ng bpf ”toupper” hook and ng ether
”upper” hook, is a pure Neighbor Discovery message. The
kernel will then pass the packets on through the normal in-
put path to the upper layers and process the Neighbor Dis-
covery information. In case that daemon cannot successfully
validate the SeND options, it will silently drop the packet.

Packets that are outgoing from the interface’s point of view
must be sent to Secure Neighbor Discovery daemon just be-
fore they are supposed to exit the outgoing interface. After
the kernel upper layer processing, which includes the Neigh-
bor Discovery stack processing, all outgoing packets are for-
warded through the ng ether ”upper” hook to the ng bpf
node. They are injected to the userland where the Secure
Neighbor Discovery adds additional options to protect the
packet. Packets on that way flow through ng bpf ”out” hook
and ng socket ”in” hook to the userland. The Secure Neigh-
bor Discovery daemon prepends the normal Neighbor Dis-
covery options in the packet with the CGA option, RSA
Signature option, Timestamp and Nonce option, and sends
the packet back to kernel through the ng socket in hook and
the ng bpf tolower hook to ng ether. Packets then leaves the
interface through the ng ether lower hook, which is the di-
rect connection to the lower device link layer.

As mentioned previously, Secure Neighbor Discovery also en-
hances the Neighbor Discovery Protocol with two new mes-
sages that participate in the process of router authorization.
Neither the Certification Path Solicitation message, nor the
Certification Path Advertisement message are processed in

Neighbor Discovery kernel stack since they are not the part
of the basic Neighbor Discovery Protocol. Thus both new
messages are not exchanged through netgraph nodes, but
through the separate socket.

While the NTT DoCoMo implementation had the advan-
tage, that it was written to be distributed independetly
of the operating system, not needing any operating system
changes, it had the drawbacks of using the netgraph subsys-
tem as well as hitting the Berkeley Packet Filter for every
packet. To address those problems the operating system it-
self has to be extended and the following sections will discuss
those changes.

3.2 Initial design decisions
• Avoid the use of netgraph.

Netgraph itself introduces the big overhead to pro-
cessing. Secondly, as the netgraph subsystem is not
available throughout the entire BSD operating system
family, it was not considered to be an option for a
portable implementantion. Further, avoiding the need
of netgraphm, could make an implementation even
more portable to other Unices as well.

• Avoid the use of BPF.
Using the Berkeley Packet Filter meant that all pack-
ets, forwarded, for the local system or locally origi-
nated would be affected and that this would reduce the
performance of a lot of systems, especially if connected
to high speed networks, processing lots of packets per
second.

• Only defer processing of packets that might be affec-
cted by Secure Neighbor Discovery.
As only few ICMPv6 Neighbor Discovery packets are
actually affected by SeND it was clear that we should
only actually defer processing of those few packets,
rather than all. We would also never be interested
in packets, that were invalid at a certain (lower) layer.
Letting the already existing kernel code do those checks
and the handling for us, would mitigate the risk of pos-
sible exploits through crafted packets outside the core
problem domain of Secure Neighbor Discovery.

• Trigger only on the Secure Neighbor Discovery in case
SeND code was loaded.
Using kernel hooks that will not fire unless the send.ko
kernel module was loaded would ensure that normal
Neighbor Discovery processing would not be affected
for the default case. In case the kernel module would
be loaded it would guarantee that all messages would
traverse properly through the Neighbor Discovery stack,
as if it there was no SeND daemon invloved in the pro-
cessing.

• Use routing control sockets.
The routing control sockets have been chosen for their
simplicity to exchange messages between kernel and
userland, as they are easy to extend beyond the scope
of pure routing messages. Actually this had been done
before by the net80211 stack. Alternatives would have
been to introduce a new, private interface or extend an-
other existing one, like the PF KEY Key Management
API [14], which would have been way more complex.

Figure 7: Incoming Neighbor Discovery packet from
the wire.

kernelspace (userspace

)
incoming SeND/ND packet (

|)
v (SND_IN) (

icmp6_input() -> send_input_hook ---> rtsock ----+

:) |
: # # (|

normal : # #) v
processing : # send.ko # (sendd

path : # #) |
: # # (|
v) |

icmp6/nd6_??_input() <- send_output_hook <--- rtsock <---+
| (SND_IN) (

v)
continue normal ND processing (

• Add as few new code to the kernel as possible.
It was clear that changes to the kernel should be kept
to a minimum to ease portability and review, as well as
reducing the risk of introducing problems complicating
normal processing paths.

• Keep the separate socket to exchange Certification Path
Solicitations and Certification Path Advertisements.
Since those options are exchanged end-to-end between
Secure Neighbor Discovery daemons without the use of
the Neighbor Discovery kernel code, there is no need
to modify the kernel for those but entirely keep their
processing in user space.

• Keep the user space implementation.
If possible and to not re-invent the wheel of handling
the configuration and the actual processing of the SeND
payload, the NTT DoCoMo SeND daemon should be
kept but modified for the new kernel-userland API.
This would further allow already existing users to up-
date without the need for changes in their deployment
(apart from kernel and daemon updates).

3.3 Native SeND kernel API for *BSD
The goal for the changes were to design and implement a new
kernel-userspace API for SeND mitigates the overhead asso-
ciated with netgraph and BPF and would be easily portable.

In order to accomplish the implementation of such an API,
we separated the kernel changes into three main parts:

1. Processing hooks to the existing Neighbor Discovery
(ND) input and output code.

2. The SeND kernel module for the dispatching logic.

3. Extensions to the routing control sockets for the SeND
kernel-userland interface.

The basic code flow is as follows: incoming Neighbor Discov-
ery packets or outgoing Secure Neighbor Discovery packets
are sent to the userland through the send input hook. Neigh-
bor Discovery packets are then passed through the routing
socket to the Secure Neighbor Discovery daemon either for

Figure 8: Outgoing Neighbor Discovery packet (re-
ply or locally triggered)

kernelspace (userspace
)

nd6_na_input() (

+PACKET_TAG_ND_OUTGOING)
|)

| outgoing packet (
| |)
| v (

| icmp6_redirect_output())
| nd6_ns_output() (

| nd6_na_output())
| +PACKET_TAG_ND_OUTGOING (

| |)
| +-----------<- rip6_output() <----------)----- rtsol/rtadvd/..
| | +PACKET_TAG_ND_OUTGOING (

| v)
| ip6_output() (

| |)
+-------->-+ (

|)

v (SND_OUT) (
nd6_output_lle() -> send_input_hook ---> rtsock ----+

-PACKET_TAG_ND_OUTGOING) |
: # # (|

normal : # #) v
processing : # send.ko # (sendd

path : # #) |

: # # (|
v) |

(*ifp->if_output)() <- send_output_hook <--- rtsock <---+
| (SND_OUT) (
v)

continue with normal packet output (

protection validation (incoming packets) or (outgoing pack-
ets). On the way back to kernel, packets traverse again
through the routing socket, but then through the send out-
put hook. While the incoming packets are sent back to
Neighbor Discovery stack in kernel, outgoing packets are
then sent from the output hook to if output() routines.

In the following sections we will describe the individual changes
for each part in more detail.

The changes to the IPv6 part of the network stack can be
separated into Neighbor Discovery input and output path.

For the input path changes were mainly to the icmp6_input()
function. There we have to divert the ND packet for the fol-
lowing ICMPv6 types: ND_ROUTER_SOLICIT, ND_ROUTER_ADVERT,
ND_NEIGHBOR_SOLICIT, ND_NEIGHBOR_ADVERT and ND_REDIRECT.
Instead of directly calling the respective function for di-
rect processing of those ND types, we first check if the
send_input_hook and with that SeND processing is enabled.
If it is we pass the packet to the send.ko kernel module for
dispatching to user space. If SeND processing is not en-
abled, the packet will follow the standard code path to the
normal ND handler function.

Pseudo-Code:

...

case ND_?????:
...

/* Send incoming SeND-protected/ND packet to user space. */
if (send_input_hook != NULL) {

send_input_hook(m, ifp, SND_IN, ip6len);

return (IPPROTO_DONE);

}
nd6_??_input(m, off, icmp6len);

...
break;

...

For the output paths the changes are a bit more diverse and
complicated. This is because we can have three different
ways that outgoing Neighbor Discovery packets can be send:

1. via nd6_na_input() when flushing the ”hold queue”
(a list of packets that could not be sent out because
of the formerly missing link layer information of the
next-hop) in repsonse to the newly learned link layer
information.

2. by icmp6_redirect_output(), nd6_ns_output(), or
nd6_na_output(),

3. or from user space applications like rtsol(8) or rtadvd(8)
via rip6_output().

None of those functions directly outputs the packet and as
we need to know the IPv6 header for the address, we have
to postpone SeND processing to a later point in the output
path. To be able to identify the packets later though, we
add an attribute, a ”tag”, to the mbuf(9) in the formerly
mentioned functions, if SeND processing is enabled. We also
save the type as meta-information along the way, though you
may find that this will only be used for assert.

Pseudo-Code:

...
struct m_tag *mtag;

if (send_input_hook != NULL) {

mtag = m_tag_get(PACKET_TAG_ND_OUTGOING,
sizeof(unsigned short), M_NOWAIT);

if (mtag == NULL)

goto fail;
*(unsigned short *)(mtag + 1) = nd->nd_type;

m_tag_prepend(m, mtag);
}
...

As you might notice, there is a slight difference in processing
the outgoing Neighbor Solicitation, Neighbor Advertisement
and Redirect messages compared to the processing of Router
Solicitation and Router Advertisement messages.

Neighbor Solicitations, Neighbor Advertisements and Redi-
rects are handled fully in the Neighbor Discovery kernel
stack. Generated messages are tagged with the m tag
PACKET_TAG_ND_OUTGOING right after they are recognized in
the Neighbor Discovery kernel stack to be the output mes-
sages. This happens in sys/netinet6/nd6 nbr.c in the
nd6_ns_output() and the nd6_na_output() functions, as
well as and icmp6.c in icmp6_redirect_output().

The difference with outgoing Router Solicitation and Router
Advertisement messages is, that they are generated by rtsol
and rtadvd daemons and not with the kernel itself. Because
of that, we cannot easily tag a packet. We solved this prob-
lem by using the already available socket, packet type and

ICMPv6 informations in rip6_output() in sys/netinet6/raw ip6.c
and conditionally tagging those packets there as well.

Pseudo-Code:

...
/*
* Tag RA/RS messages from rtadvd/rtsol/etc. to be sent to

* user land for SeND protection later.
*/

if (send_input_hook != NULL &&
so->so_proto->pr_protocol == IPPROTO_ICMPV6) {
switch (icmpv6_type) {

case ND_ROUTER_ADVERT:
case ND_ROUTER_SOLICIT:

mtag = m_tag_get(PACKET_TAG_ND_OUTGOING,
sizeof(unsigned short), M_NOWAIT);

if (mtag == NULL)
goto bad;

m_tag_prepend(m, mtag);

}
}

...

Our tests showed that neither rtadvd nor rtsol, or any other
third part user space application sending RA or RS messages
needs to be modified for SeND processing, as that is handled
transparently for them, with only minimal changes to the
kernel.

Depending on the code path, packets will be passed on to
ip6_output(), which will amogst other things add the IPv6
header and nd6_output_lle(), which would pass the packet
to the interface’s output queue. Prior this step, we check
if the packet was previously tagged by us and defer it for
output path SeND processing (Figure 8).

Pseudo-Code:

...

/* Send outgoing NS/NA/REDIRECT packet to sendd. */
if (send_input_hook != NULL) {

mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);

if (mtag != NULL) {
send_input_hook(m, ifp, SND_OUT, ip6len);

return;
}
...

}
...

The send.ko kernel module consists of three things: the
send_input_hook and the send_output_hook, as well as the
module handling logic that also takes care of enabling or
disabling the hooks upon load and unload.

The input and output hooks are named after the direction
between kernel and userland. It should not be confused
with the incoming and outgoing direction of the Neighbor
Discovery packets.

• The send_input_hook takes packets from the IPv6
network stack’s input and output paths and passes
them on to the kernel-userland interface for process-
ing by the Secure Neighbor Discovery daemon.

• The send_output_hook gets packets from the userland-
kernel interface after processing by the Secure Neigh-

bor Discovery daemon to re-inject the packets back
into the IPv6 network stack.

In addition both hooks take an argument that describes the
direction of the packet:

• SND_IN is used for packets originated in the IPv6 in-
put path. These packets are usually protected by Se-
cure Neighbor Discovery options and are sent to user-
land first via the send_input_hook to be validatied
and all additional options to be stripped off. When
the packets are sent back again to kernel for further
Neighbor Discovery kernel stack processing they are
still tagged with SND_IN even though they pass the
send_output_hook (Figure 7).

• SND_OUT describes both reply or locally originated out-
going packets. These pure Neighbor Discovery pack-
ets, are sent to userland to be protected with the Se-
cure Neighbor Discovery options, after the normal pro-
cessing in the Neighbor Discovery kernel stack via the
send_input_hook. Once userspace is done, they are
sent back to kernel via the send_output_hook to be
sent out of the interface using the standard output
routines (Figure 8).

The last changes needed to the kernel were to interact with
userspace. The routing control sockets interface was chosen
for its simplicity and flexibility to be extended.

Messages between the Neighbor Discovery kernel stack and
send.ko module and the Secure Neighbor Discovery daemon
are exchanged through the routing socket.

The routing message type for the rt msghdr structure of the
routing message indicating the Secure Neighbor Discovery
event is RTM_SND and is defined in sys/net/route.h. The
rtm seq field of the routing message, which is by sender to
identify the action is set to either RTM_SND_IN or RTM_SND_OUT.
This is done in parallel to SND_IN or SND_OUT indicating ei-
ther the incoming or outgoing direction of messages that are
passing through the routing socket. Again the direction is
independent from the send.ko module input or output hook
naming.

The rt_securendmsg() function in sys/net/rtsock.c handles
the generation of the routing socket message indicating the
Secure Neighbor Discovery event, and it preserves all the ex-
isting functions, i.e. for appending the Neighbor Discovery
or Secure Neighbor Discovery data to the routing message
header. The same had been done before for the net80211
stack with rt_ieee80211msg().

Input from userland back to the kernel is handled by extend-
ing the route_output() function. The rt msghdr is stripped
of, and the packet is passed to the send.ko send_output_hook
again.

4. FUTURE WORK
The decision to use the routing control socket for the inter-
action with the userspace was made to overcome complexi-
ties that would appear in case of the alternative approaches.

However, there is the drawback caused by this design deci-
sion, due to the unability of the routing socket to provide
better control of related daemon. First step to improve our
solution is to replace the routing socket in order to provide
the appropriate control over the active daemon and a default
policy in case of no active daemon in the user spacee.

Along with the development of the native kernel API for
SeND, we have continued the development of a Secure Neigh-
bor Discovery userspace application. The current imple-
mentation is still based on NTT DoCoMo’s initial send-0.2
version. See the availability section for where to find our ver-
sion of the SeND userspace implementation. Future steps in
the development of the user space application will include
the implementation of the new Secure Neighbor Discovery
specifications that have been developed in the IETF Certifi-
cate and Send maIntainance (CSI) working group. They are
related to the DHCPv6 and CGA interaction [8], the sup-
port of the hash agility in Secure Neighbor Discovery [13],
the support of proxy Neighbor Discovery for Secure Neigh-
bor Discovery [12] and the certificate management in the
authorization delegation discovery process [11].

5. CONCLUSION
This paper reasons the need for the Secure Neighbor Dis-
covery extension to counter threats to the Neighbor Dis-
covery Protocol by illustrating the set of security threats,
the protocol enhancements that counter those threats and
their implementation. It also describes our implementation
of a native kernel-userspace SeND API for *BSD operating
systems.

Our prototype is compliant with the Secure Neighbor Dis-
covery specification, both in case of host-host scenarios and
router-host scenarios. In case that send.ko module is not
loaded, kernel operates just as there was no additional Se-
cure Neighbor Discovery code involved. We successfully
overcame major drawbacks of the existing SeND implemen-
tation for FreeBSD by eliminating the use of netgraph and
Berkley Packet Filter. Our code does not affect other ICMPv6
or IPv6 packets in any way. We developed effective and
portable solution for Secure Neighbor Discovery, while in-
troducing as few new code to kernel stack as possible.

As the send.ko kernel module acts as a gateway between
the network stack and the userland interface, it will be easy
to adopt the user space interface to something more fitting
without the need to change the kernel network stack again.

6. AVAILABILITY
The current kernel work is available in the FreeBSD Perforce
depot in the //depot/projects/soc2009/anchie_send/...
branch. The Secure Neighbor Discovery application is avail-
able at http://google-summer-of-code-2009-freebsd

.googlecode.com/files/Ana Kukec.tar.gz.

7. REFERENCES
[1] J. Arkko. Effects of ICMPv6 on IKE. IETF Draft,

Mar. 2003.

[2] T. Aura. Cryptographically Generated Addresses.
RFC 3972, Mar. 2005.

[3] M. Bagnulo and J. Arkko. Support for Multiple Hash
Algorithms in Cryptographically Generated Addresses
(CGAs). RFC 3972, July 2007.

[4] T. Braden. Requirements for Internet Hosts –
Communication Layers. RFC 1122, Oct. 1989.

[5] D. Cooper, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List. RFC 5280,
Mar. 2005.

[6] S. Deering. ICMP Router Discovery Messages. RFC
826, Nov. 1982.

[7] S. Deering and R. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 2460, Apr. 2006.

[8] S. Jiang, S. Shen, and T. Chown. DHCPv6 and CGA
Interaction. IETF Draft, Dec. 2009.

[9] S. Kent. IP Authentication Header. RFC 4302, Sept.
2005.

[10] S. Kent. IP Encapsulating Security Payload (ESP).
RFC 4303, Sept. 2005.

[11] S. Krishnan, A. Kukec, and R. Gagliano. Certificate
profile and certificate management for SEND. IETF
Draft, Dec. 2009.

[12] S. Krishnan, J. Laganier, and M. Bonola. Secure
Proxy ND Support for SEND. IETF Draft, July 2009.

[13] A. Kukec, S. Krishnan, and S. Jiang. SeND Hash
Threat Analysis. IETF Draft, July 2009.

[14] D. McDonald, C. Metz, and B. Phan. PF KEY Key
Management API, Version 2. RFC 2367, July 2367.

[15] T. Narten, E. Nordmark, W. Simpson, and
H. Soliman. Neighbor Discovery for IP version 6
(IPv6). RFC 4861, Sept. 2007.

[16] E. N. P. Nikander, J. Kempf. IPv6 Neighbor Discovery
(ND) Trust Models and Threats. RFC 3756, May
2004.

[17] D. Plummer. RFC 826 - Ethernet Address Resolution
Protocol: Or Converting Network Protocol Addresses
to 48.bit Ethernet Address for Transmission on
Ethernet Hardware . RFC 826, Nov. 1982.

[18] J. Postel. RFC792 - Internet Control Message
Protocol. RFC 792, Sept. 1981.

